Skip to content
2000
Volume 30, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Quinoxaline and indoline-2,3-dione, as heterocyclic scaffolds, provide significant features as crucial components for material science and the construction of new pharmacological drugs. Several interesting biological and technical characteristics have been established by their combination in indolo[2,3-b]quinoxaline (IQs) moieties. The synthesis, therapeutic chemistry, and technical application of indolo[2,3-b]quinoxalin ring systems (IQs) have been the focus of numerous studies of research in recent years. This review presents the synthesis of these derivatives by the condensation of aryl-1,2-diamines with indoline-2,3-diones (isatins) in boiling acetic acid or through microwave-assisted approaches. Additionally, the review highlights the usage of IQs in several electronic applications, including organic transistors, deep-red OLEDs, electron-transporting layers, chemical sensors, and emitting layers. These synthetic approaches and technical usage of IQs enable the efficient building of these scaffolds, accelerating further discovery and examination of their medicinal and technical potential.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728373535250514120013
2025-06-02
2025-12-06
Loading full text...

Full text loading...

References

  1. KuzuB. MengesN. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study.Spectrochim. Acta A Mol. Biomol. Spectrosc.2016162616810.1016/j.saa.2016.02.04626985875
    [Google Scholar]
  2. ThadathilA. PradeepH. JoshyD. IsmailY.A. PeriyatP. Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications.Mater. Adv.2022372990302210.1039/D2MA00022A
    [Google Scholar]
  3. KumariA. SinghR.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives.Academic Press201910.1016/j.bioorg.2019.103021
    [Google Scholar]
  4. MissiouiM. MortadaS. GuerrabW. SerdaroğluG. KayaS. MagueJ.T. EssassiE.M. FaouziM.E.A. RamliY. Novel antioxidant quinoxaline derivative: Synthesis, crystal structure, theoretical studies, antidiabetic activity and molecular docking study.J. Mol. Struct.2021123913048410.1016/j.molstruc.2021.130484
    [Google Scholar]
  5. DasR. MehtaD.K. Evaluation and docking study of pyrazine containing 1, 3, 4-oxadiazoles clubbed with substituted azetidin-2-one: A new class of potential antimicrobial and antitubercular.Drug Res.2021711263510.1055/a‑1252‑237833027823
    [Google Scholar]
  6. FabianL. Taverna PorroM. GómezN. SalvatoriM. TurkG. EstrinD. MoglioniA. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme.Eur. J. Med. Chem.202018811198710.1016/j.ejmech.2019.11198731893549
    [Google Scholar]
  7. TsengC.H. HanC.R. TangK.W. Discovery of 3-arylquinoxaline derivatives as potential anti-dengue virus agents.Int. J. Mol. Sci.201920478610.3390/ijms20194786
    [Google Scholar]
  8. TariqS. SomakalaK. AmirM. Quinoxaline: An insight into the recent pharmacological advances.Eur. J. Med. Chem.201814354255710.1016/j.ejmech.2017.11.06429207337
    [Google Scholar]
  9. HayakawaY. SoneR. AokiH. KimataS. Quinomycins H1 and H2, new cytotoxic antibiotics from Streptomyces sp. RAL404.J. Antibiot.2018711089890110.1038/s41429‑018‑0083‑630018424
    [Google Scholar]
  10. PanY. LiP. XieS. TaoY. ChenD. DaiM. HaoH. HuangL. WangY. WangL. LiuZ. YuanZ. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents.Bioorg. Med. Chem. Lett.201626164146415310.1016/j.bmcl.2016.01.06627426298
    [Google Scholar]
  11. PereiraJ.A. PessoaA.M. CordeiroM.N.D.S. FernandesR. PrudêncioC. NoronhaJ.P. VieiraM. Quinoxaline, its derivatives and applications: A State of the Art review.Eur. J. Med. Chem.20159766467210.1016/j.ejmech.2014.06.05825011559
    [Google Scholar]
  12. DolezalM. ZitkoJ. Pyrazine derivatives: A patent review (June 2012-present).Expert Opin. Ther. Pat.2015253347
    [Google Scholar]
  13. RodriguesF.A.R. BomI.D.S. Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents.Bioorg. Med. Chem. Lett.201424393493910.1016/j.bmcl.2013.12.07424398294
    [Google Scholar]
  14. IngleR. MaratheR. MagarD. PatelH.M. SuranaS.J. Sulphonamido-quinoxalines: Search for anticancer agent.Eur. J. Med. Chem.20136516818610.1016/j.ejmech.2013.04.02823708011
    [Google Scholar]
  15. MiniyarP. MurumkarP. PatilP. BarmadeM. BotharaK. Unequivocal role of pyrazine ring in medicinally important compounds: A review.Mini Rev. Med. Chem.201313111607162510.2174/138955751131311000723544468
