Skip to content
2000
Volume 30, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Indane-1,3-dione is a reactive cyclic β-diketone that could be employed for preparing various molecular systems of potential biological applications. Among these, 4-azafluorenones (also known as indeno[1,2-b]pyridines) represent one of the most promising classes of carbocyclic systems. Indeno-fused pyridines possess a wide range of medicinal properties, including anti-proliferative activity and DNA topoisomerase Iα/Iiα inhibitory activity. In this review, we presented all reports from 2000 to 2024 that cover the synthesis of indeno[1,2-]pyridines and diindeno[1,2-:2',1'-]pyridines starting from indane-1,3-dione. The review is classified according to the type of reaction conditions that were applied. Additionally, the reports that are related to the new trends in preparing indenopyridines are indexed in separate sections, including the use of ionic liquids, heterogeneous catalysts, and microwave- and ultrasonic-assisted synthetic routes. Some complex synthetic routes are explained by plausible mechanisms.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728385966250513110724
2025-05-29
2025-12-08
Loading full text...

Full text loading...

References

  1. SahooA.K. BhattacharyyaA. Recent Advances in synthetic routes for biologically active tetrahydroquinoxalines and derivatives: A comprehensive review.Curr. Org. Chem.202428316117510.2174/0113852728285439240109071659
    [Google Scholar]
  2. Mallappa; Chahar, M.; Choudhary, N.; Yadav, K.K.; Qasim, M.T.; Zairov, R.; Patel, A.; Yadav, V.K.; Jangir, M. Recent advances in the synthesis of nitrogen-containing heterocyclic compounds via multicomponent reaction and their emerging biological applications: A review.J. Indian Chem. Soc.202522113310.1007/s13738‑024‑03142‑3
    [Google Scholar]
  3. TandiM. SharmaV. GopalB. SundriyalS. Multicomponent reactions (MCRs) yielding medicinally relevant rings: A recent update and chemical space analysis of the scaffolds.RSC Advances20251521447148910.1039/D4RA06681B 39822567
    [Google Scholar]
  4. IbarraI.A. Islas-JácomeA. González-ZamoraE. Synthesis of polyheterocycles via multicomponent reactions.Org. Biomol. Chem.20181691402141810.1039/C7OB02305G 29238790
    [Google Scholar]
  5. MohlalaR.L. RashamuseT.J. CoyanisE.M. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: A tremendous growth in the past 5 years.Front Chem.202412146967710.3389/fchem.2024.1469677 39359421
    [Google Scholar]
  6. PayamifarS. AbdoussM. Poursattar MarjaniA. Recent advances in β-cyclodextrin-based catalyst systems for the synthesis of heterocyclic compounds via multicomponent reactions (MCRs).Arab. J. Chem.2024171010596710.1016/j.arabjc.2024.105967
    [Google Scholar]
  7. MovahedZ. ValizadehH. MirzaeiF. Synthesis of polysubstituted pyridines via nitrogen-doped graphene catalyzed one-pot multicomponent reaction under solvent-free conditions.Curr. Org. Chem.2024281189089510.2174/0113852728297985240408062346
    [Google Scholar]
  8. JavahershenasR. HanJ. KazemiM. JervisP.J. Recent advances in the multicomponent synthesis of heterocycles using thiosemicarbazide.ChemistrySelect2024930e20240149610.1002/slct.202401496
    [Google Scholar]
  9. ShenX. HongG. WangL. Recent advances in green multi-component reactions for heterocyclic compound construction.Org. Biomol. Chem.20252392059207810.1039/D4OB01822B 39887261
    [Google Scholar]
  10. MohlalaR.L. CoyanisE.M. The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis.Physical Sciences Reviews202492995103210.1515/psr‑2022‑0349
    [Google Scholar]
  11. ChenM. ZhuL. ZhengW. FuY. ZhangJ. HeH. AntillaJ.C. Catalytic asymmetric desymmetrization of cyclic 1,3-Diketones using Chiral Boro-phosphates.Org. Lett.202426183951395610.1021/acs.orglett.4c01195 38678546
    [Google Scholar]
  12. SanadS.M.H. MekkyA.E.M. HusseinR.M.B. SeifD.S.A. HassanF.E.A. FekryF.M.T. AbdellatifN.S.A. SalamaE.A.I. ElneairyM.A.A. Annulated and spiro-molecular systems from cycloheptane-based β-ketoesters: Synthesis, reactivity, and biological applications.J. Mol. Struct.2025132714127410.1016/j.molstruc.2024.141274
    [Google Scholar]
  13. SanadS.M.H. Recent advances on the α-functionalization and ring transformations of cycloheptane-based β-ketoesters.Curr. Org. Chem.202529161256126910.2174/0113852728363292241212075337
    [Google Scholar]
  14. SunQ.S. SunJ. PanL.N. YanC.G. Selective construction of diverse polycyclic spirooxindoles via a three-component reaction of cyclic mercapto-substituted β-Enamino Esters, Isatins, and cyclic 1,3-Diketones.J. Org. Chem.20208519121171212710.1021/acs.joc.0c01290 32901479
