Skip to content
2000
image of Indolo[2,3-b]quinoxaline (IQ) Derivatives: Synthesis, Pharmacological Properties, and Applications in Organic Electronics and Sensors

Abstract

Quinoxaline and indoline-2,3-dione, as heterocyclic scaffolds, provide significant features as crucial components for material science and the construction of new pharmacological drugs. Several interesting biological and technical characteristics have been established by their combination in indolo[2,3-b]quinoxaline (IQs) moieties. The synthesis, therapeutic chemistry, and technical application of indolo[2,3-b]quinoxalin ring systems (IQs) have been the focus of numerous studies of research in recent years. This review presents the synthesis of these derivatives by the condensation of aryl-1,2-diamines with indoline-2,3-diones (isatins) in boiling acetic acid or through microwave-assisted approaches. Additionally, the review highlights the usage of IQs in several electronic applications, including organic transistors, deep-red OLEDs, electron-transporting layers, chemical sensors, and emitting layers. These synthetic approaches and technical usage of IQs enable the efficient building of these scaffolds, accelerating further discovery and examination of their medicinal and technical potential.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728373535250514120013
2025-06-02
2025-10-03
Loading full text...

Full text loading...

References

  1. Kuzu B. Menges N. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 162 61 68 [http://dx.doi.org/10.1016/j.saa.2016.02.046]. [PMID: 26985875].
    [Google Scholar]
  2. Thadathil A. Pradeep H. Joshy D. Ismail Y.A. Periyat P. Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Mater. Adv. 2022 3 7 2990 3022 [http://dx.doi.org/10.1039/D2MA00022A].
    [Google Scholar]
  3. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Academic Press 2019 [http://dx.doi.org/10.1016/j.bioorg.2019.103021]
    [Google Scholar]
  4. Missioui M. Mortada S. Guerrab W. Serdaroğlu G. Kaya S. Mague J.T. Essassi E.M. Faouzi M.E.A. Ramli Y. Novel antioxidant quinoxaline derivative: Synthesis, crystal structure, theoretical studies, antidiabetic activity and molecular docking study. J. Mol. Struct. 2021 1239 130484 [http://dx.doi.org/10.1016/j.molstruc.2021.130484].
    [Google Scholar]
  5. Das R. Mehta D.K. Evaluation and docking study of pyrazine containing 1, 3, 4-oxadiazoles clubbed with substituted azetidin-2-one: A new class of potential antimicrobial and antitubercular. Drug Res. (Stuttg.) 2021 71 1 26 35 [http://dx.doi.org/10.1055/a-1252-2378]. [PMID: 33027823].
    [Google Scholar]
  6. Fabian L. Taverna Porro M. Gómez N. Salvatori M. Turk G. Estrin D. Moglioni A. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme. Eur. J. Med. Chem. 2020 188 111987 [http://dx.doi.org/10.1016/j.ejmech.2019.111987]. [PMID: 31893549].
    [Google Scholar]
  7. Tseng C.H. Han C.R. Tang K.W. Discovery of 3-arylquinoxaline derivatives as potential anti-dengue virus agents. Int. J. Mol. Sci. 2019 20 4786 [http://dx.doi.org/10.3390/ijms20194786].
    [Google Scholar]
  8. Tariq S. Somakala K. Amir M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem. 2018 143 542 557 [http://dx.doi.org/10.1016/j.ejmech.2017.11.064]. [PMID: 29207337].
    [Google Scholar]
  9. Hayakawa Y. Sone R. Aoki H. Kimata S. Quinomycins H1 and H2, new cytotoxic antibiotics from Streptomyces sp. RAL404. J. Antibiot. (Tokyo) 2018 71 10 898 901 [http://dx.doi.org/10.1038/s41429-018-0083-6]. [PMID: 30018424].
    [Google Scholar]
  10. Pan Y. Li P. Xie S. Tao Y. Chen D. Dai M. Hao H. Huang L. Wang Y. Wang L. Liu Z. Yuan Z. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett. 2016 26 16 4146 4153 [http://dx.doi.org/10.1016/j.bmcl.2016.01.066]. [PMID: 27426298].
    [Google Scholar]
  11. Pereira J.A. Pessoa A.M. Cordeiro M.N.D.S. Fernandes R. Prudêncio C. Noronha J.P. Vieira M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem. 2015 97 664 672 [http://dx.doi.org/10.1016/j.ejmech.2014.06.058]. [PMID: 25011559].
    [Google Scholar]
  12. Dolezal M. Zitko J. Pyrazine derivatives: A patent review (June 2012-present). Expert Opin. Ther. Pat. 2015 25 33 47
    [Google Scholar]
  13. Rodrigues F.A.R. Bom I.D.S. Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Lett. 2014 24 3 934 939 [http://dx.doi.org/10.1016/j.bmcl.2013.12.074]. [PMID: 24398294].
    [Google Scholar]
  14. Ingle R. Marathe R. Magar D. Patel H.M. Surana S.J. Sulphonamido-quinoxalines: Search for anticancer agent. Eur. J. Med. Chem. 2013 65 168 186 [http://dx.doi.org/10.1016/j.ejmech.2013.04.028]. [PMID: 23708011].
    [Google Scholar]
  15. Miniyar P. Murumkar P. Patil P. Barmade M. Bothara K. Unequivocal role of pyrazine ring in medicinally important compounds: A review. Mini Rev. Med. Chem. 2013 13 11 1607 1625 [http://dx.doi.org/10.2174/1389557511313110007]. [PMID: 23544468].
    [Google Scholar]
  16. Parhi A.K. Zhang Y. Saionz K.W. Pradhan P. Kaul M. Trivedi K. Pilch D.S. LaVoie E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg. Med. Chem. Lett. 2013 23 17 4968 4974 [http://dx.doi.org/10.1016/j.bmcl.2013.06.048]. [PMID: 23891185].
    [Google Scholar]
  17. Smits R.A. Lim H.D. Hanzer A. Zuiderveld O.P. Guaita E. Adami M. Coruzzi G. Leurs R. de Esch I.J.P. Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. J. Med. Chem. 2008 51 8 2457 2467 [http://dx.doi.org/10.1021/jm7014217]. [PMID: 18357976].