    [Google Scholar]
  16. ParhiA.K. ZhangY. SaionzK.W. PradhanP. KaulM. TrivediK. PilchD.S. LaVoieE.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines.Bioorg. Med. Chem. Lett.201323174968497410.1016/j.bmcl.2013.06.04823891185
    [Google Scholar]
  17. SmitsR.A. LimH.D. HanzerA. ZuiderveldO.P. GuaitaE. AdamiM. CoruzziG. LeursR. de EschI.J.P. Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo.J. Med. Chem.20085182457246710.1021/jm701421718357976
    [Google Scholar]
  18. RongF. ChowS. YanS. LarsonG. HongZ. WuJ. Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors.Bioorg. Med. Chem. Lett.20071761663166610.1016/j.bmcl.2006.12.10317258458
    [Google Scholar]
  19. HuiX. DesrivotJ. BoriesC. LoiseauP.M. FranckX. HocquemillerR. FigadèreB. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines.Bioorg. Med. Chem. Lett.200616481582010.1016/j.bmcl.2005.11.02516309903
    [Google Scholar]
  20. HazeldineS.T. PolinL. KushnerJ. PaluchJ. WhiteK. EdelsteinM. PalominoE. CorbettT.H. HorwitzJ.P. Design, synthesis, and biological evaluation of analogues of the antitumor agent, 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469).J. Med. Chem.2001441758177610.1021/jm000514911356111
    [Google Scholar]
  21. MagaJ.A. Pyrazine update.Food Rev. Int.19928447955810.1080/87559129209540951
    [Google Scholar]
  22. KosJ. GonecT. OravecM. JendrzejewskaI. JampilekJ. Photosynthesis-inhibiting activity of N-(disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides.Molecules20212614433610.3390/molecules2614433634299611
    [Google Scholar]
  23. GuoQ. XuM. GuoS. ZhuF. XieY. ShenJ. The complete synthesis of favipiravir from 2-aminopyrazine.Chem. Pap.20197351043105110.1007/s11696‑018‑0654‑9
    [Google Scholar]
  24. KimY.B. KimY.H. ParkJ.Y. KimS.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues.Bioorg. Med. Chem. Lett.200414254154410.1016/j.bmcl.2003.09.08614698199
    [Google Scholar]
  25. RichardsH.C. HousleyJ.R. SpoonerD.F. Quinacillin: A new penicillin with unusual properties.Nature196319935435610.1038/199354a0
    [Google Scholar]
  26. OnckenC. GonzalesD. NidesM. RennardS. WatskyE. BillingC.B. AnzianoR. ReevesK. Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation.Arch. Intern. Med.2006166151571157710.1001/archinte.166.15.157116908789
    [Google Scholar]
  27. AdkinsJ.C. BalfourJ.A. Brimonidine.Drugs Aging199812322524110.2165/00002512‑199812030‑000059534022
    [Google Scholar]
  28. UlrichR.G. BaconJ.A. BrassE.P. CramerC.T. PetrellaD.K. SunE.L. Metabolic, idiosyncratic toxicity of drugs: Overview of the hepatic toxicity induced by the anxiolytic, panadiplon.Chem. Biol. Interact.2001134325127010.1016/S0009‑2797(01)00161‑211336974
    [Google Scholar]
  29. CarterS.D. CheesemanG.W.H. Quinoxalines and related compounds—X.Tetrahedron197834798198810.1016/0040‑4020(78)88151‑4
    [Google Scholar]
  30. HarmenbergJ. WahrenB. BergmanJ. AkerfeldtS. LundbladL. Antiherpesvirus activity and mechanism of action of indolo-(2,3-b)quinoxaline and analogs.Antimicrob. Agents Chemother.198832111720172410.1128/AAC.32.11.17202855298
    [Google Scholar]
  31. HirataK. ArayaJ. NakaikeS. KitamuraK. IshidaT. Side chain-dependent binding of antitumor indoloquinoxaline derivatives to DNA: comparative spectroscopic and viscometric measurements.Chem. Pharm. Bull.2001491444810.1248/cpb.49.4411201223
    [Google Scholar]
  32. AvulaS. KomsaniJ.R. KoppireddiS. YadlaR. KanugulaA.K. KotamrajuS. Synthesis and cytotoxicity of novel 6H-indolo[2,3-b]quinoxaline derivatives.Med. Chem. Res.20132283712371810.1007/s00044‑012‑0373‑7
    [Google Scholar]
  33. KarkiS. HazareR. KumarS. BhadauriaV. BalzariniJ. De ClercqE. Synthesis, anticancer and cytostatic activity of some 6H-indolo[2,3-b]quinoxalines.Acta Pharm.200959443144010.2478/v10007‑009‑0040‑919919932
    [Google Scholar]
  34. WilhelmssonL.M. KingiN. BergmanJ. Interactions of antiviral indolo[2,3-b]quinoxaline derivatives with DNA.J. Med. Chem.200851247744775010.1021/jm800787b19053744
    [Google Scholar]
  35. SehlstedtU. AichP. BergmanJ. VallbergH. NordénB. GräslundA. Interactions of the antiviral quinoxaline derivative 9-OH-B220 2,3-dimethyl-6-(dimethylaminoethyl)-9-hydroxy-6H-indolo-[2,3-b]quinoxaline with duplex and triplex forms of synthetic DNA and RNA.J. Mol. Biol.19982781315610.1006/jmbi.1998.16709571032