    [Google Scholar]
  15. YuchengY. LijingL. XiaolongL. YanY. TianC. QunliL. One-pot synthesis of 1,4-Bridged Dihydroisoquinoline-3-ones from Isoquinolinium salts and Cyclic 1,3-Diketones.Acta Chimi. Sin.20228012156910.6023/A22090408
    [Google Scholar]
  16. SanadS.M.H. Bis(α-Cyanoacetamides): Versatile intermediates for the synthesis of diverse heterocyclic and macrocyclic molecular systems.Curr. Org. Chem.202529171305132010.2174/0113852728367861250110001856
    [Google Scholar]
  17. SanadS.M.H. 2,3-Diaminonaphthalene-1,4-dione: Versatile precursor for the synthesis of molecular systems.Synth. Commun.202555428130410.1080/00397911.2024.2435467
    [Google Scholar]
  18. KhudinaO.G. ElkinaN.A. BurgartY.V. EzhikovaM.A. KodessM.I. EsaulkovaY.L. ZarubaevV.V. ShtroA.A. TriandafilovaG.A. KrasnykhO.P. MalyshevaK.O. GerasimovaN.A. EvstigneevaN.P. SaloutinV.I. Synthesis and biological activity of 2-sulfonarylhydrazinylidene 1,3-diketones and their pyrazole derivatives.Russ. Chem. Bull.202271122670268410.1007/s11172‑022‑3696‑7
    [Google Scholar]
  19. SharmaD. KumarM. DasP. Synthetic approaches for cyclohexane-1,3-diones: A versatile precursor for bioactive molecules.Synth. Commun.202151172553257310.1080/00397911.2021.1946824
    [Google Scholar]
  20. ChittetiD. PadmajaP. RaniV.S. ReddyP.N. A review on 2-arylidene-1,3-indanediones: Preparation and applications to the synthesis of diverse spirocyclic compounds.Monatsh. Chem.2025156211914310.1007/s00706‑024‑03276‑3
    [Google Scholar]
  21. DasS. Recent applications of ninhydrin in multicomponent reactions.RSC Advances20201032188751890610.1039/D0RA02930K 35518326
    [Google Scholar]
  22. YuB. YuD.Q. LiuH.M. Spirooxindoles: Promising scaffolds for anticancer agents.Eur. J. Med. Chem.20159767369810.1016/j.ejmech.2014.06.056 24994707
    [Google Scholar]
  23. RyuM.J. HwangS. KimS. YangI. OhD.C. NamS.J. FenicalW. Meroindenon and merochlorins E and F, antibacterial meroterpenoids from a marine-derived sediment bacterium of the genus Streptomyces.Org. Lett.201921155779578310.1021/acs.orglett.9b01440 31298867
    [Google Scholar]
  24. BeckD.E. ReddyP.V.N. LvW. AbdelmalakM. TenderG.S. LopezS. AgamaK. MarchandC. PommierY. CushmanM. Investigation of the structure–activity relationships of aza-A-ring indenoisoquinoline topoisomerase I poisons.J. Med. Chem.20165983840385310.1021/acs.jmedchem.6b00003 27070999
    [Google Scholar]
  25. WuX. LiX. LiZ. YuY. YouQ. ZhangX. Discovery of nonquinone substrates for NAD(P)H: Quinone oxidoreductase 1 (NQO1) as effective intracellular ROS generators for the treatment of drug-resistant non-small-cell lung cancer.J. Med. Chem.20186124112801129710.1021/acs.jmedchem.8b01424 30508483
    [Google Scholar]
  26. MohamedL.W. MohamedK.O. SayedH.S. MahmoudZ. Recent modifications of anti-dementia agents focusing on tacrine and/or donepezil analogs.Med. Chem.202319431132410.2174/1573406418666220827155615 36043761
    [Google Scholar]
  27. SinghR. BhardwajD. SainiM.R. Recent advancement in the synthesis of diverse spiro-indeno[1,2-b]quinoxalines: a review.RSC Advances20211184760480410.1039/D0RA09130H
    [Google Scholar]
  28. MenezesJ.C.J.M.D.S. Arylidene indanone scaffold: Medicinal chemistry and structure–activity relationship view.RSC Advances20177159357937210.1039/C6RA28613E
    [Google Scholar]
  29. SinghK. Applications of indan-1,3-dione in heterocyclic synthesis.Curr. Org. Synth.201613338540710.2174/1570179412666150817222851
    [Google Scholar]
  30. YanC. 1,3-Indanedione: An versatile building block.Green Synthesi Catalysis202342788810.1016/j.gresc.2022.12.004
    [Google Scholar]
  31. GheidariD. MehrdadM. BayatM. Synthesis, molecular docking analysis, molecular dynamic simulation, ADMET, DFT, and drug likeness studies: Novel Indeno[1,2-b]pyrrol-4(1H)-one as SARS-CoV-2 main protease inhibitors.PLoS One2024193e029930110.1371/journal.pone.0299301 38517870
    [Google Scholar]
  32. RajithaG. AryaC.G. JanardhanB. LaxmiS.V. RameshG. KumariU.S. 3-Aryl/heteryl-5-phenylindeno[1,2-d]thiazolo[3,2-a]pyrimidin-6(5H)-ones: Synthesis, characterization, and antimicrobial investigation.Russ. J. Bioorganic Chem.202046461261910.1134/S106816202004007X
    [Google Scholar]
  33. GeorgeK. KannadasanS. Synthesis of quinoline/oxindole appended phenylvinyl-2,5-dihydrofuran derivatives via ring-closing enyne metathesis.Tetrahedron202314213354410.1016/j.tet.2023.133544
    [Google Scholar]
  34. SawantS. PatilP. SalunkeG. KambleR. BharmalM. SankpalS. SonawaneK. HangirgekarS. An efficient, catalyst-free synthesis of novel indenoquinoxaline fused hydrazinylthiazoles and their antimicrobial evaluation with molecular docking study.J. Mol. Struct.2025132114006910.1016/j.molstruc.2024.140069