    [Google Scholar]
  18. Rong F. Chow S. Yan S. Larson G. Hong Z. Wu J. Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem. Lett. 2007 17 6 1663 1666 [http://dx.doi.org/10.1016/j.bmcl.2006.12.103]. [PMID: 17258458].
    [Google Scholar]
  19. Hui X. Desrivot J. Bories C. Loiseau P.M. Franck X. Hocquemiller R. Figadère B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. Bioorg. Med. Chem. Lett. 2006 16 4 815 820 [http://dx.doi.org/10.1016/j.bmcl.2005.11.025]. [PMID: 16309903].
    [Google Scholar]
  20. Hazeldine S.T. Polin L. Kushner J. Paluch J. White K. Edelstein M. Palomino E. Corbett T.H. Horwitz J.P. Design, synthesis, and biological evaluation of analogues of the antitumor agent, 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469). J. Med. Chem. 2001 44 1758 1776 [http://dx.doi.org/10.1021/jm0005149]. [PMID: 11356111].
    [Google Scholar]
  21. Maga J.A. Pyrazine update. Food Rev. Int. 1992 8 4 479 558 [http://dx.doi.org/10.1080/87559129209540951].
    [Google Scholar]
  22. Kos J. Gonec T. Oravec M. Jendrzejewska I. Jampilek J. Photosynthesis-inhibiting activity of N-(disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides. Molecules 2021 26 14 4336 [http://dx.doi.org/10.3390/molecules26144336]. [PMID: 34299611].
    [Google Scholar]
  23. Guo Q. Xu M. Guo S. Zhu F. Xie Y. Shen J. The complete synthesis of favipiravir from 2-aminopyrazine. Chem. Pap. 2019 73 5 1043 1051 [http://dx.doi.org/10.1007/s11696-018-0654-9].
    [Google Scholar]
  24. Kim Y.B. Kim Y.H. Park J.Y. Kim S.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg. Med. Chem. Lett. 2004 14 2 541 544 [http://dx.doi.org/10.1016/j.bmcl.2003.09.086]. [PMID: 14698199].
    [Google Scholar]
  25. Richards H.C. Housley J.R. Spooner D.F. Quinacillin: A new penicillin with unusual properties. Nature 1963 199 354 356 [http://dx.doi.org/10.1038/199354a0].
    [Google Scholar]
  26. Oncken C. Gonzales D. Nides M. Rennard S. Watsky E. Billing C.B. Anziano R. Reeves K. Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. Arch. Intern. Med. 2006 166 15 1571 1577 [http://dx.doi.org/10.1001/archinte.166.15.1571]. [PMID: 16908789].
    [Google Scholar]
  27. Adkins J.C. Balfour J.A. Brimonidine. Drugs Aging 1998 12 3 225 241 [http://dx.doi.org/10.2165/00002512-199812030-00005]. [PMID: 9534022].
    [Google Scholar]
  28. Ulrich R.G. Bacon J.A. Brass E.P. Cramer C.T. Petrella D.K. Sun E.L. Metabolic, idiosyncratic toxicity of drugs: Overview of the hepatic toxicity induced by the anxiolytic, panadiplon. Chem. Biol. Interact. 2001 134 3 251 270 [http://dx.doi.org/10.1016/S0009-2797(01)00161-2]. [PMID: 11336974].
    [Google Scholar]
  29. Carter S.D. Cheeseman G.W.H. Quinoxalines and related compounds—X. Tetrahedron 1978 34 7 981 988 [http://dx.doi.org/10.1016/0040-4020(78)88151-4].
    [Google Scholar]
  30. Harmenberg J. Wahren B. Bergman J. Akerfeldt S. Lundblad L. Antiherpesvirus activity and mechanism of action of indolo-(2,3-b)quinoxaline and analogs. Antimicrob. Agents Chemother. 1988 32 11 1720 1724 [http://dx.doi.org/10.1128/AAC.32.11.1720]. [PMID: 2855298].
    [Google Scholar]
  31. Hirata K. Araya J. Nakaike S. Kitamura K. Ishida T. Side chain-dependent binding of antitumor indoloquinoxaline derivatives to DNA: comparative spectroscopic and viscometric measurements. Chem. Pharm. Bull. (Tokyo) 2001 49 1 44 48 [http://dx.doi.org/10.1248/cpb.49.44]. [PMID: 11201223].
    [Google Scholar]
  32. Avula S. Komsani J.R. Koppireddi S. Yadla R. Kanugula A.K. Kotamraju S. Synthesis and cytotoxicity of novel 6H-indolo[2,3-b]quinoxaline derivatives. Med. Chem. Res. 2013 22 8 3712 3718 [http://dx.doi.org/10.1007/s00044-012-0373-7].
    [Google Scholar]
  33. Karki S. Hazare R. Kumar S. Bhadauria V. Balzarini J. De Clercq E. Synthesis, anticancer and cytostatic activity of some 6H-indolo[2,3-b]quinoxalines. Acta Pharm. 2009 59 4 431 440 [http://dx.doi.org/10.2478/v10007-009-0040-9]. [PMID: 19919932].
    [Google Scholar]
  34. Wilhelmsson L.M. Kingi N. Bergman J. Interactions of antiviral indolo[2,3-b]quinoxaline derivatives with DNA. J. Med. Chem. 2008 51 24 7744 7750 [http://dx.doi.org/10.1021/jm800787b]. [PMID: 19053744].
    [Google Scholar]
  35. Sehlstedt U. Aich P. Bergman J. Vallberg H. Nordén B. Gräslund A. Interactions of the antiviral quinoxaline derivative 9-OH-B220 2,3-dimethyl-6-(dimethylaminoethyl)-9-hydroxy-6H-indolo-[2,3-b]quinoxaline with duplex and triplex forms of synthetic DNA and RNA. J. Mol. Biol. 1998 278 1 31 56 [http://dx.doi.org/10.1006/jmbi.1998.1670]. [PMID: 9571032].
    [Google Scholar]
  36. Harmenberg J. Åkesson-Johansson A. Gräslund A. Malmfors T. Bergman J. Wahren B. Åkerfeldt S. Lundblad L. Cox S. The mechanism of action of the anti-herpes virus compound 2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline. Antiviral Res. 1991 15 3 193 204 [http://dx.doi.org/10.1016/0166-3542(91)90066-Z]. [PMID: 1653556].
