Skip to content
2000
image of Indane-1,3-dione as a Versatile Intermediate for the Synthesis of 4-azafluorenones

Abstract

Indane-1,3-dione is a reactive cyclic β-diketone that could be employed for preparing various molecular systems of potential biological applications. Among these, 4-azafluorenones (also known as indeno[1,2-b]pyridines) represent one of the most promising classes of carbocyclic systems. Indeno-fused pyridines possess a wide range of medicinal properties, including anti-proliferative activity and DNA topoisomerase Iα/Iiα inhibitory activity. In this review, we presented all reports from 2000 to 2024 that cover the synthesis of indeno[1,2-]pyridines and diindeno[1,2-:2',1'-]pyridines starting from indane-1,3-dione. The review is classified according to the type of reaction conditions that were applied. Additionally, the reports that are related to the new trends in preparing indenopyridines are indexed in separate sections, including the use of ionic liquids, heterogeneous catalysts, and microwave- and ultrasonic-assisted synthetic routes. Some complex synthetic routes are explained by plausible mechanisms.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728385966250513110724
2025-05-29
2025-11-06
Loading full text...

Full text loading...

References

  1. Sahoo A.K. Bhattacharyya A. Recent Advances in synthetic routes for biologically active tetrahydroquinoxalines and derivatives: A comprehensive review. Curr. Org. Chem. 2024 28 3 161 175 10.2174/0113852728285439240109071659
    [Google Scholar]
  2. Mallappa Chahar M. Choudhary N. Yadav K.K. Qasim M.T. Zairov R. Patel A. Yadav V.K. Jangir M. Recent advances in the synthesis of nitrogen-containing heterocyclic compounds via multicomponent reaction and their emerging biological applications: A review. J. Indian Chem. Soc. 2025 22 1 1 33 10.1007/s13738‑024‑03142‑3
    [Google Scholar]
  3. Tandi M. Sharma V. Gopal B. Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: A recent update and chemical space analysis of the scaffolds. RSC Advances 2025 15 2 1447 1489 10.1039/D4RA06681B 39822567
    [Google Scholar]
  4. Ibarra I.A. Islas-Jácome A. González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem. 2018 16 9 1402 1418 10.1039/C7OB02305G 29238790
    [Google Scholar]
  5. Mohlala R.L. Rashamuse T.J. Coyanis E.M. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: A tremendous growth in the past 5 years. Front Chem. 2024 12 1469677 10.3389/fchem.2024.1469677 39359421
    [Google Scholar]
  6. Payamifar S. Abdouss M. Poursattar Marjani A. Recent advances in β-cyclodextrin-based catalyst systems for the synthesis of heterocyclic compounds via multicomponent reactions (MCRs). Arab. J. Chem. 2024 17 10 105967 10.1016/j.arabjc.2024.105967
    [Google Scholar]
  7. Movahed Z. Valizadeh H. Mirzaei F. Synthesis of polysubstituted pyridines via nitrogen-doped graphene catalyzed one-pot multicomponent reaction under solvent-free conditions. Curr. Org. Chem. 2024 28 11 890 895 10.2174/0113852728297985240408062346
    [Google Scholar]
  8. Javahershenas R. Han J. Kazemi M. Jervis P.J. Recent advances in the multicomponent synthesis of heterocycles using thiosemicarbazide. ChemistrySelect 2024 9 30 e202401496 10.1002/slct.202401496
    [Google Scholar]
  9. Shen X. Hong G. Wang L. Recent advances in green multi-component reactions for heterocyclic compound construction. Org. Biomol. Chem. 2025 23 9 2059 2078 10.1039/D4OB01822B 39887261
    [Google Scholar]
  10. Mohlala R.L. Coyanis E.M. The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis. Physical Sciences Reviews 2024 9 2 995 1032 10.1515/psr‑2022‑0349
    [Google Scholar]
  11. Chen M. Zhu L. Zheng W. Fu Y. Zhang J. He H. Antilla J.C. Catalytic asymmetric desymmetrization of cyclic 1,3-Diketones using Chiral Boro-phosphates. Org. Lett. 2024 26 18 3951 3956 10.1021/acs.orglett.4c01195 38678546
    [Google Scholar]
  12. Sanad S.M.H. Mekky A.E.M. Hussein R.M.B. Seif D.S.A. Hassan F.E.A. Fekry F.M.T. Abdellatif N.S.A. Salama E.A.I. Elneairy M.A.A. Annulated and spiro-molecular systems from cycloheptane-based β-ketoesters: Synthesis, reactivity, and biological applications. J. Mol. Struct. 2025 1327 141274 10.1016/j.molstruc.2024.141274
    [Google Scholar]
  13. Sanad S.M.H. Recent advances on the α-functionalization and ring transformations of cycloheptane-based β-ketoesters. Curr. Org. Chem 2024 29 16 1256 1269 10.2174/0113852728363292241212075337
    [Google Scholar]
  14. Sun Q.S. Sun J. Pan L.N. Yan C.G. Selective construction of diverse polycyclic spirooxindoles via a three-component reaction of cyclic mercapto-substituted β-Enamino Esters, Isatins, and cyclic 1,3-Diketones. J. Org. Chem. 2020 85 19 12117 12127 10.1021/acs.joc.0c01290 32901479
    [Google Scholar]