    [Google Scholar]
  35. SafariJ. TavakoliM. GhasemzadehM.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst.J. Organomet. Chem.2019880758210.1016/j.jorganchem.2018.10.028
    [Google Scholar]
  36. RozehP. ShahvelayatiA.S. Khalil MoghaddamS. Efficient synthesis and antioxidant activity evaluation of novel fused indenofurane derivatives using Fe3O4-Magnetic Nanoparticles.Polycycl. Aromat. Compd.20234376336635010.1080/10406638.2022.2117209
    [Google Scholar]
  37. ShamiliS. SiddojuK. KondaS. Synthesis and biological activity of indeno-pyridine and indeno-pyran derivatives in one-pot reaction.Polycycl. Aromat. Compd.20234411010.1080/10406638.2023.2273884
    [Google Scholar]
  38. ShekharC. SatyanarayanaG. Acid-mediated cascade cyclization pathway to Indeno[2,1- c]chromen-6(7 H)-ones.J. Org. Chem.20238819134041341710.1021/acs.joc.3c01459 37721969
    [Google Scholar]
  39. KhalighN.G. ShiriniF. N-Sulfonic acid poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst for one-pot synthesis of xanthene derivatives in dry media under ultrasound irradiation.Ultrason. Sonochem.20152239740310.1016/j.ultsonch.2014.06.020 25027258
    [Google Scholar]
  40. DasS. Recent applications of 1,3-indanedione in organic transformations for the construction of fused- and spiro scaffolds.Tetrahedron202212213295410.1016/j.tet.2022.132954
    [Google Scholar]
  41. MohammadiH. ShaterianH.R. γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel superparamagnetic nanocatalyst promoted green synthesis of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives.Res. Chem. Intermed.201844127519753810.1007/s11164‑018‑3571‑1
    [Google Scholar]
  42. MohamadpourF. New role for photoexcited organic dye, Na2 eosin Y via the direct hydrogen atom transfer (HAT) process in photochemical visible-light-induced synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones under air atmosphere.Dyes Pigments202119410962810.1016/j.dyepig.2021.109628
    [Google Scholar]
  43. AdibianF. PouraliA.R. MalekiB. BaghayeriM. AmiriA. One‐pot synthesis of dihydro-1H-indeno[1,2-b] pyridines and tetrahydrobenzo[b] pyran derivatives using a new and efficient nanocomposite catalyst based on N‐butylsulfonate‐functionalized MMWCNTs-D-NH2.Polyhedron202017511417910.1016/j.poly.2019.114179
    [Google Scholar]
  44. LehmanV.A. MaY. ScheererJ.R. Construction of the 4-Azafluorenone core in a single operation and synthesis of Onychine.J. Org. Chem.20248915110781108210.1021/acs.joc.4c01298 39014934
    [Google Scholar]
  45. JourjineI.A.P. BracherF. Collective total synthesis of 4‐Azafluorenone Alkaloids.Eur. J. Org. Chem.20232628e20230039910.1002/ejoc.202300399
    [Google Scholar]
  46. WangX. DongJ. XuX. TangB. Dinucleophilic reactivity of Isocyanoacetate: Base-catalyzed one-pot access to 4-Azafluorenes and 4-Azafluorenones.Org. Lett.202123239063906710.1021/acs.orglett.1c03314 34730361
    [Google Scholar]
  47. ShresthaA. ParkS. JangH.J. KatilaP. ShresthaR. KwonY. LeeE.S. A new phenolic series of indenopyridinone as topoisomerase inhibitors: Design, synthesis, and structure-activity relationships.Bioorg. Med. Chem.201826185212522310.1016/j.bmc.2018.09.021 30262132
    [Google Scholar]
  48. HwangS.Y. ShresthaA. ParkS. BistG. KunwarS. KadayatT.M. JangH. SeoM. SheenN. KimS. JeonK.H. LeeE.S. KwonY. Identification of new halogen-containing 2,4-diphenyl indenopyridin-5-one derivative as a boosting agent for the anticancer responses of clinically available topoisomerase inhibitors.Eur. J. Med. Chem.202222711391610.1016/j.ejmech.2021.113916 34678573
    [Google Scholar]
  49. JeonK.H. ParkC. KadayatT.M. ShresthaA. LeeE.S. KwonY. A novel indeno[1,2-b]pyridinone derivative, a DNA intercalative human topoisomerase IIα catalytic inhibitor, for caspase 3-independent anticancer activity.Chem. Commun. (Camb.)201753516864686710.1039/C7CC02372C 28604852
    [Google Scholar]
  50. ZhangH.F. YiboW. Synthesis of polyhydroquinoline derivatives in the presence of nanoboehmite by Hantzsch Reaction.J. Synth Chem.20243364810.22034/JSC.2024.457036.1073
    [Google Scholar]
  51. DhaneN.S. SapkalA.C. AttarS.R. DhumalS.M. ChouguleG.K. PawarS.P. KambleS.B. GaikwadK.V. Synthesis of 1, 8-dioxodecahydroacridines via Hantzsch condensation using theophylline in an aqueous medium: an eco-friendly and bio-based approach.Res. Chem. Intermed.20245031147116010.1007/s11164‑023‑05213‑1
    [Google Scholar]
  52. ZeynizadehB. GilanizadehM. Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions.Current Chemistry Letters20209717810.5267/j.ccl.2019.8.001
    [Google Scholar]
