Skip to content
2000
Volume 30, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In recent years, a significant focus has been directed toward fluorogenic chemosensors for the optical detection of heavy metal ions due to their detrimental effects on both the environment and human health. Methods combining fluorometry and colorimetry have been widely utilized for sensing heavy metal ions because they are straightforward, lucrative, easy to use, and enable rapid on-site analysis. As a result, numerous research groups have dedicated extensive efforts to developing versatile fluorometric and colorimetric sensors for heavy metals. The development of innovative, highly selective, and sensitive chromogenic fluorosensors, along with their detection capabilities, remains a captivating area within supramolecular chemistry. This review outlines key aspects of the detection process, including spectroscopic changes, selectivity, sensitivity, visible colour shifts, and potential recognition of heavy metal ions. It also emphasizes recent progress over the past decade in the fluorometric and colorimetric detection of heavy metal cations, such as Hg2+, Cd2+, As3+/As5+, and Pb2+, using chromogenic and fluorogenic chemical receptors.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728379544250526070414
2025-06-27
2026-01-01
Loading full text...

Full text loading...

References

  1. JärupL. Hazards of heavy metal contamination.Br Med. Bull200368116718210.1093/bmb/ldg032 14757716
    [Google Scholar]
  2. GoldhaberS.B. Trace nlm risk assessment: Essentiality vs. toxicity.Regul. Toxicol. Pharmacol.200338223224210.1016/S0273‑2300(02)00020‑X 14550763
    [Google Scholar]
  3. AragayG. PonsJ. MerkoçiA. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection.Chem. Rev.201111153433345810.1021/cr100383r 21395328
    [Google Scholar]
  4. YangD.J. ShiS. YaoT.M. JiL.N. Cooperative folding of tau peptide by coordination of group IIB metal cations during heparin-induced aggregation.Biometals201225236137210.1007/s10534‑011‑9505‑7 22083130
    [Google Scholar]
  5. TchounwouP.B. AyensuW.K. NinashviliN. SuttonD. Review: Environmental exposure to mercury and its toxicopathologic implications for public health.Environ. Toxicol.200318314917510.1002/tox.10116 12740802
    [Google Scholar]
  6. WangL. YaoT. ShiS. CaoY. SunW. A label-free fluorescent probe for Hg2+ and biothiols based on graphene oxide and Ru-complex.Sci. Rep201441532010.1038/srep05320 24936798
    [Google Scholar]
  7. GumpuM.B. VeerapandianM. KrishnanU.M. RayappanJ.B.B. Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite.Talanta201716257458210.1016/j.talanta.2016.10.076 27837874
    [Google Scholar]
  8. YangC.Y. ChangC.C. HoS.C. ChiuH.F. Is colon cancer mortality related to arsenic exposure?J. Toxicol. Environ. Health. A200871853353810.1080/15287390801907509 18338288
    [Google Scholar]
  9. FerreccioC. GonzálezC. MilosavjlevicV. MarshallG. SanchaA.M. SmithA.H. Lung cancer and arsenic concentrations in drinking water in Chile.Epidemiology200011667367910.1097/00001648‑200011000‑00010 11055628
    [Google Scholar]
  10. WaalkesM.P. Cadmium carcinogenesis in review.J. Inorg. Biochem.2000791-424124410.1016/S0162‑0134(00)00009‑X 10830873
    [Google Scholar]
  11. GovindP. MadhuriS. Heavy metals causing toxicity in humans, animals and environment.Res. J. Anim. Vet. Fish. Sci.2014221723
    [Google Scholar]
  12. HoustonM.C. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke.J. Clin. Hypertens. (Greenwich)201113862162710.1111/j.1751‑7176.2011.00489.x 21806773
    [Google Scholar]
  13. Guidelines for Drinking-water QualityWHO Library Cataloguing-in-Publication Data 3rd editionGeneva2008ISBN 9789241547611(WEB version).