  15. Yucheng Y. Lijing L. Xiaolong L. Yan Y. Tian C. Qunli L. One-pot synthesis of 1,4-Bridged Dihydroisoquinoline-3-ones from Isoquinolinium salts and Cyclic 1,3-Diketones. Acta Chim. Sin. 2022 80 12 1569 10.6023/A22090408
    [Google Scholar]
  16. Sanad S.M.H. Bis(α-Cyanoacetamides): Versatile intermediates for the synthesis of diverse heterocyclic and macrocyclic molecular systems. Curr. Organic. Chem. 2025 29 17 1305 1320 10.2174/0113852728367861250110001856
    [Google Scholar]
  17. Sanad S.M.H. 2,3-Diaminonaphthalene-1,4-dione: Versatile precursor for the synthesis of molecular systems. Synth. Commun. 2025 55 4 281 304 10.1080/00397911.2024.2435467
    [Google Scholar]
  18. Khudina O.G. Elkina N.A. Burgart Y.V. Ezhikova M.A. Kodess M.I. Esaulkova Y.L. Zarubaev V.V. Shtro A.A. Triandafilova G.A. Krasnykh O.P. Malysheva K.O. Gerasimova N.A. Evstigneeva N.P. Saloutin V.I. Synthesis and biological activity of 2-sulfonarylhydrazinylidene 1,3-diketones and their pyrazole derivatives. Russ. Chem. Bull. 2022 71 12 2670 2684 10.1007/s11172‑022‑3696‑7
    [Google Scholar]
  19. Sharma D. Kumar M. Das P. Synthetic approaches for cyclohexane-1,3-diones: A versatile precursor for bioactive molecules. Synth. Commun. 2021 51 17 2553 2573 10.1080/00397911.2021.1946824
    [Google Scholar]
  20. Chitteti D. Padmaja P. Rani V.S. Reddy P.N. A review on 2-arylidene-1,3-indanediones: Preparation and applications to the synthesis of diverse spirocyclic compounds. Monatsh. Chem. 2025 156 2 119 143 10.1007/s00706‑024‑03276‑3
    [Google Scholar]
  21. Das S. Recent applications of ninhydrin in multicomponent reactions. RSC Advances 2020 10 32 18875 18906 10.1039/D0RA02930K 35518326
    [Google Scholar]
  22. Yu B. Yu D.Q. Liu H.M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015 97 673 698 10.1016/j.ejmech.2014.06.056 24994707
    [Google Scholar]
  23. Ryu M.J. Hwang S. Kim S. Yang I. Oh D.C. Nam S.J. Fenical W. Meroindenon and merochlorins E and F, antibacterial meroterpenoids from a marine-derived sediment bacterium of the genus Streptomyces. Org. Lett. 2019 21 15 5779 5783 10.1021/acs.orglett.9b01440 31298867
    [Google Scholar]
  24. Beck D.E. Reddy P.V.N. Lv W. Abdelmalak M. Tender G.S. Lopez S. Agama K. Marchand C. Pommier Y. Cushman M. Investigation of the structure–activity relationships of aza-A-ring indenoisoquinoline topoisomerase I poisons. J. Med. Chem. 2016 59 8 3840 3853 10.1021/acs.jmedchem.6b00003 27070999
    [Google Scholar]
  25. Wu X. Li X. Li Z. Yu Y. You Q. Zhang X. Discovery of nonquinone substrates for NAD(P)H: Quinone oxidoreductase 1 (NQO1) as effective intracellular ROS generators for the treatment of drug-resistant non-small-cell lung cancer. J. Med. Chem. 2018 61 24 11280 11297 10.1021/acs.jmedchem.8b01424 30508483
    [Google Scholar]
  26. Mohamed L.W. Mohamed K.O. Sayed H.S. Mahmoud Z. Recent modifications of anti-dementia agents focusing on tacrine and/or donepezil analogs. Med. Chem. 2023 19 4 311 324 10.2174/1573406418666220827155615 36043761
    [Google Scholar]
  27. Singh R. Bhardwaj D. Saini M.R. Recent advancement in the synthesis of diverse spiro-indeno[1,2- b ]quinoxalines: a review. RSC Advances 2021 11 8 4760 4804 10.1039/D0RA09130H
    [Google Scholar]
  28. Menezes J.C.J.M.D.S. Arylidene indanone scaffold: Medicinal chemistry and structure–activity relationship view. RSC Advances 2017 7 15 9357 9372 10.1039/C6RA28613E
    [Google Scholar]
  29. Singh K. Applications of indan-1,3-dione in heterocyclic synthesis. Curr. Org. Synth. 2016 13 3 385 407 10.2174/1570179412666150817222851
    [Google Scholar]
  30. Yan C. 1,3-Indanedione: An versatile building block. Green Synthesi Catalysis 2023 4 2 78 88 10.1016/j.gresc.2022.12.004
    [Google Scholar]
  31. Gheidari D. Mehrdad M. Bayat M. Synthesis, molecular docking analysis, molecular dynamic simulation, ADMET, DFT, and drug likeness studies: Novel Indeno[1,2-b]pyrrol-4(1H)-one as SARS-CoV-2 main protease inhibitors. PLoS One 2024 19 3 e0299301 10.1371/journal.pone.0299301 38517870
    [Google Scholar]
  32. Rajitha G. Arya C.G. Janardhan B. Laxmi S.V. Ramesh G. Kumari U.S. 3-Aryl/heteryl-5-phenylindeno[1,2-d]thiazolo[3,2-a]pyrimidin-6(5H)-ones: Synthesis, characterization, and antimicrobial investigation. Russ. J. Bioorganic Chem. 2020 46 4 612 619 10.1134/S106816202004007X
    [Google Scholar]
  33. George K. Kannadasan S. Synthesis of quinoline/oxindole appended phenylvinyl-2,5-dihydrofuran derivatives via ring-closing enyne metathesis. Tetrahedron 2023 142 133544 10.1016/j.tet.2023.133544
    [Google Scholar]
  34. Sawant S. Patil P. Salunke G. Kamble R. Bharmal M. Sankpal S. Sonawane K. Hangirgekar S. An efficient, catalyst-free synthesis of novel indenoquinoxaline fused hydrazinylthiazoles and their antimicrobial evaluation with molecular docking study. J. Mol. Struct. 2025 1321 140069 10.1016/j.molstruc.2024.140069