    [Google Scholar]
  37. Eissa I.H. El-Naggar A.M. El-Sattar N.E.A.A. Youssef A.S.A. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors, Anti-Cancer Agents Med. Anticancer. Agents Med. Chem. 2018 18 2 195 209 [http://dx.doi.org/10.2174/1871520617666170710182405]. [PMID: 28699490].
    [Google Scholar]
  38. Ibrahim M.K. Taghour M.S. Metwaly A.M. Belal A. Mehany A.B.M. Elhendawy M.A. Radwan M.M. Yassin A.M. El-Deeb N.M. Hafez E.E. ElSohly M.A. Eissa I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem. 2018 155 117 134 [http://dx.doi.org/10.1016/j.ejmech.2018.06.004]. [PMID: 29885574].
    [Google Scholar]
  39. Mahata T. Kanungo A. Ganguly S. Modugula E.K. Choudhury S. Pal S.K. Basu G. Dutta S. The benzyl moiety in a quinoxaline-based scaffold acts as a DNA intercalation switch. Angew. Chem. Int. Ed. Engl. 2016 55 27 7733 7736 [http://dx.doi.org/10.1002/anie.201511881].
    [Google Scholar]
  40. Sun H. Chen F. Chen Z.K. Recent progress on non-fullerene acceptors for organic photovoltaics. Mater. Today 2019 24 94 118 [http://dx.doi.org/10.1016/j.mattod.2018.09.004].
    [Google Scholar]
  41. Li H. Guo Y. Lei Y. Gao W. Liu M. Chen J. Hu Y. Huang X. Wu H. D-π-A benzo[c][1,2,5]selenadiazole-based derivatives via an ethynyl bridge: Photophysical properties, solvatochromism and applications as fluorescent sensors. Dyes Pigments 2015 112 105 115 [http://dx.doi.org/10.1016/j.dyepig.2014.06.035].
    [Google Scholar]
  42. Wang Y.H. Wan Z.L. Yang X.Q. Wang J.M. Guo J. Lin Y. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocoll. 2016 54 40 48 [http://dx.doi.org/10.1016/j.foodhyd.2015.09.020].
    [Google Scholar]
  43. Pei K. Recent advances in molecular doping of organic semiconductors. Surf. Interfaces 2022 30 101887 [http://dx.doi.org/10.1016/j.surfin.2022.101887].
    [Google Scholar]
  44. Abdellah I.M. El-Shafei A. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies. J. Photochem. Photobiol. Chem. 2020 387 112133 [http://dx.doi.org/10.1016/j.jphotochem.2019.112133].
    [Google Scholar]
  45. Abdellah I.M. Koraiem A.I. El-Shafei A. Molecular engineering and investigation of new efficient photosensitizers/co-sensitizers based on bulky donor enriched with EDOT for DSSCs. Dyes Pigments 2019 164 244 256 [http://dx.doi.org/10.1016/j.dyepig.2019.01.035].
    [Google Scholar]
  46. Mishra A. Fischer M.K.R. Bäuerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure: Property relationships to design rules. Angew. Chem. Int. Ed. 2009 48 14 2474 2499 [http://dx.doi.org/10.1002/anie.200804709]. [PMID: 19294671].
    [Google Scholar]
  47. Ooyama Y. Harima Y. Molecular designs and syntheses of organic dyes for dye‐sensitized solar cells. Eur. J. Org. Chem. 2009 2009 18 2903 2934 [http://dx.doi.org/10.1002/ejoc.200900236].
    [Google Scholar]
  48. Yen Y.S. Chou H.H. Chen Y.C. Hsu C.Y. Lin J.T. Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem. 2012 22 18 8734 8747 [http://dx.doi.org/10.1039/c2jm30362k].
    [Google Scholar]
  49. Dessì A. Calamante M. Mordini A. Peruzzini M. Sinicropi A. Basosi R. Fabrizi de Biani F. Taddei M. Colonna D. Di Carlo A. Reginato G. Zani L. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells. Chem. Commun. (Camb.) 2014 50 90 13952 13955 [http://dx.doi.org/10.1039/C4CC06160H]. [PMID: 25264863].
    [Google Scholar]
  50. Devarajan N. Naik P. Gorle D.B. Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs. J. Photochem. Photobiol. Chem. 2025 462 116177 [http://dx.doi.org/10.1016/j.jphotochem.2024.116177].
    [Google Scholar]
  51. Naik P. Elias L. Keremane K.S. Babu D.D. Abdellah I.M. Metal‐free organic dyes for NiO-based dye-sensitized solar cells: Recent developments and future perspectives. Energy Technol. (Weinheim) 2024 12 7 2301666 [http://dx.doi.org/10.1002/ente.202301666].
    [Google Scholar]
  52. Naik P. Keremane K.S. Elmorsy M.R. El-Shafei A. Adhikari A.V. Carbazole based organic dyes as effective photosensitizers: A comprehensive analysis of their structure‐property relationships. Electrochem. Sci. Adv. 2022 2 3 e2100061 [http://dx.doi.org/10.1002/elsa.202100061].
    [Google Scholar]
  53. Li Y. Guo Q. Li Z. Pei J. Tian W. Solution processable D-A small molecules for bulk-heterojunction solar cells. Energy Environ. Sci. 2010 3 10 1427 1436 [http://dx.doi.org/10.1039/c003946b].
    [Google Scholar]
  54. Würthner F. Meerholz K. Systems chemistry approach in organic photovoltaics. Chemistry 2010 16 31 9366 9373 [http://dx.doi.org/10.1002/chem.201001153]. [PMID: 20645353].
    [Google Scholar]
  55. Walker B. Kim C. Nguyen T.Q. Small molecule solution-processed bulk heterojunction solar cells. Chem. Mater. 2011 23 3 470 482 [http://dx.doi.org/10.1021/cm102189g].
    [Google Scholar]
  56. Lin Y. Li Y. Zhan X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012 41 11 4245 4272 [http://dx.doi.org/10.1039/c2cs15313k]. [PMID: 22453295].
    [Google Scholar]
  57. Mishra A. Bäuerle P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem. Int. Ed. 2012 51 9 2020 2067 [http://dx.doi.org/10.1002/anie.201102326]. [PMID: 22344682].