  53. NiuK. ShiX. DingL. LiuY. SongH. WangQ. HCl‐catalyzed aerobic oxidation of Alkylarenes to Carbonyls.ChemSusChem2022152e20210232610.1002/cssc.202102326 34817114
    [Google Scholar]
  54. XueM. PanT. ShaoZ. WangW. LiH. ZhaoL. ZhouX. ZhangY. Sustainable electrochemical Benzylic C−H oxidation using MeOH as an Oxygen source.ChemSusChem20241710e20240002810.1002/cssc.202400028 38225209
    [Google Scholar]
  55. KumarK. JoshiP. RawatD.S. (±)-Camphor sulfonic acid assisted IBX based oxidation of 1° and 2° alcohols.Tetrahedron Lett.20218115329810.1016/j.tetlet.2021.153298
    [Google Scholar]
  56. GuoS. ZhangN. TangX. MaoZ. ZhangX. YanM. XuanY. Cyclopropanation of active methylene compounds with β-alkoxycarbonyl vinylsulfonium salts.Chin. Chem. Lett.201930240640810.1016/j.cclet.2018.08.021
    [Google Scholar]
  57. S, M.; S, J.; C, P.; A, M.T.N.; S, G. Synthesis and screening of cyclic diketone indanedione derivatives as future scaffolds for neutrophil elastase inhibition.RSC Advances20231317118381185210.1039/D3RA00106G 37077993
    [Google Scholar]
  58. SartoriG. BigiF. MaggiR. BaraldiD. CasnatiG. Acylation of aroyl chlorides via a template Friedel–Crafts process: Synthesis of indan-1,3-diones.J. Chem. Soc., Perkin Trans. 119921992212985298810.1039/P19920002985
    [Google Scholar]
  59. HeG. WuC. ZhouJ. YangQ. ZhangC. ZhouY. ZhangH. LiuH. A method for synthesis of 3-hydroxy-1-indanones via Cu-catalyzed intramolecular annulation reactions.J. Org. Chem.20188321133561336210.1021/acs.joc.8b02149 30295478
    [Google Scholar]
  60. PadwaA. HornbuckleS.F. ZhangZ. ZhiL. Synthesis of 1,3-diketones using. alpha.-diazo ketones and aldehydes in the presence of tin(II) chloride.J. Org. Chem.199055185297529910.1021/jo00305a029
    [Google Scholar]
  61. Kaliyaperumal AppayeS. Pandurang NikumbhS. Reddy GovindapurR. BanerjeeS. BhaleraoD.S. Syam KumarU.K. Ethenolate transfer reactions: A facile synthesis of Vinyl Esters.Helv. Chim. Acta20149781115112210.1002/hlca.201300396
    [Google Scholar]
  62. WeiW.T. LiuY. YeL.M. LeiR.H. ZhangX.J. YanM. Rapid synthesis of isoquinolinones by intramolecular coupling of amides and ketones.Org. Biomol. Chem.201513381782410.1039/C4OB01948B 25407091
    [Google Scholar]
  63. DolesW. WilkersonG. MorrisonS. RichmondR.G. Glacial acetic acid adverse events: Case reports and review of the literature.Hosp. Pharm.201550430430910.1310/hpj5004‑304 26448660
    [Google Scholar]
  64. HassaneinA.Z.A.E.B. Synthesis and reaction of some indenopyridine and Thieno[2,3-b]Indeno[2,1-e]Pyridine Derivatives.Synth. Commun.200030213883389510.1080/00397910008086945
    [Google Scholar]
  65. EinsteinM. GreenleeM. RouenG. SitlaniA. SantoroJ. WangC. PanditS. MazurP. SmaleraI. WeaverA.P.M. ZengY.Y. GeL. KellyT. PaivaT. GeisslerW. MosleyR.T. WilliamsonJ. AliA. BalkovecJ. HarrisG. Selective glucocorticoid receptor nonsteroidal ligands completely antagonize the dexamethasone mediated induction of enzymes involved in gluconeogenesis and glutamine metabolism.J. Steroid Biochem. Mol. Biol.200492534535610.1016/j.jsbmb.2004.10.009 15698539
    [Google Scholar]
  66. YadavA. YadavS. SiddiquiI. PeruncheralathanS. IlaH. JunjappaH. A new one-pot, three-component synthesis of 2,3,5-substituted or annulated-6-(Methylthio)pyridines.Synlett20082008172674268010.1055/s‑0028‑1083529
    [Google Scholar]
  67. El-DesokyE.S.I. El-SawiA.A. AbozeidM.A. AbdelmotelebM. ShaabanM. KeshkE.M. Abdel-RahmanA.R.H. Synthesis, antimicrobial evaluation, and molecular docking of some new angular allylbenzochromone derivatives.Med. Chem. Res.201928101601161710.1007/s00044‑019‑02397‑3
    [Google Scholar]
  68. Al-HussainS.A. FarghalyT.A. IbrahimM.H. Al-sheikhM.A. ZakiM.E.A. MuhammadZ.A. kassab, R.M. The anti-breast cancer activity of indeno[1,2-b]pyridin-5-one and their hydrazonal precursors endowed with anti-CDK-2 enzyme activity.J. Mol. Struct.2024129513669210.1016/j.molstruc.2023.136692
    [Google Scholar]
  69. GhahremanzadehR. FereshtehnejadF. BazgirA. One‐pot synthesis of spiro[diindeno[1,2‐ b:2′,1′‐ e]pyridine‐11,3′‐indoline]‐triones.J. Heterocycl. Chem.20104751031103410.1002/jhet.412
    [Google Scholar]
  70. RajanarendarE. ThirupathaiahK. RamakrishnaS. NagarajuD. KishoreB. Facile, atom‐economical, and one‐pot pseudo four‐component synthesis of Isoxazolylspiro[diindeno[1,2‐b;2′,1′‐e]pyridine‐11,3′‐indoline]‐2′,10,12‐triones catalyzed by p-TSA.J. Heterocycl. Chem.201754288989410.1002/jhet.2650
    [Google Scholar]
  71. GhahremanzadehR. Imani ShakibaeiG. AhadiS. BazgirA. One-Pot, pseudo four-component synthesis of a spiro[diindeno[1,2- b:2′,1′- e]pyridine-11,3′-indoline]-trione library.J. Comb. Chem.201012119119410.1021/cc900130a 19863100
    [Google Scholar]