    [Google Scholar]
  35. Safari J. Tavakoli M. Ghasemzadeh M.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst. J. Organomet. Chem. 2019 880 75 82 10.1016/j.jorganchem.2018.10.028
    [Google Scholar]
  36. Rozeh P. Shahvelayati A.S. Khalil Moghaddam S. Efficient synthesis and antioxidant activity evaluation of novel fused indenofurane derivatives using Fe 3 O 4 -Magnetic Nanoparticles. Polycycl. Aromat. Compd. 2023 43 7 6336 6350 10.1080/10406638.2022.2117209
    [Google Scholar]
  37. Shamili S. Siddoju K. Konda S. Synthesis and biological activity of indeno-pyridine and indeno-pyran derivatives in one-pot reaction. Polycycl. Aromat. Compd. 2023 44 1 10 10.1080/10406638.2023.2273884
    [Google Scholar]
  38. Shekhar C. Satyanarayana G. Acid-mediated cascade cyclization pathway to Indeno[2,1- c ]chromen-6(7 H )-ones. J. Org. Chem. 2023 88 19 13404 13417 10.1021/acs.joc.3c01459 37721969
    [Google Scholar]
  39. Khaligh N.G. Shirini F. N-Sulfonic acid poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst for one-pot synthesis of xanthene derivatives in dry media under ultrasound irradiation. Ultrason. Sonochem. 2015 22 397 403 10.1016/j.ultsonch.2014.06.020 25027258
    [Google Scholar]
  40. Das S. Recent applications of 1,3-indanedione in organic transformations for the construction of fused- and spiro scaffolds. Tetrahedron 2022 122 132954 10.1016/j.tet.2022.132954
    [Google Scholar]
  41. Mohammadi H. Shaterian H.R. γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel superparamagnetic nanocatalyst promoted green synthesis of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives. Res. Chem. Intermed. 2018 44 12 7519 7538 10.1007/s11164‑018‑3571‑1
    [Google Scholar]
  42. Mohamadpour F. New role for photoexcited organic dye, Na2 eosin Y via the direct hydrogen atom transfer (HAT) process in photochemical visible-light-induced synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones under air atmosphere. Dyes Pigments 2021 194 109628 10.1016/j.dyepig.2021.109628
    [Google Scholar]
  43. Adibian F. Pourali A.R. Maleki B. Baghayeri M. Amiri A. One‐pot synthesis of dihydro-1H-indeno[1,2-b] pyridines and tetrahydrobenzo[b] pyran derivatives using a new and efficient nanocomposite catalyst based on N‐butylsulfonate‐functionalized MMWCNTs-D-NH2. Polyhedron 2020 175 114179 10.1016/j.poly.2019.114179
    [Google Scholar]
  44. Lehman V.A. Ma Y. Scheerer J.R. Construction of the 4-Azafluorenone core in a single operation and synthesis of Onychine. J. Org. Chem. 2024 89 15 11078 11082 10.1021/acs.joc.4c01298 39014934
    [Google Scholar]
  45. Jourjine I.A.P. Bracher F. Collective total synthesis of 4‐Azafluorenone Alkaloids. Eur. J. Org. Chem. 2023 26 28 e202300399 10.1002/ejoc.202300399
    [Google Scholar]
  46. Wang X. Dong J. Xu X. Tang B. Dinucleophilic reactivity of Isocyanoacetate: Base-catalyzed one-pot access to 4-Azafluorenes and 4-Azafluorenones. Org. Lett. 2021 23 23 9063 9067 10.1021/acs.orglett.1c03314 34730361
    [Google Scholar]
  47. Shrestha A. Park S. Jang H.J. Katila P. Shrestha R. Kwon Y. Lee E.S. A new phenolic series of indenopyridinone as topoisomerase inhibitors: Design, synthesis, and structure-activity relationships. Bioorg. Med. Chem. 2018 26 18 5212 5223 10.1016/j.bmc.2018.09.021 30262132
    [Google Scholar]
  48. Hwang S.Y. Shrestha A. Park S. Bist G. Kunwar S. Kadayat T.M. Jang H. Seo M. Sheen N. Kim S. Jeon K.H. Lee E.S. Kwon Y. Identification of new halogen-containing 2,4-diphenyl indenopyridin-5-one derivative as a boosting agent for the anticancer responses of clinically available topoisomerase inhibitors. Eur. J. Med. Chem. 2022 227 113916 10.1016/j.ejmech.2021.113916 34678573
    [Google Scholar]
  49. Jeon K.H. Park C. Kadayat T.M. Shrestha A. Lee E.S. Kwon Y. A novel indeno[1,2-b]pyridinone derivative, a DNA intercalative human topoisomerase IIα catalytic inhibitor, for caspase 3-independent anticancer activity. Chem. Commun. (Camb.) 2017 53 51 6864 6867 10.1039/C7CC02372C 28604852
    [Google Scholar]
  50. Zhang H.F. Yibo W. Synthesis of polyhydroquinoline derivatives in the presence of nanoboehmite by Hantzsch Reaction. J. Synth. Chem. 2024 3 36 48 10.22034/JSC.2024.457036.1073
    [Google Scholar]
  51. Dhane N.S. Sapkal A.C. Attar S.R. Dhumal S.M. Chougule G.K. Pawar S.P. Kamble S.B. Gaikwad K.V. Synthesis of 1, 8-dioxodecahydroacridines via Hantzsch condensation using theophylline in an aqueous medium: an eco-friendly and bio-based approach. Res. Chem. Intermed. 2024 50 3 1147 1160 10.1007/s11164‑023‑05213‑1
    [Google Scholar]
  52. Zeynizadeh B. Gilanizadeh M. Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions. Current Chemistry Letters 2020 9 71 78 10.5267/j.ccl.2019.8.001
    [Google Scholar]