    [Google Scholar]
  14. United States Environmental Protection Agency.2002.Available from: [https://www.epa.gov/
  15. WangS. MulliganC.N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater.Environ. Geochem. Health.200628319721410.1007/s10653‑005‑9032‑y 16607568
    [Google Scholar]
  16. DeviP. SharmaC. KumarP. KumarM. BansodB.K.S. NayakM.K. SinglaM.L. Selective electrochemical sensing for arsenite using rGO/Fe3O4 nanocomposites.J. Hazard Mater.2017322Pt A859410.1016/j.jhazmat.2016.02.06627021430
    [Google Scholar]
  17. Guidelines for Drinking-water Quality.2nd edGenevaWorld Health Organization2002
    [Google Scholar]
  18. ErxlebenH. RuzickaJ. Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system.Anal. Chem.200577165124512810.1021/ac058007s 16097748
    [Google Scholar]
  19. LiS. ZhangC. WangS. LiuQ. FengH. MaX. GuoJ. Electrochemical microfluidics techniques for heavy metal ion detection.Analyst (Lond)2018143184230424610.1039/C8AN01067F 30095826
    [Google Scholar]
  20. BehariJ.R. PrakashR. Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA).Chemosphere2006631172110.1016/j.chemosphere.2005.07.073 16213544
    [Google Scholar]
  21. WillisJ.B. Determination of lead and other heavy metals in urine by atomic absorption spectroscopy.Anal. Chem.196234661461710.1021/ac60186a008
    [Google Scholar]
  22. ChuachuadW. TysonJ.F. Determination of lead by flow injection hydride generation atomic absorption spectrometry with tetrahydroborate immobilized on an anion-exchange resin.J. Anal. At Spectrom200520428228810.1039/b501023n
    [Google Scholar]
  23. ŠlejkovecZ. van ElterenJ.T. ByrneA.R. Determination of arsenic compounds in reference materials by HPLC-(UV)-HG-AFS.Talanta199949361962710.1016/S0039‑9140(99)00048‑X 18967638
    [Google Scholar]
  24. XiaoS. ChenJ. WuX. MiaoY. Determination of cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction.J. Anal. Chem.2007621424510.1134/S1061934807010091
    [Google Scholar]
  25. HirataS. ToshimitsuH. AiharaM. Determination of arsenic species in marine samples by HPLC-ICP-MS.Anal. Sci.2006221394310.2116/analsci.22.39 16429770
    [Google Scholar]
  26. SaitoS. DanzakaN. HoshiS. Direct fluorescence detection of Pb2+ and Cd2+ by high-performance liquid chromatography using 1-(4-aminobenzyl)ethylenediamine-N,N,N′,N′-tetraacetate as a pre-column derivatizing agent.J. Chromatogr A200611041-214014410.1016/j.chroma.2005.11.085 16343515
    [Google Scholar]
  27. ZhuZ. ChanG.C.Y. RayS.J. ZhangX. HieftjeG.M. Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry.Anal. Chem.200880187043705010.1021/ac8011126 18710258
    [Google Scholar]
  28. PrettyJ.R. BlubaughE.A. CarusoJ.A. Determination of arsenic(III) and selenium(IV) using an on-line anodic stripping voltammetry flow cell with detection by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry.Anal. Chem.199365233396340310.1021/ac00071a011 8297028
    [Google Scholar]
  29. NingJ. LuoX. WangF. HuangS. WangJ. LiuD. LiuD. ChenD. WeiJ. LiuY. Synergetic sensing effect of sodium carboxymethyl cellulose and bismuth on cadmium detection by differential pulse anodic stripping voltammetry.Sensors20191924548210.3390/s19245482 31842415
    [Google Scholar]
  30. Yebra-BiurrunM.C. Moreno-Cid BarinagaA. Literature survey of on-line spectroscopic methods for lead determination in environmental solid samples.Chemosphere200248551151810.1016/S0045‑6535(02)00115‑7 12146629