    [Google Scholar]
  58. Chen Y. Wan X. Long G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013 46 11 2645 2655 [http://dx.doi.org/10.1021/ar400088c]. [PMID: 23902284].
    [Google Scholar]
  59. Roncali J. Leriche P. Blanchard P. Molecular materials for organic photovoltaics: Small is beautiful. Adv. Mater. 2014 26 23 3821 3838 [http://dx.doi.org/10.1002/adma.201305999]. [PMID: 24687246].
    [Google Scholar]
  60. Kan B. Li M. Zhang Q. Liu F. Wan X. Wang Y. Ni W. Long G. Yang X. Feng H. Zuo Y. Zhang M. Huang F. Cao Y. Russell T.P. Chen Y. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J. Am. Chem. Soc. 2015 137 11 3886 3893 [http://dx.doi.org/10.1021/jacs.5b00305]. [PMID: 25736989].
    [Google Scholar]
  61. Ni W. Wan X. Li M. Wang Y. Chen Y. A-D-A small molecules for solution-processed organic photovoltaic cells. Chem. Commun. (Camb.) 2015 51 24 4936 4950 [http://dx.doi.org/10.1039/C4CC09758K]. [PMID: 25642992].
    [Google Scholar]
  62. Allard S. Forster M. Souharce B. Thiem H. Scherf U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 2008 47 22 4070 4098 [http://dx.doi.org/10.1002/anie.200701920]. [PMID: 18357603].
    [Google Scholar]
  63. Mas-Torrent M. Rovira C. Novel small molecules for organic field-effect transistors: Towards processability and high performance. Chem. Soc. Rev. 2008 37 4 827 838 [http://dx.doi.org/10.1039/b614393h]. [PMID: 18362986].
    [Google Scholar]
  64. Wang C. Dong H. Hu W. Liu Y. Zhu D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012 112 4 2208 2267 [http://dx.doi.org/10.1021/cr100380z]. [PMID: 22111507].
    [Google Scholar]
  65. Mei J. Diao Y. Appleton A.L. Fang L. Bao Z. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 2013 135 18 6724 6746 [http://dx.doi.org/10.1021/ja400881n]. [PMID: 23557391].
    [Google Scholar]
  66. Liu J. Wu Y. Qin C. Yang X. Yasuda T. Islam A. Zhang K. Peng W. Chen W. Han L. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 2014 7 9 2963 2967 [http://dx.doi.org/10.1039/C4EE01589D].
    [Google Scholar]
  67. Qin P. Paek S. Dar M.I. Pellet N. Ko J. Grätzel M. Nazeeruddin M.K. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. J. Am. Chem. Soc. 2014 136 24 8516 8519 [http://dx.doi.org/10.1021/ja503272q]. [PMID: 24866942].
    [Google Scholar]
  68. Wang J. Wang S. Li X. Zhu L. Meng Q. Xiao Y. Li D. Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chem. Commun. (Camb.) 2014 50 44 5829 5832 [http://dx.doi.org/10.1039/c4cc01637h]. [PMID: 24699930].
    [Google Scholar]
  69. Ganesan P. Fu K. Gao P. Raabe I. Schenk K. Scopelliti R. Luo J. Wong L.H. Grätzel M. Nazeeruddin M.K. A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy Environ. Sci. 2015 8 7 1986 1991 [http://dx.doi.org/10.1039/C4EE03773A].
    [Google Scholar]
  70. Swetha T. Singh S.P. Perovskite solar cells based on small molecule hole transporting materials. J. Mater. Chem. A Mater. Energy Sustain. 2015 3 36 18329 18344 [http://dx.doi.org/10.1039/C5TA02507A].
    [Google Scholar]
  71. Xu B. Tian H. Lin L. Qian D. Chen H. Zhang J. Vlachopoulos N. Boschloo G. Luo Y. Zhang F. Hagfeldt A. Sun L. Integrated design of organic hole transport materials for efficient solid‐state dye‐sensitized solar cells. Adv. Energy Mater. 2015 5 3 1401185 [http://dx.doi.org/10.1002/aenm.201401185].
    [Google Scholar]
  72. Elmorsy M.R. Abdel-Latif E. Gaffer H.E. Badawy S.A. Fadda A.A. Theoretical studies, anticancer activity, and photovoltaic performance of newly synthesized carbazole-based dyes. J. Mol. Struct. 2022 1255 132404 [http://dx.doi.org/10.1016/j.molstruc.2022.132404].
    [Google Scholar]
  73. Sun W. Hu G. Shen W. Xu H. Deng Z. Zhao G. Li F. Hu Y. Yang W. A series of D-π-A and A-π-A’ fluorescent probes were used to explore the influence of terminal groups on the properties of the hemicyanine probes. J. Mol. Liq. 2021 340 116846 [http://dx.doi.org/10.1016/j.molliq.2021.116846].
    [Google Scholar]
  74. Zhang X. Zhang F. Yang B. Liu B. A simple strategy for constructing PET fluorescent probe and its application in hypochlorite detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 258 119827 [http://dx.doi.org/10.1016/j.saa.2021.119827]. [PMID: 33915338].
    [Google Scholar]
  75. Wang Y. Wu H. Wu W.N. Li S.J. Xu Z.H. Xu Z.Q. Fan Y.C. Zhao X.L. Liu B.Z. An AIRE active Schiff base bearing coumarin and pyrrole unit: Cu2+ detection in either solution or aggregation states. Sens. Actuators B Chem. 2018 260 106 115 [http://dx.doi.org/10.1016/j.snb.2017.12.201].
    [Google Scholar]
  76. Hou J.T. Kim H.S. Duan C. Ji M.S. Wang S. Zeng L. Ren W.X. Kim J.S. A ratiometric fluorescent probe for detecting hypochlorite in the endoplasmic reticulum. Chem. Commun. (Camb.) 2019 55 17 2533 2536 [http://dx.doi.org/10.1039/C9CC00066F]. [PMID: 30742172].
    [Google Scholar]
  77. Liu B. Wang J. Zhang G. Bai R. Pang Y. Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells. ACS Appl. Mater. Interfaces 2014 6 6 4402 4407 [http://dx.doi.org/10.1021/am500102s]. [PMID: 24571859].