  53. Niu K. Shi X. Ding L. Liu Y. Song H. Wang Q. HCl‐catalyzed aerobic oxidation of Alkylarenes to Carbonyls. ChemSusChem 2022 15 2 e202102326 10.1002/cssc.202102326 34817114
    [Google Scholar]
  54. Xue M. Pan T. Shao Z. Wang W. Li H. Zhao L. Zhou X. Zhang Y. Sustainable electrochemical Benzylic C−H oxidation using MeOH as an Oxygen source. ChemSusChem 2024 17 10 e202400028 10.1002/cssc.202400028 38225209
    [Google Scholar]
  55. Kumar K. Joshi P. Rawat D.S. (±)-Camphor sulfonic acid assisted IBX based oxidation of 1° and 2° alcohols. Tetrahedron Lett. 2021 81 153298 10.1016/j.tetlet.2021.153298
    [Google Scholar]
  56. Guo S. Zhang N. Tang X. Mao Z. Zhang X. Yan M. Xuan Y. Cyclopropanation of active methylene compounds with β-alkoxycarbonyl vinylsulfonium salts. Chin. Chem. Lett. 2019 30 2 406 408 10.1016/j.cclet.2018.08.021
    [Google Scholar]
  57. S M. S J. C P. A M.T.N. S G. Synthesis and screening of cyclic diketone indanedione derivatives as future scaffolds for neutrophil elastase inhibition. RSC Advances 2023 13 17 11838 11852 10.1039/D3RA00106G 37077993
    [Google Scholar]
  58. Sartori G. Bigi F. Maggi R. Baraldi D. Casnati G. Acylation of aroyl chlorides via a template Friedel–Crafts process: Synthesis of indan-1,3-diones. J. Chem. Soc., Perkin Trans. 1 1992 1992 21 2985 2988 10.1039/P19920002985
    [Google Scholar]
  59. He G. Wu C. Zhou J. Yang Q. Zhang C. Zhou Y. Zhang H. Liu H. A method for synthesis of 3-hydroxy-1-indanones via Cu-catalyzed intramolecular annulation reactions. J. Org. Chem. 2018 83 21 13356 13362 10.1021/acs.joc.8b02149 30295478
    [Google Scholar]
  60. Padwa A. Hornbuckle S.F. Zhang Z. Zhi L. Synthesis of 1,3-diketones using. alpha.-diazo ketones and aldehydes in the presence of tin(II) chloride. J. Org. Chem. 1990 55 18 5297 5299 10.1021/jo00305a029
    [Google Scholar]
  61. Kaliyaperumal Appaye S. Pandurang Nikumbh S. Reddy Govindapur R. Banerjee S. Bhalerao D.S. Syam Kumar U.K. Ethenolate transfer reactions: A facile synthesis of Vinyl Esters. Helv. Chim. Acta 2014 97 8 1115 1122 10.1002/hlca.201300396
    [Google Scholar]
  62. Wei W.T. Liu Y. Ye L.M. Lei R.H. Zhang X.J. Yan M. Rapid synthesis of isoquinolinones by intramolecular coupling of amides and ketones. Org. Biomol. Chem. 2015 13 3 817 824 10.1039/C4OB01948B 25407091
    [Google Scholar]
  63. Doles W. Wilkerson G. Morrison S. Richmond R.G. Glacial acetic acid adverse events: Case reports and review of the literature. Hosp. Pharm. 2015 50 4 304 309 10.1310/hpj5004‑304 26448660
    [Google Scholar]
  64. Hassanein A.Z.A.E.B. Synthesis and reaction of some indenopyridine and Thieno[2,3-b]Indeno[2,1-e]Pyridine Derivatives. Synth. Commun. 2000 30 21 3883 3895 10.1080/00397910008086945
    [Google Scholar]
  65. Einstein M. Greenlee M. Rouen G. Sitlani A. Santoro J. Wang C. Pandit S. Mazur P. Smalera I. Weaver A.P.M. Zeng Y.Y. Ge L. Kelly T. Paiva T. Geissler W. Mosley R.T. Williamson J. Ali A. Balkovec J. Harris G. Selective glucocorticoid receptor nonsteroidal ligands completely antagonize the dexamethasone mediated induction of enzymes involved in gluconeogenesis and glutamine metabolism. J. Steroid Biochem. Mol. Biol. 2004 92 5 345 356 10.1016/j.jsbmb.2004.10.009 15698539
    [Google Scholar]
  66. Yadav A. Yadav S. Siddiqui I. Peruncheralathan S. Ila H. Junjappa H. A new one-pot, three-component synthesis of 2,3,5-substituted or annulated-6-(Methylthio)pyridines. Synlett 2008 2008 17 2674 2680 10.1055/s‑0028‑1083529
    [Google Scholar]
  67. El-Desoky E.S.I. El-Sawi A.A. Abozeid M.A. Abdelmoteleb M. Shaaban M. Keshk E.M. Abdel-Rahman A.R.H. Synthesis, antimicrobial evaluation, and molecular docking of some new angular allylbenzochromone derivatives. Med. Chem. Res. 2019 28 10 1601 1617 10.1007/s00044‑019‑02397‑3
    [Google Scholar]
  68. Al-Hussain S.A. Farghaly T.A. Ibrahim M.H. Al-sheikh M.A. Zaki M.E.A. Muhammad Z.A. kassab R.M. The anti-breast cancer activity of indeno[1,2-b]pyridin-5-one and their hydrazonal precursors endowed with anti-CDK-2 enzyme activity. J. Mol. Struct. 2024 1295 136692 10.1016/j.molstruc.2023.136692
    [Google Scholar]
  69. Ghahremanzadeh R. Fereshtehnejad F. Bazgir A. One‐pot synthesis of spiro[diindeno[1,2‐ b :2′,1′‐ e ]pyridine‐11,3′‐indoline]‐triones. J. Heterocycl. Chem. 2010 47 5 1031 1034 10.1002/jhet.412
    [Google Scholar]
  70. Rajanarendar E. Thirupathaiah K. Ramakrishna S. Nagaraju D. Kishore B. Facile, atom‐economical, and one‐pot pseudo four‐component synthesis of Isoxazolylspiro[diindeno[1,2‐b;2′,1′‐e]pyridine‐11,3′‐indoline]‐2′,10,12‐triones catalyzed by p-TSA. J. Heterocycl. Chem. 2017 54 2 889 894 10.1002/jhet.2650
    [Google Scholar]
  71. Ghahremanzadeh R. Imani Shakibaei G. Ahadi S. Bazgir A. One-Pot, pseudo four-component synthesis of a spiro[diindeno[1,2- b :2′,1′- e ]pyridine-11,3′-indoline]-trione library. J. Comb. Chem. 2010 12 1 191 194 10.1021/cc900130a 19863100