    [Google Scholar]
  31. WuY. FuC. XiangJ. CaoY. DengY. XuR. ZhangH. ShiW. “Signal-on” SERS sensing platform for highly sensitive and selective Pb2+ detection based on catalytic hairpin assembly.Anal. Chim Acta.2020112710611310.1016/j.aca.2020.06.038 32800113
    [Google Scholar]
  32. SongL. MaoK. ZhouX. HuJ. A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III).Talanta201614628529010.1016/j.talanta.2015.08.052 26695265
    [Google Scholar]
  33. ChengF. XuH. WangC. GongZ. TangC. FanM. Surface enhanced Raman scattering fiber optic sensor as an ion selective optrode: The example of Cd 2+ detection.RSC Advances20144110646836468710.1039/C4RA11260A
    [Google Scholar]
  34. PétursdóttirÁ.H. GunnlaugsdóttirH. JörundsdóttirH. MestrotA. KruppE.M. FeldmannJ. HPLC-HG-ICP-MS: A sensitive and selective method for inorganic arsenic in seafood.Anal. Bioanal Chem.201240482185219110.1007/s00216‑012‑6347‑2 22926131
    [Google Scholar]
  35. LiY. ChenC. LiB. SunJ. WangJ. GaoY. ZhaoY. ChaiZ. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS.J. Anal. At Spectrom2006211949610.1039/B511367A
    [Google Scholar]
  36. BenounisM. JaffrezicN. MarteletC. Dumazet-BonnamourI. LamartineR. High sensitive surface plasmon resonance (SPR) sensor based on modified calix(4)arene self assembled monolayer for cadmium ions detection.Mater. Trans201556453954410.2320/matertrans.M2014366
    [Google Scholar]
  37. Polo-DíezL. Hernández-MéndezJ. Pedraz-PenalvaF. Analytical applications of emulsions: Determination of lead in gasoline by atomic-absorption spectrophotometry.Analyst (Lond)19801051246374210.1039/an9800500037
    [Google Scholar]
  38. ShaoJ. LinH. YuM. CaiZ. LinH. Study on acetate ion recognition and sensing in aqueous media using a novel and simple colorimetric sensor and its analytical application.Talanta200875255155510.1016/j.talanta.2007.11.048 18371920
    [Google Scholar]
  39. JeongU. KimY. Colorimetric detection of heavy metal ions using aminosilane.J. Ind. Eng. Chem.20153139339610.1016/j.jiec.2015.07.014
    [Google Scholar]
  40. ChenZ. ZhangZ. QiJ. YouJ. MaJ. ChenL. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications.J. Hazard Mater.202344112988910.1016/j.jhazmat.2022.129889 36087533
    [Google Scholar]
  41. MaoL. LiuY. YangS. LiY. ZhangX. WeiY. Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules.Dyes Pigments201916261162310.1016/j.dyepig.2018.10.045
    [Google Scholar]
  42. JiangR. LiuH. LiuM. TianJ. HuangQ. HuangH. WenY. CaoQ. ZhangX. WeiY. A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging.Mater. Sci. Eng. C20178141642110.1016/j.msec.2017.08.048 28887993
    [Google Scholar]
  43. HuangH. LiuM. WanQ. JiangR. XuD. HuangQ. WenY. DengF. ZhangX. WeiY. Facile fabrication of luminescent hyaluronic acid with aggregation-induced emission through formation of dynamic bonds and their theranostic applications.Mater. Sci. Eng. C20189120120710.1016/j.msec.2018.05.015 30033247
    [Google Scholar]
  44. YangY. ZhaoQ. FengW. LiF. Luminescent chemodosimeters for bioimaging.Chem. Rev.2013113119227010.1021/cr2004103 22702347
    [Google Scholar]
  45. QuangD.T. KimJ.S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens.Chem. Rev.2010110106280630110.1021/cr100154p 20726526
    [Google Scholar]
  46. BhardwajV. NurchiV.M. SahooS.K. Mercury toxicity and detection using chromo-fluorogenic chemosensors.Pharmaceuticals202114212310.3390/ph14020123 33562543