  72. GhahremanzadehR. AhadiS. ShakibaeiG.I. BazgirA. Grindstone chemistry: One-pot synthesis of spiro[diindenopyridine-indoline]triones and spiro[acenaphthylene-diindenopyridine]triones.Tetrahedron Lett.201051349950210.1016/j.tetlet.2009.11.041
    [Google Scholar]
  73. AmanpourT. BazgirA. ArdekaniA.M. GhahremanzadehR. Pseudo five-component synthesis of 5-phenyldihydrospiro[diindenopyridine-indenoquinoxaline]dione derivatives via a one-pot condensation reaction.Monatsh. Chem.2014145462763210.1007/s00706‑013‑1118‑0
    [Google Scholar]
  74. JugM. MuraP.A. Grinding as Solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state.Pharmaceutics201810418910.3390/pharmaceutics10040189 30332804
    [Google Scholar]
  75. ZhangL. DuanJ. XuG. DingX. MaoY. RongB. ZhuN. FangZ. LiZ. GuoK. Copper-catalyzed N-O cleavage of α,β-unsaturated ketoxime acetates toward structurally diverse pyridines.J. Org. Chem.20208542532254210.1021/acs.joc.9b03238 31910622
    [Google Scholar]
  76. VermaA. KumarS. KhatriV. PathakG. AryaD.K. Multicomponent synthesis of spiroannulated hybrid molecules with preferred substructures using indium triflate as a sustainable catalyst.Res. Chem. Intermed.202450125126410.1007/s11164‑023‑05177‑2
    [Google Scholar]
  77. EvansC.G. JinwalU.K. MakleyL.N. DickeyC.A. GestwickiJ.E. Identification of dihydropyridines that reduce cellular tau levels.Chem. Commun. (Camb.)201147152953110.1039/C0CC02253E 21082080
    [Google Scholar]
  78. BartoliG. BeleggiaR. GiuliS. GiulianiA. MarcantoniE. MassaccesiM. PaolettiM. The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation.Tetrahedron Lett.200647376501650410.1016/j.tetlet.2006.07.031
    [Google Scholar]
  79. BartoliG. MarcantoniE. SambriL. The CeCl3·nH2O/NaI system in organic synthesis: An efficient water tolerant Lewis acid promoter.Synlett20032003142101211610.1055/s‑2003‑42098
    [Google Scholar]
  80. CigáňM. DankoP. BrathH. ČakurdaM. FišeraR. DonovalováJ. FiloJ. WeisM. JakabovičJ. NovotaM. GáplovskýA. 4-Azafluo-renone and α-carboline fluorophores with green and violet/blue emission.Molecules20192413237810.3390/molecules24132378 31252565
    [Google Scholar]
  81. KantevariS. PutapatriS. A facile synthesis of novel acyclo-C-nucleoside analogues from L-rhamnose via variants of Bohlmann-Rahtz reaction.Synlett20102010152251225610.1055/s‑0030‑1258038
    [Google Scholar]
  82. TapaswiP.K. MukhopadhyayC. Ceric ammonium nitrate (CAN) catalyzed one-pot synthesis of fully substituted new indeno[1,2-b]pyridines at room temperature through multi-component reaction.ARKIVOC201120111028729810.3998/ark.5550190.0012.a23
    [Google Scholar]
  83. Ghorbani-VagheiR. MalaekehpoorS.M. HasaneinP. KaramyanR. AsadbegyM. Synthesis and biological evaluation of new series 1,4-dihydropyridines.Res. Chem. Intermed.20164254715473110.1007/s11164‑015‑2310‑0
    [Google Scholar]
  84. AhmedA.A.M. MekkyA.E.M. SanadS.M.H. [3 + 2] Cycloaddition synthesis of new (Chromene‐1,3,4‐Oxadiazole) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors.ChemistrySelect2025102e20240480410.1002/slct.202404804
    [Google Scholar]
  85. BaliyanS. MukherjeeR. PriyadarshiniA. VibhutiA. GuptaA. PandeyR.P. ChangC.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa.Molecules2022274132610.3390/molecules27041326 35209118
    [Google Scholar]
  86. YangW.J. ZhangJ. SunJ. YanC.G. Convenient construction of Indanedione‐Fused 2,5‐Dihydropyridines, 4,5‐Dihydropyridines, and Spirooxindolines.Eur. J. Org. Chem.20162016325423542810.1002/ejoc.201600981
    [Google Scholar]
  87. HeD. YuM. XuJ. DuB. ZhouJ. WangX. Thiourea dioxide as a green reductant for selective depolymerization of lignin to guaiacol.Ind. Crops Prod.202319411617610.1016/j.indcrop.2022.116176
    [Google Scholar]
  88. SainiK. Manju; Raigar, A.K.; Guleria, A. Thiourea dioxide catalyzed sustainable synthesis of diverse quinoxaline and pyrazine derivatives in aqueous medium at ambient temperature.ChemistrySelect2024921e20240107710.1002/slct.202401077
    [Google Scholar]
  89. GhashangM. MansoorS.S. LogaiyaK. AswinK. An appropriate one-pot synthesis of 4-aryl-2-naphthalen-2-yl-5H-indeno [1,2-b]pyridin-5-ones using thiourea dioxide as an efficient and reusable organocatalyst.Res. Chem. Intermed.20154196325633810.1007/s11164‑014‑1742‑2
    [Google Scholar]
  90. KhanS.A. AsiriA.M. Al-ThaqafyS.H. Physicochemical investigation, fluorescence quenching and micellization of ethyl 4-(2,4,5-trimethoxyphenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (EIPC) in Organized Media.J. Solution Chem.20164581115112910.1007/s10953‑016‑0489‑3
    [Google Scholar]