    [Google Scholar]
  36. HarmenbergJ. Åkesson-JohanssonA. GräslundA. MalmforsT. BergmanJ. WahrenB. ÅkerfeldtS. LundbladL. CoxS. The mechanism of action of the anti-herpes virus compound 2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline.Antiviral Res.199115319320410.1016/0166‑3542(91)90066‑Z1653556
    [Google Scholar]
  37. EissaI.H. El-NaggarA.M. El-SattarN.E.A.A. YoussefA.S.A. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors.Anticancer. Agents Med. Chem.201818219520910.2174/187152061766617071018240528699490
    [Google Scholar]
  38. IbrahimM.K. TaghourM.S. MetwalyA.M. BelalA. MehanyA.B.M. ElhendawyM.A. RadwanM.M. YassinA.M. El-DeebN.M. HafezE.E. ElSohlyM.A. EissaI.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors.Eur. J. Med. Chem.201815511713410.1016/j.ejmech.2018.06.00429885574
    [Google Scholar]
  39. MahataT. KanungoA. GangulyS. ModugulaE.K. ChoudhuryS. PalS.K. BasuG. DuttaS. The benzyl moiety in a quinoxaline-based scaffold acts as a DNA intercalation switch.Angew. Chem. Int. Ed. Engl.201655277733773610.1002/anie.201511881
    [Google Scholar]
  40. SunH. ChenF. ChenZ.K. Recent progress on non-fullerene acceptors for organic photovoltaics.Mater. Today2019249411810.1016/j.mattod.2018.09.004
    [Google Scholar]
  41. LiH. GuoY. LeiY. GaoW. LiuM. ChenJ. HuY. HuangX. WuH. D-π-A benzo[c][1,2,5]selenadiazole-based derivatives via an ethynyl bridge: Photophysical properties, solvatochromism and applications as fluorescent sensors.Dyes Pigments201511210511510.1016/j.dyepig.2014.06.035
    [Google Scholar]
  42. WangY.H. WanZ.L. YangX.Q. WangJ.M. GuoJ. LinY. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery.Food Hydrocoll.201654404810.1016/j.foodhyd.2015.09.020
    [Google Scholar]
  43. PeiK. Recent advances in molecular doping of organic semiconductors.Surf. Interfaces20223010188710.1016/j.surfin.2022.101887
    [Google Scholar]
  44. AbdellahI.M. El-ShafeiA. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies.J. Photochem. Photobiol. Chem.202038711213310.1016/j.jphotochem.2019.112133
    [Google Scholar]
  45. AbdellahI.M. KoraiemA.I. El-ShafeiA. Molecular engineering and investigation of new efficient photosensitizers/co-sensitizers based on bulky donor enriched with EDOT for DSSCs.Dyes Pigments201916424425610.1016/j.dyepig.2019.01.035
    [Google Scholar]
  46. MishraA. FischerM.K.R. BäuerleP. Metal-free organic dyes for dye-sensitized solar cells: from structure: Property relationships to design rules.Angew. Chem. Int. Ed.200948142474249910.1002/anie.20080470919294671
    [Google Scholar]
  47. OoyamaY. HarimaY. Molecular designs and syntheses of organic dyes for dye‐sensitized solar cells.Eur. J. Org. Chem.20092009182903293410.1002/ejoc.200900236
    [Google Scholar]
  48. YenY.S. ChouH.H. ChenY.C. HsuC.Y. LinJ.T. Recent developments in molecule-based organic materials for dye-sensitized solar cells.J. Mater. Chem.201222188734874710.1039/c2jm30362k
    [Google Scholar]
  49. DessìA. CalamanteM. MordiniA. PeruzziniM. SinicropiA. BasosiR. Fabrizi de BianiF. TaddeiM. ColonnaD. Di CarloA. ReginatoG. ZaniL. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells.Chem. Commun.20145090139521395510.1039/C4CC06160H25264863
    [Google Scholar]
  50. DevarajanN. NaikP. GorleD.B. Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs.J. Photochem. Photobiol. Chem.202546211617710.1016/j.jphotochem.2024.116177
    [Google Scholar]
  51. NaikP. EliasL. KeremaneK.S. BabuD.D. AbdellahI.M. Metal‐free organic dyes for NiO-based dye-sensitized solar cells: Recent developments and future perspectives.Energy Technol.2024127230166610.1002/ente.202301666
    [Google Scholar]
  52. NaikP. KeremaneK.S. ElmorsyM.R. El-ShafeiA. AdhikariA.V. Carbazole based organic dyes as effective photosensitizers: A comprehensive analysis of their structure‐property relationships.Electrochem. Sci. Adv.202223e210006110.1002/elsa.202100061
    [Google Scholar]
  53. LiY. GuoQ. LiZ. PeiJ. TianW. Solution processable D-A small molecules for bulk-heterojunction solar cells.Energy Environ. Sci.20103101427143610.1039/c003946b
    [Google Scholar]
  54. WürthnerF. MeerholzK. Systems chemistry approach in organic photovoltaics.Chemistry201016319366937310.1002/chem.20100115320645353
    [Google Scholar]
  55. WalkerB. KimC. NguyenT.Q. Small molecule solution-processed bulk heterojunction solar cells.Chem. Mater.201123347048210.1021/cm102189g