    [Google Scholar]
  47. De AchaN. ElosúaC. CorresJ. ArreguiF. Fluorescent sensors for the detection of heavy metal ions in aqueous media.Sensors201919359910.3390/s19030599 30708989
    [Google Scholar]
  48. BagnatoE. AiuppaA. ParelloF. CalabreseS. D’AlessandroW. MatherT.A. McGonigleA.J.S. PyleD.M. WängbergI. Degassing of gaseous (nlmal and reactive) and particulate mercury from Mount Etna volcano (Southern Italy).Atmos. Environ.200741357377738810.1016/j.atmosenv.2007.05.060
    [Google Scholar]
  49. StreetsD.G. DevaneM.K. LuZ. BondT.C. SunderlandE.M. JacobD.J. All-time releases of mercury to the atmosphere from human activities.Environ. Sci. Technol20114524104851049110.1021/es202765m 22070723
    [Google Scholar]
  50. EsdaileL.J. ChalkerJ.M. The mercury problem in artisanal and small‐scale gold mining.Chemistry201824276905691610.1002/chem.201704840 29314284
    [Google Scholar]
  51. RenW. DuanL. ZhuZ. DuW. AnZ. XuL. ZhangC. ZhuoY. ChenC. Mercury transformation and distribution across a polyvinyl chloride (PVC) production line in China.Environ. Sci. Technol201448410.1021/es404147c 24428761
    [Google Scholar]
  52. LehnherrI. St LouisV.L. HintelmannH. KirkJ.L. Methylation of inorganic mercury in polar marine waters.Nat. Geosci2011429830210.1038/ngeo1134
    [Google Scholar]
  53. PattaweepaiboonS. NanokT. KaewchangwatN. SuttisintongK. SirisaksoontornW. Colorimetric detection of Hg2+ and CH3Hg+ by a novel spirooxazine derivative as a highly sensitive and selective probe.Dyes Pigments202118610899610.1016/j.dyepig.2020.108996
    [Google Scholar]
  54. KimJ.H. NohJ.Y. HwangI.H. LeeJ.J. KimC. A NBD-based selective colorimetric and fluorescent chemosensor for Hg2+.Tetrahedron Lett201354304001400510.1016/j.tetlet.2013.05.074
    [Google Scholar]
  55. ErdemirS. Fluorometric dual sensing of Hg2+ and Al3+ by novel triphenylamine appended rhodamine derivative in aqueous media.Sens. Actuators B Chem.201929055856410.1016/j.snb.2019.04.037
    [Google Scholar]
  56. WangQ. JinL. WangW. HuT. ChenC. Rhodamine derivatives as selective“naked-eye” colorimetric and fluorescence off-on sensor for Hg2+ in aqueous solution and its applications in bioimaging.J. Lumin201920941141910.1016/j.jlumin.2019.02.024
    [Google Scholar]
  57. ChangL.L. GaoQ. LiuS. HuC.C. ZhouW.J. ZhengM.M. Selective and differential detection of Hg2+ and Cu2+ with use of a single rhodamine hydrazone-type probe in the absence and presence of UV irradiation.Dyes Pigments201815311712410.1016/j.dyepig.2018.02.013
    [Google Scholar]
  58. Karuk ElmasS.N. DincerZ.E. ErturkA.S. BostanciA. KaragozA. KocaM. SadiG. YilmazI. A novel fluorescent probe based on isocoumarin for Hg2+ and Fe3+ ions and its application in live-cell imaging.Spectrochim Acta. A Mol. Biomol Spectrosc.202022411740210.1016/j.saa.2019.117402 31400747
    [Google Scholar]
  59. WanningerS. LorenzV. SubhanA. EdelmannF.T. Metal complexes of curcumin – synthetic strategies, structures and medicinal applications.Chem. Soc. Rev.201544154986500210.1039/C5CS00088B 25964104
    [Google Scholar]
  60. MohanP.R.K. SreelakshmiG. MuraleedharanC.V. JosephR. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy.Vib Spectrosc.201262778410.1016/j.vibspec.2012.05.002
    [Google Scholar]