  91. KhanS.A. AsiriA.M. Al-ThaqafyS.H. Optical properties and fluorescence quenching of biologically active ethyl 4-(4-N,N-dimethylamino phenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (DDPC) dye as a probe to determine CMC of surfactants.RSC Advances2016610410221810222510.1039/C6RA02814D
    [Google Scholar]
  92. El-OssailyY.A. A convenient synthesis of some new indeno[1,2-b]pyridines and indeno[1,2-b]thieno[3,2-e]pyridine derivatives with potential biological activity. Phosphorus.Phosphorus Sulfur Silicon Relat. Elem.200718251109111710.1080/10426500601142080
    [Google Scholar]
  93. GhorabM.M. Al-SaidM.S. Anticancer activity of novel indenopyridine derivatives.Arch. Pharm. Res.201235698799410.1007/s12272‑012‑0605‑x 22870807
    [Google Scholar]
  94. FeizA. ShakibaeiG.I. YasaeiZ. Reza KhavasiH. BazgirA. A new four‐component reaction for the synthesis of Spiro[4 H ‐indeno[1,2‐ b]pyridine‐4,3′‐[3 H]indoles].Helv. Chim. Acta20119491628163710.1002/hlca.201100047
    [Google Scholar]
  95. KhorramiA.R. KianiP. BazgirA. l-Proline: An efficient catalyst for the synthesis of new spirooxindoles.Monatsh. Chem.2011142328729510.1007/s00706‑011‑0446‑1
    [Google Scholar]
  96. MukhopadhyayC. TapaswiP.K. ButcherR.J. l-Proline-catalyzed one-pot expeditious synthesis of highly substituted pyridines at room temperature.Tetrahedron Lett.201051131797180210.1016/j.tetlet.2010.01.106
    [Google Scholar]
  97. HagimoriM. MizuyamaN. HisadomeY. NagaokaJ. UedaK. TominagaY. One-pot synthesis of polysubstituted pyridine derivatives using ketene dithioacetals.Tetrahedron200763112511251810.1016/j.tet.2006.12.031
    [Google Scholar]
  98. Abd-ElghaffarH.S. El-HashashM.A. MohamedS.F. IbrahimA.A. AmrA.E. Al-OmarM.A. NossierE.S. Synthesis and anti-proliferative activity of novel tricyclic compounds derived from 2-substituted 1,3-Indandione.Russ. J. Gen. Chem.202090468669610.1134/S1070363220040209
    [Google Scholar]
  99. NaiduB.R. SruthiT. MittyR. VenkateswarluK. Catalyst-free mechanochemistry as a versatile tool in synthetic chemistry: A review.Green Chem.202325166120614810.1039/D3GC01229H
    [Google Scholar]
  100. PatelP.J. ValaR.M. PatelS.G. UpadhyayD.B. RajaniD.P. DamiriF. BerradaM. PatelH.M. Catalyst-free synthesis of imidazo[5,1-b]quinazolines and their antimicrobial activity.J. Mol. Struct.2023128513546710.1016/j.molstruc.2023.135467
    [Google Scholar]
  101. SamaiS. Chandra NandiG. KumarR. SinghM.S. Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines.Tetrahedron Lett.200950507096709810.1016/j.tetlet.2009.10.022
    [Google Scholar]
  102. KhaksarS. GholamiM. An eco-benign and highly efficient access to dihydro-1H-indeno[1,2-b]pyridines in 2,2,2-trifluoroethanol.J. Mol. Liq.201419615916210.1016/j.molliq.2014.03.030
    [Google Scholar]
  103. DigeN.C. PoreD.M. Green aspect for multicomponent synthesis of Spiro[4 H -indeno[1,2-b]pyridine-4,3′-[3 H]indoles].Synth. Commun.201545212498251010.1080/00397911.2015.1092551
    [Google Scholar]
  104. AddlaD. Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Design, synthesis and antimicrobial evaluation of novel 1-benzyl 2-butyl-4-chloroimidazole embodied 4-azafluorenones via molecular hybridization approach.Bioorg. Med. Chem. Lett.201222247475748010.1016/j.bmcl.2012.10.042 23147074
    [Google Scholar]
  105. NossierE.S. Abd El-KarimS.S. KhalifaN.M. El-SayedA.S. HassanE.S.I. El-HalloutyS.M. Kinase inhibitory activities and molecular docking of a novel series of anticancer pyrazole derivatives.Molecules20182312307410.3390/molecules23123074 30477238
    [Google Scholar]
  106. AllaisC. Liéby-MullerF. RodriguezJ. ConstantieuxT. Metal‐free michael‐addition‐initiated three‐component reaction for the regioselective synthesis of highly functionalized pyridines: Scope, mechanistic investigations and applications.Eur. J. Org. Chem.20132013194131414510.1002/ejoc.201300246
    [Google Scholar]
  107. Liéby-MullerF. AllaisC. ConstantieuxT. RodriguezJ. Metal-free Michael addition initiated multicomponent oxidative cyclodehydration route to polysubstituted pyridines from 1,3-dicarbonyls.Chem. Commun. (Camb.)20082008354207420910.1039/b805680c 18802531
    [Google Scholar]
  108. RaoY. LiuM. WuL. YinG. Catalyst-free one-pot domino reactions for selective synthesis of functionalized 2,8-oxazabicyclo[3.3.1]-nonanes and 5H-indeno[1,2-b]pyridin-5-ones.RSC Advances20144110645516455810.1039/C4RA13166E
    [Google Scholar]
  109. KomatsuR. YamaguchiT. KobayashiN. OzekiY. SakuraiK. Synthesis of alkyne-tagged and biotin-tagged Sortin1 as novel photoaffinity probes.Bioorg. Med. Chem. Lett.20182891562156510.1016/j.bmcl.2018.03.060 29615342
    [Google Scholar]