    [Google Scholar]
  78. Niko Y. Sasaki S. Kawauchi S. Tokumaru K. Konishi G. Design of weak-donor alkyl-functionalized push-pull pyrene dyes exhibiting enhanced fluorescence quantum yields and unique on/off switching properties. Chem. Asian J. 2014 9 7 1797 1807 [http://dx.doi.org/10.1002/asia.201402088]. [PMID: 24801355].
    [Google Scholar]
  79. Takagi K. Kusafuka K. Ito Y. Yamauchi K. Ito K. Fukuda R. Ehara M. Synthesis and optical properties of imidazole-and benzimidazole-based fused π-conjugated compounds: Influence of substituent, counteranion, and π-conjugated system. J. Org. Chem. 2015 80 14 7172 7183 [http://dx.doi.org/10.1021/acs.joc.5b01028]. [PMID: 26102427].
    [Google Scholar]
  80. Marder S.R. Torruellas W.E. Blanchard-Desce M. Ricci V. Stegeman G.I. Gilmour S. Bredas J-L. Li J. Bublitz G.U. Boxer S.G. Large molecular third-order optical nonlinearities in polarized carotenoids. Science 1997 276 1233 1236
    [Google Scholar]
  81. Debnath S. Mohanty A. Naik P. Salzner U. Dasgupta J. Patil S. Deciphering intramolecular charge transfer in fluoranthene derivatives. J. Mater. Chem. C Mater. Opt. Electron. Devices 2024 12 25 9200 9209 [http://dx.doi.org/10.1039/D4TC01405G].
    [Google Scholar]
  82. Fang J.K. An D.L. Wakamatsu K. Ishikawa T. Iwanaga T. Toyota S. Akita S. Matsuo D. Orita A. Otera J. Synthesis and spectroscopic study of phenylene-(poly)ethynylenes substituted by amino or amino/cyano groups at terminal(s): electronic effect of cyano group on charge-transfer excitation of acetylenic π-systems. Tetrahedron 2010 66 29 5479 5485 [http://dx.doi.org/10.1016/j.tet.2010.05.016].
    [Google Scholar]
  83. Fang J.K. An D.L. Wakamatsu K. Ishikawa T. Iwanaga T. Toyota S. Matsuo D. Orita A. Otera J. Synthesis and spectroscopic study of diphenylamino-substituted phenylene-(poly)ethynylenes: Remarkable effect of acetylenic conjugation modes. Tetrahedron Lett. 2010 51 6 917 920 [http://dx.doi.org/10.1016/j.tetlet.2009.12.023].
    [Google Scholar]
  84. Harish K.K. Nesaragi A.R. Kalagatur N.K. Naik P. Madegowda M. Pandith A. Dahlous K.A. Mohammad S. Shivarudrappa H.P. Sharanakumar T.M. Guddappa H. Imidazole-centred cupric ions sensor: Experimental validation, theoretical understanding, and zebrafish bioimaging. J. Photochem. Photobiol. Chem. 2024 452 115565 [http://dx.doi.org/10.1016/j.jphotochem.2024.115565].
    [Google Scholar]
  85. Qian X. Gao H.H. Zhu Y.Z. Lu L. Zheng J.Y. 6H-Indolo[2,3-b]quinoxaline-based organic dyes containing different electron-rich conjugated linkers for highly efficient dye-sensitized solar cells. J. Power Sources 2015 280 573 580 [http://dx.doi.org/10.1016/j.jpowsour.2015.01.148].
    [Google Scholar]
  86. Thomas K.R.J. Tyagi P. Synthesis, spectra, and theoretical investigations of the triarylamines based on 6H-indolo[2,3-b]quinoxaline. J. Org. Chem. 2010 75 23 8100 8111 [http://dx.doi.org/10.1021/jo1016663]. [PMID: 21053895].
    [Google Scholar]
  87. Tyagi P. Venkateswararao A. Thomas K.R.J. Solution processable indoloquinoxaline derivatives containing bulky polyaromatic hydrocarbons: Synthesis, optical spectra, and electroluminescence. J. Org. Chem. 2011 76 11 4571 4581 [http://dx.doi.org/10.1021/jo2004764]. [PMID: 21539382].
    [Google Scholar]
  88. Fan C.H. Sun P. Su T.H. Cheng C.H. Host and dopant materials for idealized deep-red organic electrophosphorescence devices. Adv. Mater. 2011 23 26 2981 2985 [http://dx.doi.org/10.1002/adma.201100610]. [PMID: 21567483].
    [Google Scholar]
  89. Qian X. Wang X. Shao L. Li H. Yan R. Hou L. Molecular engineering of D-D-π-A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells. J. Power Sources 2016 326 129 136 [http://dx.doi.org/10.1016/j.jpowsour.2016.06.127].
    [Google Scholar]
  90. Payne A.J. Welch G.C. Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions. Org. Biomol. Chem. 2017 15 15 3310 3319 [http://dx.doi.org/10.1039/C7OB00362E]. [PMID: 28361153].
    [Google Scholar]
  91. Zhao J. Li H. Li H. Zhao Q. Ling H. Li J. Lin J. Xie L. Lin Z. Yi M. Huang W. Synthesis, characterization and charge storage properties of π-biindolo[2,3-b]quinoxaline for solution-processing organic transistor memory. Dyes Pigments 2019 167 255 261 [http://dx.doi.org/10.1016/j.dyepig.2018.07.011].
    [Google Scholar]
  92. Bhanvadia V.J. Machhi H.K. Soni S.S. Zade S.S. Patel A.L. Design and development of dithienopyrrolobenzothiadiazole (DTPBT)-based rigid conjugated polymers with improved hole mobilities. Polymer (Guildf.) 2020 211 123089 [http://dx.doi.org/10.1016/j.polymer.2020.123089].
    [Google Scholar]
  93. Khidre R.E. Radini I.M.A. Ameen T.A. Abdelgawad A.A.M. Triazoloquinolines I. Synthetic methods and pharmacological properties of [1, 2, 3] triazoloquinoline derivatives. Curr. Org. Chem. 2021 25 8 876 893 [http://dx.doi.org/10.2174/1385272825666210202122645].
    [Google Scholar]
  94. Khidre R.E. Salem M.A. Ameen T.A. Abdelgawad A.A.M. Triazoloquinolines, I.I. Triazoloquinolines II: Synthesis, reactions, and pharmacological properties of [1,2,4]Triazoloquinoline and 1,2,4-Triazoloisoquinoline derivatives. Polycycl. Aromat. Compd. 2023 43 1 13 53 [http://dx.doi.org/10.1080/10406638.2021.2008457].