  61. PrabuS. MohamadS. Curcumin/beta-cyclodextrin inclusion complex as a new “turn-off” fluorescent sensor system for sensitive recognition of mercury ion.J. Mol. Struct.2020120412752810.1016/j.molstruc.2019.127528
    [Google Scholar]
  62. GharamiS. AichK. GhoshP. PatraL. MurmuN. MondalT.K. A fluorescent “ON–OFF–ON” switch for the selective and sequential detection of Hg 2+ and I − with applications in imaging using human AGS gastric cancer cells.Dalton Trans202049118719510.1039/C9DT04245H 31804645
    [Google Scholar]
  63. NgororabangaJ.M.V. MoyoC.B. TshentuZ.R. A novel multidentate pyridyl ligand: A turn-on fluorescent chemosensor for Hg2+ and its potential application in real sample analysis.Spectrochim Acta. A Mol. Biomol. Spectrosc.202024211865110.1016/j.saa.2020.118651 32795949
    [Google Scholar]
  64. ShuaiH. XiangC. QianL. BinF. XiaohuiL. JipengD. ChangZ. JiahuiL. WenbinZ. Fluorescent sensors for detection of mercury: From small molecules to nanoprobes.Dyes Pigments202118710912510.1016/j.dyepig.2020.109125
    [Google Scholar]
  65. KimH.N. RenW.X. KimJ.S. YoonJ. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions.Chem. Soc. Rev.20124183210324410.1039/C1CS15245A 22184584
    [Google Scholar]
  66. WangY. ZhangL. HanX. ZhangL. WangX. ChenL. Fluorescent probe for mercury ion imaging analysis: Strategies and applications.Chem. Eng. J.202140612716610.1016/j.cej.2020.127166
    [Google Scholar]
  67. SaleemM. RafiqM. HanifM. Organic material based fluorescent sensor for Hg2+: A brief review on recent development.J. Fluoresc2017271315810.1007/s10895‑016‑1933‑x 27646651
    [Google Scholar]
  68. ValeurB. Berberan-SantosM.N. Molecular Fluorescence: Principles and Applications.2nd edWeinheimWiley-VCH201310.1002/9783527650002
    [Google Scholar]
  69. SubediS. NeupaneL.N. MehtaP.K. LeeK.H. Ratiometric fluorescent detection of Hg(II) by amino-acid based fluorescent chemodosimeter using irreversible reaction of phenylboronic acid with mercury species.Dyes Pigments202119110937410.1016/j.dyepig.2021.109374
    [Google Scholar]
  70. JiangH. TangD. LiN. LiJ. LiZ. HanQ. LiuX. ZhuX. A novel chemosensor for the distinguishable detections of Cu2+ and Hg2+ by off–on fluorescence and ratiometric UV–visible absorption.Spectrochim Acta. A Mol. Biomol Spectrosc.202125011936510.1016/j.saa.2020.119365 33418474
    [Google Scholar]
  71. GauthamaB.U. NarayanaB. SarojiniB.K. SureshN.K. SangappaY. KudvaA.K. SatyanarayanaG. RaghuS.V. Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging.Microchem. J.202116610623310.1016/j.microc.2021.106233
    [Google Scholar]
  72. WangP. ZhouD. XueS. ChenB. WenS. YangX. WuJ. Rational design of dual-functional peptide-based chemosensor for sequential detection of Ag+ (AgNPs) and S2− ions by fluorescent and colorimetric changes and its application in live cells, real water samples and test strips.Microchem. J.202217710732610.1016/j.microc.2022.107326
    [Google Scholar]
  73. XuJ. LiuN. HaoC. HanQ. DuanY. WuJ. A novel fluorescence “on-off-on” peptide-based chemosensor for simultaneous detection of Cu2+, Ag+ and S2−.Sens. Actuators B Chem.201928012913710.1016/j.snb.2018.10.038
    [Google Scholar]
  74. WangP. XueS. ZhouD. GuoZ. WangQ. GuoB. YangX. WuJ. Peptide-based colorimetric and fluorescent dual-functional probe for sequential detection of copper(II) and cyanide ions and its application in real water samples, test strips and living cells.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227612122210.1016/j.saa.2022.121222 35413531