    [Google Scholar]
  56. LinY. LiY. ZhanX. Small molecule semiconductors for high-efficiency organic photovoltaics.Chem. Soc. Rev.201241114245427210.1039/c2cs15313k22453295
    [Google Scholar]
  57. MishraA. BäuerleP. Small molecule organic semiconductors on the move: Promises for future solar energy technology.Angew. Chem. Int. Ed.20125192020206710.1002/anie.20110232622344682
    [Google Scholar]
  58. ChenY. WanX. LongG. High performance photovoltaic applications using solution-processed small molecules.Acc. Chem. Res.201346112645265510.1021/ar400088c23902284
    [Google Scholar]
  59. RoncaliJ. LericheP. BlanchardP. Molecular materials for organic photovoltaics: Small is beautiful.Adv. Mater.201426233821383810.1002/adma.20130599924687246
    [Google Scholar]
  60. KanB. LiM. ZhangQ. LiuF. WanX. WangY. NiW. LongG. YangX. FengH. ZuoY. ZhangM. HuangF. CaoY. RussellT.P. ChenY. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency.J. Am. Chem. Soc.2015137113886389310.1021/jacs.5b0030525736989
    [Google Scholar]
  61. NiW. WanX. LiM. WangY. ChenY. A-D-A small molecules for solution-processed organic photovoltaic cells.Chem. Commun.201551244936495010.1039/C4CC09758K25642992
    [Google Scholar]
  62. AllardS. ForsterM. SouharceB. ThiemH. ScherfU. Organic semiconductors for solution-processable field-effect transistors (OFETs).Angew. Chem. Int. Ed.200847224070409810.1002/anie.20070192018357603
    [Google Scholar]
  63. Mas-TorrentM. RoviraC. Novel small molecules for organic field-effect transistors: Towards processability and high performance.Chem. Soc. Rev.200837482783810.1039/b614393h18362986
    [Google Scholar]
  64. WangC. DongH. HuW. LiuY. ZhuD. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics.Chem. Rev.201211242208226710.1021/cr100380z22111507
    [Google Scholar]
  65. MeiJ. DiaoY. AppletonA.L. FangL. BaoZ. Integrated materials design of organic semiconductors for field-effect transistors.J. Am. Chem. Soc.2013135186724674610.1021/ja400881n23557391
    [Google Scholar]
  66. LiuJ. WuY. QinC. YangX. YasudaT. IslamA. ZhangK. PengW. ChenW. HanL. A dopant-free hole-transporting material for efficient and stable perovskite solar cells.Energy Environ. Sci.2014792963296710.1039/C4EE01589D
    [Google Scholar]
  67. QinP. PaekS. DarM.I. PelletN. KoJ. GrätzelM. NazeeruddinM.K. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material.J. Am. Chem. Soc.2014136248516851910.1021/ja503272q24866942
    [Google Scholar]
  68. WangJ. WangS. LiX. ZhuL. MengQ. XiaoY. LiD. Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells.Chem. Commun.201450445829583210.1039/c4cc01637h24699930
    [Google Scholar]
  69. GanesanP. FuK. GaoP. RaabeI. SchenkK. ScopellitiR. LuoJ. WongL.H. GrätzelM. NazeeruddinM.K. A simple spiro-type hole transporting material for efficient perovskite solar cells.Energy Environ. Sci.2015871986199110.1039/C4EE03773A
    [Google Scholar]
  70. SwethaT. SinghS.P. Perovskite solar cells based on small molecule hole transporting materials.J. Mater. Chem. A Mater. Energy Sustain.2015336183291834410.1039/C5TA02507A
    [Google Scholar]
  71. XuB. TianH. LinL. QianD. ChenH. ZhangJ. VlachopoulosN. BoschlooG. LuoY. ZhangF. HagfeldtA. SunL. Integrated design of organic hole transport materials for efficient solid‐state dye‐sensitized solar cells.Adv. Energy Mater.201553140118510.1002/aenm.201401185
    [Google Scholar]
  72. ElmorsyM.R. Abdel-LatifE. GafferH.E. BadawyS.A. FaddaA.A. Theoretical studies, anticancer activity, and photovoltaic performance of newly synthesized carbazole-based dyes.J. Mol. Struct.2022125513240410.1016/j.molstruc.2022.132404
    [Google Scholar]
  73. SunW. HuG. ShenW. XuH. DengZ. ZhaoG. LiF. HuY. YangW. A series of D-π-A and A-π-A’ fluorescent probes were used to explore the influence of terminal groups on the properties of the hemicyanine probes.J. Mol. Liq.202134011684610.1016/j.molliq.2021.116846
    [Google Scholar]
  74. ZhangX. ZhangF. YangB. LiuB. A simple strategy for constructing PET fluorescent probe and its application in hypochlorite detection.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125811982710.1016/j.saa.2021.11982733915338
    [Google Scholar]
  75. WangY. WuH. WuW.N. LiS.J. XuZ.H. XuZ.Q. FanY.C. ZhaoX.L. LiuB.Z. An AIRE active Schiff base bearing coumarin and pyrrole unit: Cu2+ detection in either solution or aggregation states.Sens. Actuators B Chem.201826010611510.1016/j.snb.2017.12.201