    [Google Scholar]
  72. Ghahremanzadeh R. Ahadi S. Shakibaei G.I. Bazgir A. Grindstone chemistry: One-pot synthesis of spiro[diindenopyridine-indoline]triones and spiro[acenaphthylene-diindenopyridine]triones. Tetrahedron Lett. 2010 51 3 499 502 10.1016/j.tetlet.2009.11.041
    [Google Scholar]
  73. Amanpour T. Bazgir A. Ardekani A.M. Ghahremanzadeh R. Pseudo five-component synthesis of 5-phenyldihydrospiro[diindenopyridine-indenoquinoxaline]dione derivatives via a one-pot condensation reaction. Monatsh. Chem. 2014 145 4 627 632 10.1007/s00706‑013‑1118‑0
    [Google Scholar]
  74. Jug M. Mura P.A. Grinding as Solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics 2018 10 4 189 10.3390/pharmaceutics10040189 30332804
    [Google Scholar]
  75. Zhang L. Duan J. Xu G. Ding X. Mao Y. Rong B. Zhu N. Fang Z. Li Z. Guo K. Copper-catalyzed N-O cleavage of α,β-unsaturated ketoxime acetates toward structurally diverse pyridines. J. Org. Chem. 2020 85 4 2532 2542 10.1021/acs.joc.9b03238 31910622
    [Google Scholar]
  76. Verma A. Kumar S. Khatri V. Pathak G. Arya D.K. Multicomponent synthesis of spiroannulated hybrid molecules with preferred substructures using indium triflate as a sustainable catalyst. Res. Chem. Intermed. 2024 50 1 251 264 10.1007/s11164‑023‑05177‑2
    [Google Scholar]
  77. Evans C.G. Jinwal U.K. Makley L.N. Dickey C.A. Gestwicki J.E. Identification of dihydropyridines that reduce cellular tau levels. Chem. Commun. (Camb.) 2011 47 1 529 531 10.1039/C0CC02253E 21082080
    [Google Scholar]
  78. Bartoli G. Beleggia R. Giuli S. Giuliani A. Marcantoni E. Massaccesi M. Paoletti M. The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Lett. 2006 47 37 6501 6504 10.1016/j.tetlet.2006.07.031
    [Google Scholar]
  79. Bartoli G. Marcantoni E. Sambri L. The CeCl3·nH2O/NaI system in organic synthesis: An efficient water tolerant Lewis acid promoter. Synlett 2003 2003 14 2101 2116 10.1055/s‑2003‑42098
    [Google Scholar]
  80. Cigáň M. Danko P. Brath H. Čakurda M. Fišera R. Donovalová J. Filo J. Weis M. Jakabovič J. Novota M. Gáplovský A. 4-Azafluorenone and α-carboline fluorophores with green and violet/blue emission. Molecules 2019 24 13 2378 10.3390/molecules24132378 31252565
    [Google Scholar]
  81. Kantevari S. Putapatri S. A facile synthesis of novel acyclo-C-nucleoside analogues from L-rhamnose via variants of Bohlmann-Rahtz reaction. Synlett 2010 2010 15 2251 2256 10.1055/s‑0030‑1258038
    [Google Scholar]
  82. Tapaswi P.K. Mukhopadhyay C. Ceric ammonium nitrate (CAN) catalyzed one-pot synthesis of fully substituted new indeno[1,2-b]pyridines at room temperature through multi-component reaction. ARKIVOC 2011 2011 10 287 298 10.3998/ark.5550190.0012.a23
    [Google Scholar]
  83. Ghorbani-Vaghei R. Malaekehpoor S.M. Hasanein P. Karamyan R. Asadbegy M. Synthesis and biological evaluation of new series 1,4-dihydropyridines. Res. Chem. Intermed. 2016 42 5 4715 4731 10.1007/s11164‑015‑2310‑0
    [Google Scholar]
  84. Ahmed A.A.M. Mekky A.E.M. Sanad S.M.H. [3 + 2] Cycloaddition synthesis of new (Chromene‐1,3,4‐Oxadiazole) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors. ChemistrySelect 2025 10 2 e202404804 10.1002/slct.202404804
    [Google Scholar]
  85. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey R.P. Chang C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  86. Yang W.J. Zhang J. Sun J. Yan C.G. Convenient construction of Indanedione‐Fused 2,5‐Dihydropyridines, 4,5‐Dihydropyridines, and Spirooxindolines. Eur. J. Org. Chem. 2016 2016 32 5423 5428 10.1002/ejoc.201600981
    [Google Scholar]
  87. He D. Yu M. Xu J. Du B. Zhou J. Wang X. Thiourea dioxide as a green reductant for selective depolymerization of lignin to guaiacol. Ind. Crops Prod. 2023 194 116176 10.1016/j.indcrop.2022.116176
    [Google Scholar]
  88. Saini K. Manju Raigar A.K. Guleria A. Thiourea dioxide catalyzed sustainable synthesis of diverse quinoxaline and pyrazine derivatives in aqueous medium at ambient temperature. ChemistrySelect 2024 9 21 e202401077 10.1002/slct.202401077
    [Google Scholar]
  89. Ghashang M. Mansoor S.S. Logaiya K. Aswin K. An appropriate one-pot synthesis of 4-aryl-2-naphthalen-2-yl-5H-indeno [1,2-b]pyridin-5-ones using thiourea dioxide as an efficient and reusable organocatalyst. Res. Chem. Intermed. 2015 41 9 6325 6338 10.1007/s11164‑014‑1742‑2
    [Google Scholar]
  90. Khan S.A. Asiri A.M. Al-Thaqafy S.H. Physicochemical investigation, fluorescence quenching and micellization of ethyl 4-(2,4,5-trimethoxyphenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (EIPC) in Organized Media. J. Solution Chem. 2016 45 8 1115 1129 10.1007/s10953‑016‑0489‑3
    [Google Scholar]