    [Google Scholar]
  75. JungK.H. LeeK.H. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.Anal. Chem.201587189308931410.1021/acs.analchem.5b01982 26320594
    [Google Scholar]
  76. WangP. SunL. WuJ. YangX. LinP. WangM. A dual-functional colorimetric and fluorescent peptide-based probe for sequential detection of Cu2+ and S2- in 100% aqueous buffered solutions and living cells.J. Hazard. Mater.202140712438810.1016/j.jhazmat.2020.124388 33199144
    [Google Scholar]
  77. WangP. XueS. ChenB. LiaoF. A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect.Anal. Bioanal. Chem.2022414164717472610.1007/s00216‑022‑04094‑4 35589864
    [Google Scholar]
  78. WeiP. XiaoL. GouY. HeF. WangP. YangX. A novel peptide-based relay fluorescent probe with a large Stokes shift for detection of Hg2+ and S2− in 100% aqueous medium and living cells: Visual detection via test strips and smartphone.Spectrochim. Acta A Mol. Biomol. Spectrosc.202328512183610.1016/j.saa.2022.121836 36126620
    [Google Scholar]
  79. FangS. ZhangL. ZhaoY. ZhangX. ZhangL. ChenL. YoonJ. LiuS. Insight into mercury ion detection in environmental samples and imaging in living systems by a near-infrared fluorescent probe.Sens. Actuators B Chem.202441113576810.1016/j.snb.2024.135768
    [Google Scholar]
  80. WilliamsonS.S. CassaniP.A. LukicS. BlunierB. Energy Storage.In: Power Electronics Handbook.3rd edButterworth-Heinemann20111331135610.1016/B978‑0‑12‑382036‑5.00046‑X
    [Google Scholar]
  81. BlumbergsE. SergaV. PlatacisE. MaiorovM. ShishkinA. Cadmium recovery from spent Ni-Cd batteries: A brief review.Metals.20211111171410.3390/met11111714
    [Google Scholar]
  82. MurrayC.B. NorrisD.J. BawendiM.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites.J. Am. Chem. Soc.1993115198706871510.1021/ja00072a025
    [Google Scholar]
  83. ParkS.Y. YoonJ.H. HongC.S. SouaneR. KimJ.S. MatthewsS.E. VicensJ. A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for Cd2+ and Zn2+.J. Org. Chem.200873218212821810.1021/jo8012918 18817447
    [Google Scholar]
  84. NordbergG.F. HerberR.F.M. AlessioL. Cadmium in the Human Environment: Toxicity and CarcinogenicityOxford, UKOxford University Press1992181470
    [Google Scholar]
  85. SongH. YangM. FanX. WangH. Turn-on electrochemiluminescence sensing of Cd2+ based on CdTe quantum dots.Spectrochim. Acta A Mol. Biomol. Spectrosc.201413313013310.1016/j.saa.2014.05.053 24934970
    [Google Scholar]
  86. ZhouX. LiP. ShiZ. TangX. ChenC. LiuW. A highly selective fluorescent sensor for distinguishing cadmium from zinc ions based on a quinoline platform.Inorg. Chem.201251179226923110.1021/ic300661c 22905728
    [Google Scholar]
  87. MaityS.B. BanerjeeS. SunwooK. KimJ.S. BharadwajP.K. A fluorescent chemosensor for Hg2+ and Cd2+ ions in aqueous medium under physiological pH and its applications in imaging living cells.Inorg. Chem.20155483929393610.1021/acs.inorgchem.5b00106 25855889
    [Google Scholar]
  88. SarkarS. MondalT. RoyS. SahaR. GhoshA.K. PanjaS.S. A multi-responsive thiosemicarbazone-based probe for detection and discrimination of group 12 metal ions and its application in logic gates.New J. Chem.20184218151571516910.1039/C8NJ02011F
    [Google Scholar]
  89. KumarP.S. ElangoK.P. A simple organic probe for ratiometric fluorescent detection of Zn(II), Cd(II) and Hg(II) ions in aqueous solution via varying emission colours to distinguish one another.Spectrochim. Acta A Mol. Biomol. Spectrosc.202024111861010.1016/j.saa.2020.118610 32603882