    [Google Scholar]
  76. HouJ.T. KimH.S. DuanC. JiM.S. WangS. ZengL. RenW.X. KimJ.S. A ratiometric fluorescent probe for detecting hypochlorite in the endoplasmic reticulum.Chem. Commun.201955172533253610.1039/C9CC00066F30742172
    [Google Scholar]
  77. LiuB. WangJ. ZhangG. BaiR. PangY. Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells.ACS Appl. Mater. Interfaces2014664402440710.1021/am500102s24571859
    [Google Scholar]
  78. NikoY. SasakiS. KawauchiS. TokumaruK. KonishiG. Design of weak-donor alkyl-functionalized push-pull pyrene dyes exhibiting enhanced fluorescence quantum yields and unique on/off switching properties.Chem. Asian J.2014971797180710.1002/asia.20140208824801355
    [Google Scholar]
  79. TakagiK. KusafukaK. ItoY. YamauchiK. ItoK. FukudaR. EharaM. Synthesis and optical properties of imidazole-and benzimidazole-based fused π-conjugated compounds: Influence of substituent, counteranion, and π-conjugated system.J. Org. Chem.201580147172718310.1021/acs.joc.5b0102826102427
    [Google Scholar]
  80. MarderS.R. TorruellasW.E. Blanchard-DesceM. RicciV. StegemanG.I. GilmourS. BredasJ-L. LiJ. BublitzG.U. BoxerS.G. Large molecular third-order optical nonlinearities in polarized carotenoids.Science199727612331236
    [Google Scholar]
  81. DebnathS. MohantyA. NaikP. SalznerU. DasguptaJ. PatilS. Deciphering intramolecular charge transfer in fluoranthene derivatives.J. Mater. Chem. C Mater. Opt. Electron. Devices202412259200920910.1039/D4TC01405G
    [Google Scholar]
  82. FangJ.K. AnD.L. WakamatsuK. IshikawaT. IwanagaT. ToyotaS. AkitaS. MatsuoD. OritaA. OteraJ. Synthesis and spectroscopic study of phenylene-(poly)ethynylenes substituted by amino or amino/cyano groups at terminal(s): electronic effect of cyano group on charge-transfer excitation of acetylenic π-systems.Tetrahedron201066295479548510.1016/j.tet.2010.05.016
    [Google Scholar]
  83. FangJ.K. AnD.L. WakamatsuK. IshikawaT. IwanagaT. ToyotaS. MatsuoD. OritaA. OteraJ. Synthesis and spectroscopic study of diphenylamino-substituted phenylene-(poly)ethynylenes: Remarkable effect of acetylenic conjugation modes.Tetrahedron Lett.201051691792010.1016/j.tetlet.2009.12.023
    [Google Scholar]
  84. HarishK.K. NesaragiA.R. KalagaturN.K. NaikP. MadegowdaM. PandithA. DahlousK.A. MohammadS. ShivarudrappaH.P. SharanakumarT.M. GuddappaH. Imidazole-centred cupric ions sensor: Experimental validation, theoretical understanding, and zebrafish bioimaging.J. Photochem. Photobiol. Chem.202445211556510.1016/j.jphotochem.2024.115565
    [Google Scholar]
  85. QianX. GaoH.H. ZhuY.Z. LuL. ZhengJ.Y. 6H-Indolo[2,3-b]quinoxaline-based organic dyes containing different electron-rich conjugated linkers for highly efficient dye-sensitized solar cells.J. Power Sources201528057358010.1016/j.jpowsour.2015.01.148
    [Google Scholar]
  86. ThomasK.R.J. TyagiP. Synthesis, spectra, and theoretical investigations of the triarylamines based on 6H-indolo[2,3-b]quinoxaline.J. Org. Chem.201075238100811110.1021/jo101666321053895
    [Google Scholar]
  87. TyagiP. VenkateswararaoA. ThomasK.R.J. Solution processable indoloquinoxaline derivatives containing bulky polyaromatic hydrocarbons: Synthesis, optical spectra, and electroluminescence.J. Org. Chem.201176114571458110.1021/jo200476421539382
    [Google Scholar]
  88. FanC.H. SunP. SuT.H. ChengC.H. Host and dopant materials for idealized deep-red organic electrophosphorescence devices.Adv. Mater.201123262981298510.1002/adma.20110061021567483
    [Google Scholar]
  89. QianX. WangX. ShaoL. LiH. YanR. HouL. Molecular engineering of D-D-π-A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells.J. Power Sources201632612913610.1016/j.jpowsour.2016.06.127
    [Google Scholar]
  90. PayneA.J. WelchG.C. Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions.Org. Biomol. Chem.201715153310331910.1039/C7OB00362E28361153
    [Google Scholar]
  91. ZhaoJ. LiH. LiH. ZhaoQ. LingH. LiJ. LinJ. XieL. LinZ. YiM. HuangW. Synthesis, characterization and charge storage properties of π-biindolo[2,3-b]quinoxaline for solution-processing organic transistor memory.Dyes Pigments201916725526110.1016/j.dyepig.2018.07.011
    [Google Scholar]