  91. Khan S.A. Asiri A.M. Al-Thaqafy S.H. Optical properties and fluorescence quenching of biologically active ethyl 4-(4-N,N-dimethylamino phenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (DDPC) dye as a probe to determine CMC of surfactants. RSC Advances 2016 6 104 102218 102225 10.1039/C6RA02814D
    [Google Scholar]
  92. El-Ossaily Y.A. A convenient synthesis of some new indeno[1,2-b]pyridines and indeno[1,2-b]thieno[3,2-e]pyridine derivatives with potential biological activity. Phosphorus. Phosphorus Sulfur Silicon Relat. Elem. 2007 182 5 1109 1117 10.1080/10426500601142080
    [Google Scholar]
  93. Ghorab M.M. Al-Said M.S. Anticancer activity of novel indenopyridine derivatives. Arch. Pharm. Res. 2012 35 6 987 994 10.1007/s12272‑012‑0605‑x 22870807
    [Google Scholar]
  94. Feiz A. Shakibaei G.I. Yasaei Z. Reza Khavasi H. Bazgir A. A new four‐component reaction for the synthesis of Spiro[4 H ‐indeno[1,2‐ b ]pyridine‐4,3′‐[3 H ]indoles]. Helv. Chim. Acta 2011 94 9 1628 1637 10.1002/hlca.201100047
    [Google Scholar]
  95. Khorrami A.R. Kiani P. Bazgir A. l-Proline: An efficient catalyst for the synthesis of new spirooxindoles. Monatsh. Chem. 2011 142 3 287 295 10.1007/s00706‑011‑0446‑1
    [Google Scholar]
  96. Mukhopadhyay C. Tapaswi P.K. Butcher R.J. l-Proline-catalyzed one-pot expeditious synthesis of highly substituted pyridines at room temperature. Tetrahedron Lett. 2010 51 13 1797 1802 10.1016/j.tetlet.2010.01.106
    [Google Scholar]
  97. Hagimori M. Mizuyama N. Hisadome Y. Nagaoka J. Ueda K. Tominaga Y. One-pot synthesis of polysubstituted pyridine derivatives using ketene dithioacetals. Tetrahedron 2007 63 11 2511 2518 10.1016/j.tet.2006.12.031
    [Google Scholar]
  98. Abd-Elghaffar H.S. El-Hashash M.A. Mohamed S.F. Ibrahim A.A. Amr A.E. Al-Omar M.A. Nossier E.S. Synthesis and anti-proliferative activity of novel tricyclic compounds derived from 2-substituted 1,3-Indandione. Russ. J. Gen. Chem. 2020 90 4 686 696 10.1134/S1070363220040209
    [Google Scholar]
  99. Naidu B.R. Sruthi T. Mitty R. Venkateswarlu K. Catalyst-free mechanochemistry as a versatile tool in synthetic chemistry: A review. Green Chem. 2023 25 16 6120 6148 10.1039/D3GC01229H
    [Google Scholar]
  100. Patel P.J. Vala R.M. Patel S.G. Upadhyay D.B. Rajani D.P. Damiri F. Berrada M. Patel H.M. Catalyst-free synthesis of imidazo[5,1-b]quinazolines and their antimicrobial activity. J. Mol. Struct. 2023 1285 135467 10.1016/j.molstruc.2023.135467
    [Google Scholar]
  101. Samai S. Chandra Nandi G. Kumar R. Singh M.S. Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines. Tetrahedron Lett. 2009 50 50 7096 7098 10.1016/j.tetlet.2009.10.022
    [Google Scholar]
  102. Khaksar S. Gholami M. An eco-benign and highly efficient access to dihydro-1H-indeno[1,2-b]pyridines in 2,2,2-trifluoroethanol. J. Mol. Liq. 2014 196 159 162 10.1016/j.molliq.2014.03.030
    [Google Scholar]
  103. Dige N.C. Pore D.M. Green aspect for multicomponent synthesis of Spiro[4 H -indeno[1,2-b]pyridine-4,3′-[3 H ]indoles]. Synth. Commun. 2015 45 21 2498 2510 10.1080/00397911.2015.1092551
    [Google Scholar]
  104. Addla D. Bhima Sridhar B. Devi A. Kantevari S. Design, synthesis and antimicrobial evaluation of novel 1-benzyl 2-butyl-4-chloroimidazole embodied 4-azafluorenones via molecular hybridization approach. Bioorg. Med. Chem. Lett. 2012 22 24 7475 7480 10.1016/j.bmcl.2012.10.042 23147074
    [Google Scholar]
  105. Nossier E.S. Abd El-Karim S.S. Khalifa N.M. El-Sayed A.S. Hassan E.S.I. El-Hallouty S.M. Kinase inhibitory activities and molecular docking of a novel series of anticancer pyrazole derivatives. Molecules 2018 23 12 3074 10.3390/molecules23123074 30477238
    [Google Scholar]
  106. Allais C. Liéby-Muller F. Rodriguez J. Constantieux T. Metal‐free michael‐addition‐initiated three‐component reaction for the regioselective synthesis of highly functionalized pyridines: Scope, mechanistic investigations and applications. Eur. J. Org. Chem. 2013 2013 19 4131 4145 10.1002/ejoc.201300246
    [Google Scholar]
  107. Liéby-Muller F. Allais C. Constantieux T. Rodriguez J. Metal-free Michael addition initiated multicomponent oxidative cyclodehydration route to polysubstituted pyridines from 1,3-dicarbonyls. Chem. Commun. (Camb.) 2008 2008 35 4207 4209 10.1039/b805680c 18802531
    [Google Scholar]
  108. Rao Y. Liu M. Wu L. Yin G. Catalyst-free one-pot domino reactions for selective synthesis of functionalized 2,8-oxazabicyclo[3.3.1]-nonanes and 5H-indeno[1,2-b]pyridin-5-ones. RSC Advances 2014 4 110 64551 64558 10.1039/C4RA13166E
    [Google Scholar]
  109. Komatsu R. Yamaguchi T. Kobayashi N. Ozeki Y. Sakurai K. Synthesis of alkyne-tagged and biotin-tagged Sortin1 as novel photoaffinity probes. Bioorg. Med. Chem. Lett. 2018 28 9 1562 1565 10.1016/j.bmcl.2018.03.060 29615342
    [Google Scholar]