  110. ModuguN.R. PittalaP.K. Polyethylene glycol (PEG-400) promoted as an efficient and recyclable reaction medium for the one-pot eco-friendly synthesis of functionalized isoxazole substituted spirooxindole derivatives.New J. Chem.20174123140621406610.1039/C7NJ03515B
    [Google Scholar]
  111. HoffmannM.M. Polyethylene glycol as a green chemical solvent.Curr. Opin. Colloid Interface Sci.20225710153710.1016/j.cocis.2021.101537
    [Google Scholar]
  112. KardooniR. KiasatA.R. Polyethylene glycol (PEG-400): A green reaction medium for one-pot, three component synthesis of 3-substituted indoles under catalyst free conditions.Polycycl. Aromat. Compd.20214191883189110.1080/10406638.2019.1703764
    [Google Scholar]
  113. PatravaleA.A. GoreA.H. PatilD.R. KolekarG.B. DeshmukhM.B. ChoudhariP.B. BhatiaM.S. AnbhuleP.V. Contemporary development in sequential Knoevenagel, Michael addition multicomponent reaction for the synthesis of 4-Aryl-5-oxo-5H-indeno[1,2-b]pyridine-3-carbonitrile.Res. Chem. Intermed.20164242919293510.1007/s11164‑015‑2187‑y
    [Google Scholar]
  114. ChikayukiY. MiyashigeT. YonekawaS. KiritaA. MatsuoN. TeramotoH. SasakiS. HigashiyamaK. YamauchiT. Transition-metal-free synthesis of pyridine derivatives by thermal cyclization of N-propargyl enamines.Synthesis20205271113112110.1055/s‑0039‑1691575
    [Google Scholar]
  115. HammondO.S. MudringA.V. Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials.Chem. Commun. (Camb.)202258243865389210.1039/D1CC06543B 35080210
    [Google Scholar]
  116. NiaR.H. MamaghaniM. ShiriniF. TabatabaeianK. HeidaryM. Rapid and efficient synthesis of 1, 4-dihydropyridines using a sulfonic acid-functionalized ionic liquid.Org. Prep. Proced. Int.201446215216310.1080/00304948.2014.884372
    [Google Scholar]
  117. NishtalaV.B. GandamallaD. YelluN.R. BasavojuS. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl2+urea via the pseudo four-component reaction: anticancer, antioxidant, and molecular docking studies.Synth. Commun.201949202671268210.1080/00397911.2019.1639193
    [Google Scholar]
  118. ChandamD.R. MulikA.G. PatilD.R. PatravaleA.P. KumbharD.R. DeshmukhM.B. Oxalic acid dihydrate and proline based low transition temperature mixture: An efficient synthesis of spiro [diindenopyridine-indoline] triones derivatives.J. Mol. Liq.201621957357810.1016/j.molliq.2016.02.101
    [Google Scholar]
  119. AtharifarH. KeivanlooA. MalekiB. Greener synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in a deep eutectic solvent.Org. Prep. Proced. Int.202052651752310.1080/00304948.2020.1799672
    [Google Scholar]
  120. RahmatiyanS. Bahri-LalehN. HanifpourA. Nekoomanesh-HaghighiM. Different behaviors of metallocene and Ziegler–Natta catalysts in ethylene/1,5‐hexadiene copolymerization.Polym. Int.20196819410110.1002/pi.5700
    [Google Scholar]
  121. HemmatiS. MohammadiP. SedrpoushanA. MalekiB. Synthesis of 2,5-Dimethyl-N-substituted pyrroles catalyzed by Diethylenetriaminepentaacetic acid supported on Fe 3 O 4 nanoparticles.Org. Prep. Proced. Int.201850546548110.1080/00304948.2018.1525668
    [Google Scholar]
  122. KarbasakiS.S. BagherzadeG. MalekiB. GhaniM. Magnetic Fe3O4@SiO2 core-shell nanoparticles functionalized with sulfamic acid polyamidoamine (PAMAM) dendrimer for the multicomponent synthesis of polyhydroquinolines and dihydro-1H-indeno[1,2-b]pyridines.Org. Prep. Proced. Int.202153549850810.1080/00304948.2021.1957644
    [Google Scholar]
  123. AhadiN. MobinikhalediA. BodaghifardM.A. One‐pot synthesis of 1,4‐dihydropyridines and N‐arylquinolines in the presence of copper complex stabilized on MnFe2O4(MFO) as a novel organic–inorganic hybrid material and magnetically retrievable catalyst.Appl. Organomet. Chem.20203410e582210.1002/aoc.5822
    [Google Scholar]
  124. BagheriM. GholamzadehP. Mohammadi ZiaraniG. BadieiA. Preparation of a dual-functionalized fumed silica nanoparticle catalysis for synthesis of azaluorenone derivatives.Res. Chem. Intermed.20194563301331010.1007/s11164‑019‑03740‑4
    [Google Scholar]
  125. SadeghiB. NamakkoubiA. HassanabadiA. BF3.SiO2 nanoparticles: A solid phase acidic catalyst for efficient one-pot Hantzsch synthesis of 1,4-dihydropyridines.J. Chem. Res.201337111310.3184/174751912X135429754295
    [Google Scholar]
  126. LahoutiS. NaeimiH. Chitosan-encapsulated manganese ferrite particles bearing sulfonic acid group catalyzed efficient synthesis of spiro indenoquinoxalines.RSC Advances20201055333343334310.1039/D0RA04925E 35515027
    [Google Scholar]
  127. RayS. BrownM. BhaumikA. DuttaA. MukhopadhyayC. A new MCM-41 supported HPF6 catalyst for the library synthesis of highly substituted 1,4-dihydropyridines and oxidation to pyridines: report of one-dimensional packing towards LMSOMs and studies on their photophysical properties.Green Chem.20131571910192410.1039/c3gc40441b