  92. BhanvadiaV.J. MachhiH.K. SoniS.S. ZadeS.S. PatelA.L. Design and development of dithienopyrrolobenzothiadiazole (DTPBT)-based rigid conjugated polymers with improved hole mobilities.Polymer202021112308910.1016/j.polymer.2020.123089
    [Google Scholar]
  93. KhidreR.E. RadiniI.M.A. AmeenT.A. AbdelgawadA.A.M. TriazoloquinolinesI. Synthetic methods and pharmacological properties of [1, 2, 3] triazoloquinoline derivatives.Curr. Org. Chem.202125887689310.2174/1385272825666210202122645
    [Google Scholar]
  94. KhidreR.E. SalemM.A. AmeenT.A. AbdelgawadA.A.M. Triazoloquinolines, I.I. Triazoloquinolines II: Synthesis, reactions, and pharmacological properties of [1,2,4]Triazoloquinoline and 1,2,4-Triazoloisoquinoline derivatives.Polycycl. Aromat. Compd.2023431135310.1080/10406638.2021.2008457
    [Google Scholar]
  95. GoudaM.A. Abu-HashemA.A. AmeenT.A. SalemM.A. Synthesis of Pyrimido[4, 5-b]quinolones from 6-Aminopyrimidin-4- (thi)one derivatives (Part I).Mini Rev. Org. Chem.202320662264110.2174/1570193X20666221104110606
    [Google Scholar]
  96. GoudaM.A. Abu-HashemA.A. AmeenT.A. AlthagafiS.H. HamamaW.S. KhalilA.G.M. Pyrimido[5,4‐c]quinolines: Synthesis from 3,4‐Di‐functionallized quinoline, reactivity and biological activities.Chem. Biodivers.2024213e20230196810.1002/cbdv.20230196838194695
    [Google Scholar]
  97. Abu-HashemA.A. HakamiO. AmriN. AmeenT.A. BajaberM.A. YoussefM.M. GoudaM.A. Recent routes in synthesis and biological activity of Pyrimido[4,5-b] quinoline derivatives: A review (part II).Mini Rev. Org. Chem.20242110.2174/0118756298322382240902061348
    [Google Scholar]
  98. Abu-HashemA. AmeenT. El-TelbaniE. HusseinH.A.R. GoudaM. Synthesis, reactions and biological activity of pyrimido [5, 4-c] quinolines based on (Thio)barbituric acid and their analogous (part IV).Mini Rev. Org. Chem.20242111310.2174/0118756298276728231130042823
    [Google Scholar]
  99. NiumeK. KurosawaS. TodaF. HasegawaM. IwakuraY. SchopovI. PopovN. The condensation of isatin with o-phenylenediamine.Bull. Chem. Soc. Jpn.19825572293229410.1246/bcsj.55.2293
    [Google Scholar]
  100. SchopovI. PopovN. Polyindoloquinoxalines. J. Polym. Sci. Part A‐1.Polym. Chem.1969718031814
    [Google Scholar]
  101. DowlatabadiR. KhalajA. RahimianS. MontazeriM. AminiM. ShahverdiA. MahjubE. Impact of substituents on the isatin ring on the reaction between isatins with ortho-phenylenediamine.Synth. Commun.201141111650165810.1080/00397911.2010.491596
    [Google Scholar]
  102. DrushlyakA.G. IvashchenkoA.V. TitovV.V. Reaction of aromatic o-diamines with isatins. 3. 4-nitro- and 4,5-dinitro-o-phenylenediamines.Chem. Heterocycl. Compd.198420111276128010.1007/BF00505722
    [Google Scholar]
  103. PyszkaI. JędrzejewskaB. Photoinitiation abilities of indeno- and indoloquinoxaline derivatives and mechanical properties of dental fillings based on multifunctional acrylic monomers and glass ionomer.Polymer202326612562510.1016/j.polymer.2022.125625
    [Google Scholar]
  104. HouJ. One pot synthesis of 1,2,3,4-tetrahydro-6H-indolo[2,3-b]quinoxaline via air oxidation.Jingxi Huagong201633431435
    [Google Scholar]
  105. FryšováI. SloukaJ. Oxo derivatives of quinoxaline VII*. The study of reactivity of substituted 3-(2-aminophenyl)-1,2-dihydro-quinoxaline-2-one. Acta.Univ. Palacki. Olomuc. Fac. Rerum. Nat. Chem.2005446368
    [Google Scholar]
  106. SmithC.D. MyersC.B. ZilfouJ.T. SmithS.N. LawrenceD.S. Indoloquinoxaline compounds that selectively antagonize P-glycoprotein.Oncol. Res.200112521922910.3727/09650400110874771011417747
    [Google Scholar]
  107. YarovenkoV.N. PolushinaA.V. LevchenkoK.S. ZavarzinI.V. KrayushkinM.M. KotovskayaS.K. CharushinV.N. Synthesis of fluorine-containing analogs of ellipticine and other heterocycles from 2-Nitro-and 2-amino-4,5-difluoroanilines.Russ. J. Org. Chem.20074391387139210.1134/S1070428007090217
    [Google Scholar]
  108. DongD. FangD. LiH. ZhuC. ZhaoX. LiJ. JinL. XieL. ChenL. ZhaoJ. ZhangH. HuangW. Direct ArylatedC.H. C−H direct arylated 6H‐Indolo[2,3‐b]quinoxaline derivative as a thickness‐dependent hole‐injection layer.Chem. Asian J.201712892092610.1002/asia.20170011228213900
    [Google Scholar]
  109. Abd Ei-HalimM.S. Ei-AhlA.S. EtmanH.A. AliM.M. FoudaA. FaddaA.A. A new route for the synthesis of phenazine di-N-oxides.Monatsh. Chem.19951261217122310.1007/BF00824300
    [Google Scholar]
  110. SinghH.N. VarmaV.A. DwivediR.S. VermaS.D. Potential biologically active agents. Part XLVII. Synthesis of newer indophenazines as potential biologically active agents.Indian Drugs198522582586