    [Google Scholar]
  95. Gouda M.A. Abu-Hashem A.A. Ameen T.A. Salem M.A. Synthesis of Pyrimido[4, 5-b]quinolones from 6-Aminopyrimidin-4- (thi)one derivatives (Part I). Mini Rev. Org. Chem. 2023 20 6 622 641 [http://dx.doi.org/10.2174/1570193X20666221104110606].
    [Google Scholar]
  96. Gouda M.A. Abu-Hashem A.A. Ameen T.A. Althagafi S.H. Hamama W.S. Khalil A.G.M. Pyrimido[5,4‐c]quinolines: Synthesis from 3,4‐Di‐functionallized quinoline, reactivity and biological activities. Chem. Biodivers. 2024 21 3 e202301968 [http://dx.doi.org/10.1002/cbdv.202301968]. [PMID: 38194695].
    [Google Scholar]
  97. Abu-Hashem A.A. Hakami O. Amri N. Ameen T.A. Bajaber M.A. Youssef M.M. Gouda M.A. Recent routes in synthesis and biological activity of Pyrimido[4,5-b] quinoline derivatives: A review (part II). Mini Rev. Org. Chem. 2024 ••• 21 [http://dx.doi.org/10.2174/0118756298322382240902061348].
    [Google Scholar]
  98. Abu-Hashem A. Ameen T. El-Telbani E. Hussein H.A.R. Gouda M. Synthesis, reactions and biological activity of pyrimido [5, 4-c] quinolines based on (Thio)barbituric acid and their analogous (part IV). Mini Rev. Org. Chem. 2024 21 1 13 [http://dx.doi.org/10.2174/0118756298276728231130042823].
    [Google Scholar]
  99. Niume K. Kurosawa S. Toda F. Hasegawa M. Iwakura Y. Schopov I. Popov N. The condensation of isatin with o-phenylenediamine. Bull. Chem. Soc. Jpn. 1982 55 7 2293 2294 [http://dx.doi.org/10.1246/bcsj.55.2293].
    [Google Scholar]
  100. Schopov I. Popov N. Polyindoloquinoxalines. J. Polym. Sci. Part A‐1. Polym. Chem. 1969 7 1803 1814
    [Google Scholar]
  101. Dowlatabadi R. Khalaj A. Rahimian S. Montazeri M. Amini M. Shahverdi A. Mahjub E. Impact of substituents on the isatin ring on the reaction between isatins with ortho-phenylenediamine. Synth. Commun. 2011 41 11 1650 1658 [http://dx.doi.org/10.1080/00397911.2010.491596].
    [Google Scholar]
  102. Drushlyak A.G. Ivashchenko A.V. Titov V.V. Reaction of aromatic o-diamines with isatins. 3. 4-nitro- and 4,5-dinitro-o-phenylenediamines. Chem. Heterocycl. Compd. 1984 20 11 1276 1280 [http://dx.doi.org/10.1007/BF00505722].
    [Google Scholar]
  103. Pyszka I. Jędrzejewska B. Photoinitiation abilities of indeno- and indoloquinoxaline derivatives and mechanical properties of dental fillings based on multifunctional acrylic monomers and glass ionomer. Polymer (Guildf.) 2023 266 125625 [http://dx.doi.org/10.1016/j.polymer.2022.125625].
    [Google Scholar]
  104. Hou J. One pot synthesis of 1,2,3,4-tetrahydro-6H-indolo[2,3-b]quinoxaline via air oxidation. Jingxi Huagong 2016 33 431 435
    [Google Scholar]
  105. Fryšová I. Slouka J. Oxo derivatives of quinoxaline VII*. The study of reactivity of substituted 3-(2-aminophenyl)-1,2-dihydro-quinoxaline-2-one. Acta. Univ Palacki Olomuc Fac Rerum. Nat. Chem. 2005 44 63 68
    [Google Scholar]
  106. Smith C.D. Myers C.B. Zilfou J.T. Smith S.N. Lawrence D.S. Indoloquinoxaline compounds that selectively antagonize P-glycoprotein. Oncol. Res. 2001 12 5 219 229 [http://dx.doi.org/10.3727/096504001108747710]. [PMID: 11417747].
    [Google Scholar]
  107. Yarovenko V.N. Polushina A.V. Levchenko K.S. Zavarzin I.V. Krayushkin M.M. Kotovskaya S.K. Charushin V.N. Synthesis of fluorine-containing analogs of ellipticine and other heterocycles from 2-Nitro-and 2-amino-4,5-difluoroanilines. Russ. J. Org. Chem. 2007 43 9 1387 1392 [http://dx.doi.org/10.1134/S1070428007090217].
    [Google Scholar]
  108. Dong D. Fang D. Li H. Zhu C. Zhao X. Li J. Jin L. Xie L. Chen L. Zhao J. Zhang H. Huang W. Direct Arylated C.H. C−H direct arylated 6H‐Indolo[2,3‐b]quinoxaline derivative as a thickness‐dependent hole‐injection layer. Chem. Asian J. 2017 12 8 920 926 [http://dx.doi.org/10.1002/asia.201700112]. [PMID: 28213900].
    [Google Scholar]
  109. Abd Ei-Halim M.S. Ei-Ahl A.S. Etman H.A. Ali M.M. Fouda A. Fadda A.A. A new route for the synthesis of phenazine di-N-oxides. Monatsh. Chem. 1995 126 1217 1223 [http://dx.doi.org/10.1007/BF00824300].
    [Google Scholar]
  110. Singh H.N. Varma V.A. Dwivedi R.S. Verma S.D. Potential biologically active agents. Part XLVII. Synthesis of newer indophenazines as potential biologically active agents. Indian Drugs 1985 22 582 586
    [Google Scholar]
  111. Wamberg M.C. Hassan A.A. Bond A.D. Pedersen E.B. Intercalating nucleic acids (INAs) containing insertions of 6H-indolo[2,3-b]quinoxaline. Tetrahedron 2006 62 48 11187 11199 [http://dx.doi.org/10.1016/j.tet.2006.09.017].