  110. Modugu N.R. Pittala P.K. Polyethylene glycol (PEG-400) promoted as an efficient and recyclable reaction medium for the one-pot eco-friendly synthesis of functionalized isoxazole substituted spirooxindole derivatives. New J. Chem. 2017 41 23 14062 14066 10.1039/C7NJ03515B
    [Google Scholar]
  111. Hoffmann M.M. Polyethylene glycol as a green chemical solvent. Curr. Opin. Colloid Interface Sci. 2022 57 101537 10.1016/j.cocis.2021.101537
    [Google Scholar]
  112. Kardooni R. Kiasat A.R. Polyethylene glycol (PEG-400): A green reaction medium for one-pot, three component synthesis of 3-substituted indoles under catalyst free conditions. Polycycl. Aromat. Compd. 2021 41 9 1883 1891 10.1080/10406638.2019.1703764
    [Google Scholar]
  113. Patravale A.A. Gore A.H. Patil D.R. Kolekar G.B. Deshmukh M.B. Choudhari P.B. Bhatia M.S. Anbhule P.V. Contemporary development in sequential Knoevenagel, Michael addition multicomponent reaction for the synthesis of 4-Aryl-5-oxo-5H-indeno[1,2-b]pyridine-3-carbonitrile. Res. Chem. Intermed. 2016 42 4 2919 2935 10.1007/s11164‑015‑2187‑y
    [Google Scholar]
  114. Chikayuki Y. Miyashige T. Yonekawa S. Kirita A. Matsuo N. Teramoto H. Sasaki S. Higashiyama K. Yamauchi T. Transition-metal-free synthesis of pyridine derivatives by thermal cyclization of N-propargyl enamines. Synthesis 2020 52 7 1113 1121 10.1055/s‑0039‑1691575
    [Google Scholar]
  115. Hammond O.S. Mudring A.V. Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials. Chem. Commun. (Camb.) 2022 58 24 3865 3892 10.1039/D1CC06543B 35080210
    [Google Scholar]
  116. Nia R.H. Mamaghani M. Shirini F. Tabatabaeian K. Heidary M. Rapid and efficient synthesis of 1, 4-dihydropyridines using a sulfonic acid-functionalized ionic liquid. Org. Prep. Proced. Int. 2014 46 2 152 163 10.1080/00304948.2014.884372
    [Google Scholar]
  117. Nishtala V.B. Gandamalla D. Yellu N.R. Basavoju S. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl 2 +urea via the pseudo four-component reaction: anticancer, antioxidant, and molecular docking studies. Synth. Commun. 2019 49 20 2671 2682 10.1080/00397911.2019.1639193
    [Google Scholar]
  118. Chandam D.R. Mulik A.G. Patil D.R. Patravale A.P. Kumbhar D.R. Deshmukh M.B. Oxalic acid dihydrate and proline based low transition temperature mixture: An efficient synthesis of spiro [diindenopyridine-indoline] triones derivatives. J. Mol. Liq. 2016 219 573 578 10.1016/j.molliq.2016.02.101
    [Google Scholar]
  119. Atharifar H. Keivanloo A. Maleki B. Greener synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in a deep eutectic solvent. Org. Prep. Proced. Int. 2020 52 6 517 523 10.1080/00304948.2020.1799672
    [Google Scholar]
  120. Rahmatiyan S. Bahri-Laleh N. Hanifpour A. Nekoomanesh-Haghighi M. Different behaviors of metallocene and Ziegler–Natta catalysts in ethylene/1,5‐hexadiene copolymerization. Polym. Int. 2019 68 1 94 101 10.1002/pi.5700
    [Google Scholar]
  121. Hemmati S. Mohammadi P. Sedrpoushan A. Maleki B. Synthesis of 2,5-Dimethyl- N -substituted pyrroles catalyzed by Diethylenetriaminepentaacetic acid supported on Fe 3 O 4 nanoparticles. Org. Prep. Proced. Int. 2018 50 5 465 481 10.1080/00304948.2018.1525668
    [Google Scholar]
  122. Karbasaki S.S. Bagherzade G. Maleki B. Ghani M. Magnetic Fe3O4@SiO2 core-shell nanoparticles functionalized with sulfamic acid polyamidoamine (PAMAM) dendrimer for the multicomponent synthesis of polyhydroquinolines and dihydro-1H-indeno[1,2-b]pyridines. Org. Prep. Proced. Int. 2021 53 5 498 508 10.1080/00304948.2021.1957644
    [Google Scholar]
  123. Ahadi N. Mobinikhaledi A. Bodaghifard M.A. One‐pot synthesis of 1,4‐dihydropyridines and N ‐arylquinolines in the presence of copper complex stabilized on MnFe 2 O 4 (MFO) as a novel organic–inorganic hybrid material and magnetically retrievable catalyst. Appl. Organomet. Chem. 2020 34 10 e5822 10.1002/aoc.5822
    [Google Scholar]
  124. Bagheri M. Gholamzadeh P. Mohammadi Ziarani G. Badiei A. Preparation of a dual-functionalized fumed silica nanoparticle catalysis for synthesis of azaluorenone derivatives. Res. Chem. Intermed. 2019 45 6 3301 3310 10.1007/s11164‑019‑03740‑4
    [Google Scholar]
  125. Sadeghi B. Namakkoubi A. Hassanabadi A. BF3.SiO2 nanoparticles: A solid phase acidic catalyst for efficient one-pot Hantzsch synthesis of 1,4-dihydropyridines. J. Chem. Res. 2013 37 11 13 10.3184/174751912X135429754295
    [Google Scholar]
  126. Lahouti S. Naeimi H. Chitosan-encapsulated manganese ferrite particles bearing sulfonic acid group catalyzed efficient synthesis of spiro indenoquinoxalines. RSC Advances 2020 10 55 33334 33343 10.1039/D0RA04925E 35515027
    [Google Scholar]
  127. Ray S. Brown M. Bhaumik A. Dutta A. Mukhopadhyay C. A new MCM-41 supported HPF6 catalyst for the library synthesis of highly substituted 1,4-dihydropyridines and oxidation to pyridines: report of one-dimensional packing towards LMSOMs and studies on their photophysical properties. Green Chem. 2013 15 7 1910 1924 10.1039/c3gc40441b