    [Google Scholar]
  111. WambergM.C. HassanA.A. BondA.D. PedersenE.B. Intercalating nucleic acids (INAs) containing insertions of 6H-indolo[2,3-b]quinoxaline.Tetrahedron20066248111871119910.1016/j.tet.2006.09.017
    [Google Scholar]
  112. LiY. WangY. ZhangH. Synthesis of new tert ‐Butyl‐ and Bromo‐functionalized [1,2,4]Triazino [5,6‐b]indole‐3‐thiols and Indolo[2,3‐b]quinoxalines.J. Heterocycl. Chem.20175452874288010.1002/jhet.2895
    [Google Scholar]
  113. Hari Narayana MoorthyN.S. KarthikeyanC. TrivediP. Design, synthesis, cytotoxic evaluation, and QSAR study of some 6H-indolo[2,3-b]quinoxaline derivatives.J. Enzyme Inhib. Med. Chem.201025339440510.3109/1475636090319074720233012
    [Google Scholar]
  114. ZhangW. Walser-KuntzR. TracyJ.S. SchrammT.K. SheeJ. Head-GordonM. ChenG. HelmsB.A. SanfordM.S. TosteF.D. Indolo[2,3-b]quinoxaline as a low reduction potential and high stability anolyte scaffold for nonaqueous redox flow batteries.J. Am. Chem. Soc.202314534188771888710.1021/jacs.3c0521037585274
    [Google Scholar]
  115. PaiN.R. PusalkarD.A. Pharmacological screening of novel indolo [2, 3-b] quinoxaline derivatives.J. Chem. Pharm. Res.20102485493
    [Google Scholar]
  116. MelnichenkoV.E. KudryavtsevaT.N. LamanovA.Y. KudryavcevT.A. KlimovaL.G. Design, synthesis and antimicrobial studies of novel imine derivatives of 2-(6H-indolo[2,3-b]quinoxalin-6-yl)-1-phenylethan-1-ones.Chemical Data Collections20224110092910.1016/j.cdc.2022.100929
    [Google Scholar]
  117. MelnichenkoV.E. KudryavtsevaT.N. GrekhnevaE.V. LamanovA.Y. KudryavcevT.A. Synthesis of new 2-(6H-Indolo[2,3-b]quinoxalin-6-yl)-1-phenylethane-1-ones.Russ. J. Gen. Chem.202191102114211710.1134/S1070363221100212
    [Google Scholar]
  118. KanhedA.M. PatelD.V. PatelN.R. SinhaA. ThakorP.S. PatelK.B. PrajapatiN.K. PatelK.V. YadavM.R. Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents.J. Biomol. Struct. Dyn.20224062498251510.1080/07391102.2020.184044133111617
    [Google Scholar]
  119. GuZ. LiY. MaS. LiS. ZhouG. DingS. ZhangJ. WangS. ZhouC. Synthesis, cytotoxic evaluation and DNA binding study of 9-fluoro-6H-indolo[2,3-b]quinoxaline derivatives.RSC Advances2017766418694187910.1039/C7RA08138C
    [Google Scholar]
  120. LvM. ZhengH. LiY. GaoW. First synthesis of tert-butyl-substituted [1,2,4]triazino[5,6-b]indole-3-thiols and indolo[2,3-b]quinoxalines.Res. Chem. Intermed.201541106927693910.1007/s11164‑014‑1788‑1
    [Google Scholar]
  121. OsmanA.M.A. PedersenE.B. Conjugation of N‐(3‐(9‐Ethynyl‐6H‐indolo[2,3‐b]quinoxalin‐6‐yl)propyl)‐2,2,2‐trifluoroacetamide intercalator to a triplex forming oligonucleotide, a three‐way junction, and a G‐Quadruplex.Eur. J. Org. Chem.20192019274362437110.1002/ejoc.201900554
    [Google Scholar]
  122. ShibinskayaM.O. KutuzovaN.A. MazepaA.V. LyakhovS.A. AndronatiS.A. ZubritskyM.J. GalatV.F. LipkowskiJ. KravtsovV.C. Synthesis of 6-aminopropyl-6H-indolo[2,3-b]quinoxaline derivatives.J. Heterocycl. Chem.201249367868210.1002/jhet.805
    [Google Scholar]
  123. ChowdharyS. RazaA. SeboletsweP. CeleN. SharmaA.K. SinghP. KumarV. Cu-promoted synthesis of Indolo[2,3-b]quinoxaline-Mannich adducts via three-component reaction and their anti-proliferative evaluation on colorectal and ovarian cancer cells.J. Mol. Struct.2023127513462710.1016/j.molstruc.2022.134627
    [Google Scholar]
  124. MannaK. AgrawalY.K. Microwave assisted synthesis of new indophenazine 1,3,5-trisubstruted pyrazoline derivatives of benzofuran and their antimicrobial activity.Bioorg. Med. Chem. Lett.200919102688269210.1016/j.bmcl.2009.03.16119395261
    [Google Scholar]
  125. SrideviC.H. BalajiK. NaiduA. Synthesis and pharmacological evaluation of some phenylpyrazolo indoquinoxaline derivatives.E-J. Chem.20118924930
    [Google Scholar]
  126. GirdharK. ThakurS. GaurP. ChoubeyA. DograS. DehuryB. KumarS. BiswasB. DwivediD.K. GhoshS. MondalP. Design, synthesis, and biological evaluation of a small molecule oral agonist of the glucagon-like-peptide-1 receptor.J. Biol. Chem.2022298510188910.1016/j.jbc.2022.10188935378127
    [Google Scholar]
  127. El MalahT. El-RashedyA.A. HegabM.I. AwadH.M. ShamroukhA.H. Click synthesis of novel 6-((1H-1,2,3-triazol-4-yl)methyl)-6H-indolo[2,3-b]quinoxalines for in vitro anticancer evaluation and docking studies.New J. Chem.20244824110641107810.1039/D3NJ05761E