    [Google Scholar]
  112. Li Y. Wang Y. Zhang H. Synthesis of new tert ‐Butyl‐ and Bromo‐functionalized [1,2,4]Triazino [5,6‐b]indole‐3‐thiols and Indolo[2,3‐b]quinoxalines. J. Heterocycl. Chem. 2017 54 5 2874 2880 [http://dx.doi.org/10.1002/jhet.2895].
    [Google Scholar]
  113. Hari Narayana Moorthy N.S. Karthikeyan C. Trivedi P. Design, synthesis, cytotoxic evaluation, and QSAR study of some 6H-indolo[2,3-b]quinoxaline derivatives. J. Enzyme Inhib. Med. Chem. 2010 25 3 394 405 [http://dx.doi.org/10.3109/14756360903190747]. [PMID: 20233012].
    [Google Scholar]
  114. Zhang W. Walser-Kuntz R. Tracy J.S. Schramm T.K. Shee J. Head-Gordon M. Chen G. Helms B.A. Sanford M.S. Toste F.D. Indolo[2,3-b]quinoxaline as a low reduction potential and high stability anolyte scaffold for nonaqueous redox flow batteries. J. Am. Chem. Soc. 2023 145 34 18877 18887 [http://dx.doi.org/10.1021/jacs.3c05210]. [PMID: 37585274].
    [Google Scholar]
  115. Pai N.R. Pusalkar D.A. Pharmacological screening of novel indolo [2, 3-b] quinoxaline derivatives. J. Chem. Pharm. Res. 2010 2 485 493
    [Google Scholar]
  116. Melnichenko V.E. Kudryavtseva T.N. Lamanov A.Y. Kudryavcev T.A. Klimova L.G. Design, synthesis and antimicrobial studies of novel imine derivatives of 2-(6H-indolo[2,3-b]quinoxalin-6-yl)-1-phenylethan-1-ones. Chemical Data Collections 2022 41 100929 [http://dx.doi.org/10.1016/j.cdc.2022.100929].
    [Google Scholar]
  117. Melnichenko V.E. Kudryavtseva T.N. Grekhneva E.V. Lamanov A.Y. Kudryavcev T.A. Synthesis of new 2-(6H-Indolo[2,3-b]quinoxalin-6-yl)-1-phenylethane-1-ones. Russ. J. Gen. Chem. 2021 91 10 2114 2117 [http://dx.doi.org/10.1134/S1070363221100212].
    [Google Scholar]
  118. Kanhed A.M. Patel D.V. Patel N.R. Sinha A. Thakor P.S. Patel K.B. Prajapati N.K. Patel K.V. Yadav M.R. Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents. J. Biomol. Struct. Dyn. 2022 40 6 2498 2515 [http://dx.doi.org/10.1080/07391102.2020.1840441]. [PMID: 33111617].
    [Google Scholar]
  119. Gu Z. Li Y. Ma S. Li S. Zhou G. Ding S. Zhang J. Wang S. Zhou C. Synthesis, cytotoxic evaluation and DNA binding study of 9-fluoro-6H-indolo[2,3-b]quinoxaline derivatives. RSC Advances 2017 7 66 41869 41879 [http://dx.doi.org/10.1039/C7RA08138C].
    [Google Scholar]
  120. Lv M. Zheng H. Li Y. Gao W. First synthesis of tert-butyl-substituted [1,2,4]triazino[5,6-b]indole-3-thiols and indolo[2,3-b]quinoxalines. Res. Chem. Intermed. 2015 41 10 6927 6939 [http://dx.doi.org/10.1007/s11164-014-1788-1].
    [Google Scholar]
  121. Osman A.M.A. Pedersen E.B. Conjugation of N‐(3‐(9‐Ethynyl‐6H‐indolo[2,3‐b]quinoxalin‐6‐yl)propyl)‐2,2,2‐trifluoroacetamide intercalator to a triplex forming oligonucleotide, a three‐way junction, and a G‐Quadruplex. Eur. J. Org. Chem. 2019 2019 27 4362 4371 [http://dx.doi.org/10.1002/ejoc.201900554].
    [Google Scholar]
  122. Shibinskaya M.O. Kutuzova N.A. Mazepa A.V. Lyakhov S.A. Andronati S.A. Zubritsky M.J. Galat V.F. Lipkowski J. Kravtsov V.C. Synthesis of 6-aminopropyl-6H-indolo[2,3-b]quinoxaline derivatives. J. Heterocycl. Chem. 2012 49 3 678 682 [http://dx.doi.org/10.1002/jhet.805].
    [Google Scholar]
  123. Chowdhary S. Raza A. Seboletswe P. Cele N. Sharma A.K. Singh P. Kumar V. Cu-promoted synthesis of Indolo[2,3-b]quinoxaline-Mannich adducts via three-component reaction and their anti-proliferative evaluation on colorectal and ovarian cancer cells. J. Mol. Struct. 2023 1275 134627 [http://dx.doi.org/10.1016/j.molstruc.2022.134627].
    [Google Scholar]
  124. Manna K. Agrawal Y.K. Microwave assisted synthesis of new indophenazine 1,3,5-trisubstruted pyrazoline derivatives of benzofuran and their antimicrobial activity. Bioorg. Med. Chem. Lett. 2009 19 10 2688 2692 [http://dx.doi.org/10.1016/j.bmcl.2009.03.161]. [PMID: 19395261].
    [Google Scholar]
  125. Sridevi C.H. Balaji K. Naidu A. Synthesis and pharmacological evaluation of some phenylpyrazolo indoquinoxaline derivatives. E-J. Chem. 2011 8 924 930
    [Google Scholar]
  126. Girdhar K. Thakur S. Gaur P. Choubey A. Dogra S. Dehury B. Kumar S. Biswas B. Dwivedi D.K. Ghosh S. Mondal P. Design, synthesis, and biological evaluation of a small molecule oral agonist of the glucagon-like-peptide-1 receptor. J. Biol. Chem. 2022 298 5 101889 [http://dx.doi.org/10.1016/j.jbc.2022.101889]. [PMID: 35378127].
    [Google Scholar]
  127. El Malah T. El-Rashedy A.A. Hegab M.I. Awad H.M. Shamroukh A.H. Click synthesis of novel 6-((1H-1,2,3-triazol-4-yl)methyl)-6H-indolo[2,3-b]quinoxalines for in vitro anticancer evaluation and docking studies. New J. Chem. 2024 48 24 11064 11078 [http://dx.doi.org/10.1039/D3NJ05761E].