    [Google Scholar]
  128. ValekarN.J. PatilP.P. GoreA.H. KolekarG.B. DeshmukhM.B. AnbhuleP.V. Sequence selective michael addition for synthesis of indeno-pyridine and indeno-pyran derivatives in one-pot reaction using CuO nanoparticles in Water.J. Heterocycl. Chem.20155261669167610.1002/jhet.2228
    [Google Scholar]
  129. Rodríguez-CarrílloC. BenítezM. El HaskouriJ. AmorósP. Ros-LisJ.V. Novel microwave-assisted synthesis of COFs: 2020–2022.Molecules2023287311210.3390/molecules28073112 37049875
    [Google Scholar]
  130. GuzikP. KulawikP. ZającM. MigdałW. Microwave applications in the food industry: An overview of recent developments.Crit. Rev. Food Sci. Nutr.202262297989800810.1080/10408398.2021.1922871 33970698
    [Google Scholar]
  131. SharmaR.K. YadavP. YadavM. GuptaR. RanaP. SrivastavaA. ZbořilR. VarmaR.S. AntoniettiM. GawandeM.B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications.Mater. Horiz.20207241145410.1039/C9MH00856J
    [Google Scholar]
  132. SahooB.M. BanikB.K. KumarB.V.V.R. PandaK.C. TiwariA. TiwariV. SinghS. KumarM. Microwave induced green synthesis: Sustainable Technology for efficient development of bioactive pyrimidine scaffolds.Curr. Med. Chem.20233091029105910.2174/0929867329666220622150013 35733315
    [Google Scholar]
  133. GłowniakS. SzczęśniakB. ChomaJ. JaroniecM. Advances in microwave synthesis of nanoporous materials.Adv. Mater.20213348210347710.1002/adma.202103477 34580939
    [Google Scholar]
  134. ChenW. TangJ. ShiX. YeN. YueZ. LinX. Synthesis and formation mechanism of high‐purity Ti3AlC2 powders by microwave sintering.Int. J. Appl. Ceram. Technol.202017277878910.1111/ijac.13452
    [Google Scholar]
  135. TuS. JiangB. JiaR. ZhangJ. ZhangY. An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction.Tetrahedron Lett.20074881369137410.1016/j.tetlet.2006.12.102
    [Google Scholar]
  136. TuS. JiangB. YaoC. JiangH. ZhangJ. JiaR. ZhangY. An efficient and regiospecific synthesis of new 2,2′-Bipyridine derivatives in water.Synthesis2007200791366137210.1055/s‑2007‑966014
    [Google Scholar]
  137. TugrakM. Inci GulH. SakagamiH. GulcinI. SupuranC.T. New azafluorenones with cytotoxic and carbonic anhydrase inhibitory properties: 2-Aryl-4-(4-hydroxyphenyl)-5H-indeno[1,2-b]pyridin-5-ones.Bioorg. Chem.20188143343910.1016/j.bioorg.2018.09.013 30223148
    [Google Scholar]
  138. MondalA. NaskarB. GoswamiS. ProdhanC. ChaudhuriK. MukhopadhyayC. A quick accelerating microwave-assisted sustainable technique: Permutated spiro-casing for imaging experiment.Mol. Divers.20202419310610.1007/s11030‑019‑09934‑7 30843126
    [Google Scholar]
  139. JamaliM. SardarianA.R. RezaeiF. GhanbariM.M. MohajeriA. Highly efficient microwave‐assisted solvent free sequential one‐pot multicomponent synthesis of novel 2‐hydroxy indenopyridin‐5‐ones and mechanismic computational study.J. Heterocycl. Chem.202259116117110.1002/jhet.4375
    [Google Scholar]
  140. Safaei-GhomiJ. BabaeiP. ElyasiZ. Solvothermal fabrication of NiO/Co 3 O 4 spherical composites modified with n‐doped graphene quantum dots as a catalyst in the microwave‐assisted synthesis of spiro[diindenopyridine‐indoline] triones.ChemistrySelect20216328402841010.1002/slct.202101651
    [Google Scholar]
  141. TuS. JiangB. JiangH. ZhangY. JiaR. ZhangJ. ShaoQ. LiC. ZhouD. CaoL. A novel three-component reaction for the synthesis of new 4-azafluorenone derivatives.Tetrahedron200763255406541410.1016/j.tet.2007.04.053
    [Google Scholar]
  142. TuS. JiangB. ZhangJ. ZhangY. JiaR. LiC. ZhouD. CaoL. ShaoQ. A facile and efficient synthesis of new polysubstituted indeno[1,2-b]pyridines via one-pot, three-component microwave-assisted reaction.Synlett200720070480048410.1055/s‑2007‑967999
    [Google Scholar]
  143. BanerjeeB. Recent developments on ultrasound assisted catalyst-free organic synthesis.Ultrason Sonochem201735Pt A11410.1016/j.ultsonch.2016.09.02327771266
    [Google Scholar]
  144. TurhanK. OzturkcanS.A. TurgutZ. Triflates promoted one-pot synthesis of functionalized unsymmetrical new dihydro-1H-indeno[1,2-b]pyridines through Hantzsch reaction under ultrasonic irradiation.J. Chem. Soc. Pak.20123494101
    [Google Scholar]
  145. SindhuJ. SinghH. KhuranaJ.M. Efficient synthesis of spiro[diindenopyridine-indoline]triones catalyzed by PEG-OSO3H-H2O and [NMP]H2PO4.Synth. Commun.201545220221010.1080/00397911.2014.906616
    [Google Scholar]
/content/journals/coc/10.2174/0113852728385966250513110724
Loading
/content/journals/coc/10.2174/0113852728385966250513110724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test