    [Google Scholar]
  128. ChowdharyS. RazaA. PreetiS. KaurS. AnandA. SharmaA.K. KumarV. Isatin-indoloquinoxaline click adducts with a potential to overcome platinum-based drug-resistance in ovarian cancer.Bioorg. Chem.202414210695310.1016/j.bioorg.2023.10695337925887
    [Google Scholar]
  129. AshryE.S.H.E. RamadanE.S. HamidH.A. HagarM. Microwave irradiation for enhancing the regioselective synthesis of 6H-indolo [2, 3-b] quinoxalines.J. Chem. Res.20052005422923210.3184/0308234054213483
    [Google Scholar]
  130. AvulaS. KomsaniJ.R. KoppireddiS. YadlaR. Microwave-assisted Synthesis of 6-(5-Aryl-1,3,4-oxadiazol-2-yl)methyl-6H-indolo[2,3-b]quino-xalines.J. Heterocycl. Chem.20155261737174210.1002/jhet.2272
    [Google Scholar]
  131. TiwariM. Studies on the synthesis and characterisation of sulphones derived from isatin, triazoloindole and indophenazines.Int. J. Chem. Sci.2008
    [Google Scholar]
  132. AmmarY.A.Sh. El-ShariefA.M. BelalA. AbbasS.Y. MohamedY.A. MehanyA.B.M. RagabA. Design, synthesis, antiproliferative activity, molecular docking and cell cycle analysis of some novel (morpholinosulfonyl) isatins with potential EGFR inhibitory activity.Eur. J. Med. Chem.201815691893210.1016/j.ejmech.2018.06.06130096580
    [Google Scholar]
  133. ShahK. PatelA.L. Synthesis and study of indoloquinoxaline based D-π-A type conjugated molecules as fluorescent probe for hypochlorite detection.J. Mol. Struct.2024130313760610.1016/j.molstruc.2024.137606
    [Google Scholar]
  134. PayneA.J. McCahillJ.S.J. WelchG.C. Indoloquinoxaline as a terminal building block for the construction of π-conjugated small molecules relevant to organic electronics.Dyes Pigments201512313914610.1016/j.dyepig.2015.07.035
    [Google Scholar]
  135. BasakM. BhattacharjeeB. RameshA. DasG. Self-assembled quinoxaline derivative: Insight into disaggregation induced selective detection of nitro-aromatics in aqueous medium and live cell imaging.Dyes Pigments202119610977910.1016/j.dyepig.2021.109779
    [Google Scholar]
  136. BasakM. DasG. Amine-incorporated quinoxaline based fluorescent sensor for detection of trace water: Solvent influenced self-assembly.Spectrochim. Acta A Mol. Biomol. Spectrosc.202228012152110.1016/j.saa.2022.12152135753100
    [Google Scholar]
  137. GhoshD. BasakM. DekaD. DasG. Fabrication and photophysical assessment of quinoxaline based chemosensor: Selective determination of picric acid in hydrogel and aqueous medium.J. Mol. Liq.202236311981610.1016/j.molliq.2022.119816
    [Google Scholar]
  138. BasakM. DasG. Supramolecular self-assembly of a nitro-incorporating quinoxaline framework: Insights into the origin of fluorescence turn-on response towards the benzene group of VOCs.Analyst2021146206239624410.1039/D1AN01127H34528640
    [Google Scholar]
  139. HelisseyP. Desbène-FinckS. Giorgi-RenaultS. Alkylation of 5- and 6-methylindolo[2,3-b]quinoxalines: Revised structures of the N,N′-dimethylated salts.Eur. J. Org. Chem.20052005241041510.1002/ejoc.200400386
    [Google Scholar]
  140. ShulgaS.I. ShulgaO.S. Synthesis and some reactions of 6H-Indolo[2,3-b]quinoxalines.Russ. J. Org. Chem.202056122104210810.1134/S107042802012009X
    [Google Scholar]
  141. ShulgaS.I. SimurovaN.V. ShulgaO.S. MisaN.I. Synthesis and study of 3-methyl-6H-indolo[2,3-b]quinoxalines.Russ. J. Org. Chem.20145081175117910.1134/S107042801408017X
    [Google Scholar]
  142. ShibinskayaM.O. KarpenkoA.S. LyakhovS.A. AndronatiS.A. ZholobakN.M. SpivakN.Y. SamochinaN.A. ShafranL.M. ZubritskyM.J. GalatV.F. Synthesis and biological activity of 7H-benzo[4,5]indolo[2,3-b]-quinoxaline derivatives.Eur. J. Med. Chem.201146279479810.1016/j.ejmech.2010.11.04021172726
    [Google Scholar]
  143. WangY. SuC. LiF. LiuL. PanY. WuX. WangH. Syntheses, characterization and fluorescent properties of two series of dehydroabietic acid C-ring derivatives.Spectrochim. Acta A Mol. Biomol. Spectrosc.2010763-432833510.1016/j.saa.2010.03.01420457003
    [Google Scholar]
  144. SharmaS. SenguptaS. Diindolocarbazole‐based rigid donor‐acceptor TADF molecules for energy and electron transfer photocatalysis**.Chemistry20243012e20230375410.1002/chem.20230375438009376
    [Google Scholar]
/content/journals/coc/10.2174/0113852728373535250514120013
Loading
/content/journals/coc/10.2174/0113852728373535250514120013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test