    [Google Scholar]
  128. Chowdhary S. Raza A. Preeti S. Kaur S. Anand A. Sharma A.K. Kumar V. Isatin-indoloquinoxaline click adducts with a potential to overcome platinum-based drug-resistance in ovarian cancer. Bioorg. Chem. 2024 142 106953 [http://dx.doi.org/10.1016/j.bioorg.2023.106953]. [PMID: 37925887].
    [Google Scholar]
  129. Ashry E.S.H.E. Ramadan E.S. Hamid H.A. Hagar M. Microwave irradiation for enhancing the regioselective synthesis of 6H-indolo [2, 3-b] quinoxalines. J. Chem. Res. 2005 2005 4 229 232 [http://dx.doi.org/10.3184/0308234054213483].
    [Google Scholar]
  130. Avula S. Komsani J.R. Koppireddi S. Yadla R. Microwave-assisted Synthesis of 6-(5-Aryl-1,3,4-oxadiazol-2-yl)methyl-6H-indolo[2,3-b]quino-xalines. J. Heterocycl. Chem. 2015 52 6 1737 1742 [http://dx.doi.org/10.1002/jhet.2272].
    [Google Scholar]
  131. Tiwari M. Studies on the synthesis and characterisation of sulphones derived from isatin, triazoloindole and indophenazines. Int. J. Chem. Sci. 2008
    [Google Scholar]
  132. Ammar Y.A.Sh. El-Sharief A.M. Belal A. Abbas S.Y. Mohamed Y.A. Mehany A.B.M. Ragab A. Design, synthesis, antiproliferative activity, molecular docking and cell cycle analysis of some novel (morpholinosulfonyl) isatins with potential EGFR inhibitory activity. Eur. J. Med. Chem. 2018 156 918 932 [http://dx.doi.org/10.1016/j.ejmech.2018.06.061]. [PMID: 30096580].
    [Google Scholar]
  133. Shah K. Patel A.L. Synthesis and study of indoloquinoxaline based D-π-A type conjugated molecules as fluorescent probe for hypochlorite detection. J. Mol. Struct. 2024 1303 137606 [http://dx.doi.org/10.1016/j.molstruc.2024.137606].
    [Google Scholar]
  134. Payne A.J. McCahill J.S.J. Welch G.C. Indoloquinoxaline as a terminal building block for the construction of π-conjugated small molecules relevant to organic electronics. Dyes Pigments 2015 123 139 146 [http://dx.doi.org/10.1016/j.dyepig.2015.07.035].
    [Google Scholar]
  135. Basak M. Bhattacharjee B. Ramesh A. Das G. Self-assembled quinoxaline derivative: Insight into disaggregation induced selective detection of nitro-aromatics in aqueous medium and live cell imaging. Dyes Pigments 2021 196 109779 [http://dx.doi.org/10.1016/j.dyepig.2021.109779].
    [Google Scholar]
  136. Basak M. Das G. Amine-incorporated quinoxaline based fluorescent sensor for detection of trace water: Solvent influenced self-assembly. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 280 121521 [http://dx.doi.org/10.1016/j.saa.2022.121521]. [PMID: 35753100].
    [Google Scholar]
  137. Ghosh D. Basak M. Deka D. Das G. Fabrication and photophysical assessment of quinoxaline based chemosensor: Selective determination of picric acid in hydrogel and aqueous medium. J. Mol. Liq. 2022 363 119816 [http://dx.doi.org/10.1016/j.molliq.2022.119816].
    [Google Scholar]
  138. Basak M. Das G. Supramolecular self-assembly of a nitro-incorporating quinoxaline framework: Insights into the origin of fluorescence turn-on response towards the benzene group of VOCs. Analyst (Lond.) 2021 146 20 6239 6244 [http://dx.doi.org/10.1039/D1AN01127H]. [PMID: 34528640].
    [Google Scholar]
  139. Helissey P. Desbène-Finck S. Giorgi-Renault S. Alkylation of 5- and 6-methylindolo[2,3-b]quinoxalines: Revised structures of the N,N′-dimethylated salts. Eur. J. Org. Chem. 2005 2005 2 410 415 [http://dx.doi.org/10.1002/ejoc.200400386].
    [Google Scholar]
  140. Shulga S.I. Shulga O.S. Synthesis and some reactions of 6H-Indolo[2,3-b]quinoxalines. Russ. J. Org. Chem. 2020 56 12 2104 2108 [http://dx.doi.org/10.1134/S107042802012009X].
    [Google Scholar]
  141. Shulga S.I. Simurova N.V. Shulga O.S. Misa N.I. Synthesis and study of 3-methyl-6H-indolo[2,3-b]quinoxalines. Russ. J. Org. Chem. 2014 50 8 1175 1179 [http://dx.doi.org/10.1134/S107042801408017X].
    [Google Scholar]
  142. Shibinskaya M.O. Karpenko A.S. Lyakhov S.A. Andronati S.A. Zholobak N.M. Spivak N.Y. Samochina N.A. Shafran L.M. Zubritsky M.J. Galat V.F. Synthesis and biological activity of 7H-benzo[4,5]indolo[2,3-b]-quinoxaline derivatives. Eur. J. Med. Chem. 2011 46 2 794 798 [http://dx.doi.org/10.1016/j.ejmech.2010.11.040]. [PMID: 21172726].
    [Google Scholar]
  143. Wang Y. Su C. Li F. Liu L. Pan Y. Wu X. Wang H. Syntheses, characterization and fluorescent properties of two series of dehydroabietic acid C-ring derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010 76 3-4 328 335 [http://dx.doi.org/10.1016/j.saa.2010.03.014]. [PMID: 20457003].
    [Google Scholar]
  144. Sharma S. Sengupta S. Diindolocarbazole‐based rigid donor‐acceptor TADF molecules for energy and electron transfer photocatalysis**. Chemistry (Basel) 2024 30 12 e202303754 [http://dx.doi.org/10.1002/chem.202303754]. [PMID: 38009376].
    [Google Scholar]
/content/journals/coc/10.2174/0113852728373535250514120013
Loading
/content/journals/coc/10.2174/0113852728373535250514120013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test