    [Google Scholar]
  128. Valekar N.J. Patil P.P. Gore A.H. Kolekar G.B. Deshmukh M.B. Anbhule P.V. Sequence selective michael addition for synthesis of indeno-pyridine and indeno-pyran derivatives in one-pot reaction using CuO nanoparticles in Water. J. Heterocycl. Chem. 2015 52 6 1669 1676 10.1002/jhet.2228
    [Google Scholar]
  129. Rodríguez-Carríllo C. Benítez M. El Haskouri J. Amorós P. Ros-Lis J.V. Novel microwave-assisted synthesis of COFs: 2020–2022. Molecules 2023 28 7 3112 10.3390/molecules28073112 37049875
    [Google Scholar]
  130. Guzik P. Kulawik P. Zając M. Migdał W. Microwave applications in the food industry: An overview of recent developments. Crit. Rev. Food Sci. Nutr. 2022 62 29 7989 8008 10.1080/10408398.2021.1922871 33970698
    [Google Scholar]
  131. Sharma R.K. Yadav P. Yadav M. Gupta R. Rana P. Srivastava A. Zbořil R. Varma R.S. Antonietti M. Gawande M.B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 2020 7 2 411 454 10.1039/C9MH00856J
    [Google Scholar]
  132. Sahoo B.M. Banik B.K. Kumar B.V.V.R. Panda K.C. Tiwari A. Tiwari V. Singh S. Kumar M. Microwave induced green synthesis: Sustainable Technology for efficient development of bioactive pyrimidine scaffolds. Curr. Med. Chem. 2023 30 9 1029 1059 10.2174/0929867329666220622150013 35733315
    [Google Scholar]
  133. Głowniak S. Szczęśniak B. Choma J. Jaroniec M. Advances in microwave synthesis of nanoporous materials. Adv. Mater. 2021 33 48 2103477 10.1002/adma.202103477 34580939
    [Google Scholar]
  134. Chen W. Tang J. Shi X. Ye N. Yue Z. Lin X. Synthesis and formation mechanism of high‐purity Ti 3 AlC 2 powders by microwave sintering. Int. J. Appl. Ceram. Technol. 2020 17 2 778 789 10.1111/ijac.13452
    [Google Scholar]
  135. Tu S. Jiang B. Jia R. Zhang J. Zhang Y. An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction. Tetrahedron Lett. 2007 48 8 1369 1374 10.1016/j.tetlet.2006.12.102
    [Google Scholar]
  136. Tu S. Jiang B. Yao C. Jiang H. Zhang J. Jia R. Zhang Y. An efficient and regiospecific synthesis of new 2,2′-Bipyridine derivatives in water. Synthesis 2007 2007 9 1366 1372 10.1055/s‑2007‑966014
    [Google Scholar]
  137. Tugrak M. Inci Gul H. Sakagami H. Gulcin I. Supuran C.T. New azafluorenones with cytotoxic and carbonic anhydrase inhibitory properties: 2-Aryl-4-(4-hydroxyphenyl)-5H-indeno[1,2-b]pyridin-5-ones. Bioorg. Chem. 2018 81 433 439 10.1016/j.bioorg.2018.09.013 30223148
    [Google Scholar]
  138. Mondal A. Naskar B. Goswami S. Prodhan C. Chaudhuri K. Mukhopadhyay C. A quick accelerating microwave-assisted sustainable technique: Permutated spiro-casing for imaging experiment. Mol. Divers. 2020 24 1 93 106 10.1007/s11030‑019‑09934‑7 30843126
    [Google Scholar]
  139. Jamali M. Sardarian A.R. Rezaei F. Ghanbari M.M. Mohajeri A. Highly efficient microwave‐assisted solvent free sequential one‐pot multicomponent synthesis of novel 2‐hydroxy indenopyridin‐5‐ones and mechanismic computational study. J. Heterocycl. Chem. 2022 59 1 161 171 10.1002/jhet.4375
    [Google Scholar]
  140. Safaei-Ghomi J. Babaei P. Elyasi Z. Solvothermal fabrication of NiO/Co 3 O 4 spherical composites modified with n‐doped graphene quantum dots as a catalyst in the microwave‐assisted synthesis of spiro[diindenopyridine‐indoline] triones. ChemistrySelect 2021 6 32 8402 8410 10.1002/slct.202101651
    [Google Scholar]
  141. Tu S. Jiang B. Jiang H. Zhang Y. Jia R. Zhang J. Shao Q. Li C. Zhou D. Cao L. A novel three-component reaction for the synthesis of new 4-azafluorenone derivatives. Tetrahedron 2007 63 25 5406 5414 10.1016/j.tet.2007.04.053
    [Google Scholar]
  142. Tu S. Jiang B. Zhang J. Zhang Y. Jia R. Li C. Zhou D. Cao L. Shao Q. A facile and efficient synthesis of new polysubstituted indeno[1,2-b]pyridines via one-pot, three-component microwave-assisted reaction. Synlett 2007 2007 0480 0484 10.1055/s‑2007‑967999
    [Google Scholar]
  143. Banerjee B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem. 2017 35 Pt A 1 14 10.1016/j.ultsonch.2016.09.023 27771266
    [Google Scholar]
  144. Turhan K. Ozturkcan S.A. Turgut Z. Triflates promoted one-pot synthesis of functionalized unsymmetrical new dihydro-1H-indeno[1,2-b]pyridines through Hantzsch reaction under ultrasonic irradiation. J. Chem. Soc. Pak. 2012 34 94 101
    [Google Scholar]
  145. Sindhu J. Singh H. Khurana J.M. Efficient synthesis of spiro[diindenopyridine-indoline]triones catalyzed by PEG-OSO3H-H2O and [NMP]H2PO4. Synth. Commun. 2015 45 2 202 210 10.1080/00397911.2014.906616
    [Google Scholar]
/content/journals/coc/10.2174/0113852728385966250513110724
Loading
/content/journals/coc/10.2174/0113852728385966250513110724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test