    [Google Scholar]
  90. NazerdeylamiS. GhasemiJ.B. AmiriA. Mohammadi ZiaraniG. BadieiA. Fluorescence turn off-on probe (β-cyclodextrin-hydroxyquinoline) for monitoring of Cd2+ ions and tetracycline.Methods Appl. Fluoresc.20208202500910.1088/2050‑6120/ab7a75 32101795
    [Google Scholar]
  91. YeH. GeF. ZhouY.M. LiuJ.T. ZhaoB.X. A new Schiff base fluorescent probe for imaging Cu2+ in living cells.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311213213810.1016/j.saa.2013.03.093 23666347
    [Google Scholar]
  92. HuJ.H. LiJ.B. QiJ. SunY. Acylhydrazone based fluorescent chemosensor for zinc in aqueous solution with high selectivity and sensitivity.Sens. Actuators B Chem.201520858158710.1016/j.snb.2014.11.066
    [Google Scholar]
  93. GuptaV.K. SinghA.K. KumawatL.K. Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion.Sens. Actuators B Chem.20141959810810.1016/j.snb.2013.12.092
    [Google Scholar]
  94. NageshG.Y. Mahendra RajK. MruthyunjayaswamyB.H.M. Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety.J. Mol. Struct.2015107942343210.1016/j.molstruc.2014.09.013
    [Google Scholar]
  95. ZayedE.M. MohamedG.G. HindyA.M.M. Transition metal complexes of novel Schiff base.J. Therm. Anal. Calorim.2015120189390310.1007/s10973‑014‑4061‑3
    [Google Scholar]
  96. MahmoudW.H. DeghadiR.G. MohamedG.G. Novel Schiff base ligand and its metal complexes with some transition nlms. Synthesis, spectroscopic, thermal analysis, antimicrobial and in vitro anticancer activity.Appl. Organomet. Chem.201630422123010.1002/aoc.3420
    [Google Scholar]
  97. FindikM. UcarA. BingolH. GulerE. OzcanE. Fluorogenic ferrocenyl Schiff base for Zn2+ and Cd2+ detection.Res. Chem. Intermed.201743140141210.1007/s11164‑016‑2630‑8
    [Google Scholar]
  98. İnalE.K. A Fluorescent chemosensor based on Schiff base for the determination of Zn2+, Cd2+and Hg2+.J. Fluoresc.202030489190010.1007/s10895‑020‑02563‑6 32494939
    [Google Scholar]
  99. MohanasundaramD. BhaskarR. Gangatharan Vinoth KumarG. RajeshJ. RajagopalG. A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust detection of Cd2+ ion in semi-aqueous medium.Microchem. J.202116410603010.1016/j.microc.2021.106030
    [Google Scholar]
  100. SamantaS.S. GiriP.K. MudiN. MandalU. MisraA. Fluorescence ‘turn-on’ dual sensor for selective detection of Cd2+ and H2AsO4− in water.J. Fluoresc.202333251752610.1007/s10895‑022‑03091‑1 36449225
    [Google Scholar]
  101. SadiaM. KhanJ. KhanR. KamranA.W. ZahoorM. UllahR. BariA. AliE.A. Rapid detection of Cd2+ ions in the aqueous medium using a highly sensitive and selective turn-on fluorescent chemosensor.Molecules2023288363510.3390/molecules28083635 37110866
    [Google Scholar]
  102. KeypourH. Abdollahi-MoghadamM. ZeynaliH. KaramianR. HamedaniN.B. Synthesis, cadmium sensing ability and biological activities of a pyrrole-based macrocyclic Schiff base fluorescent ligand: DFT studies.J. Mol. Struct.2024129513680310.1016/j.molstruc.2023.136803
    [Google Scholar]
  103. DharA. ChowdhuryT. BanerjeeS. SahaS. DasA.K. BhaumikA. DasD. Fluorometric and naked eye detection of cadmium ion by reduced Schiff base zinc-based probe in potable water: Theoretical and experimental approach.Inorg. Chim. Acta202457012216210.1016/j.ica.2024.122162
    [Google Scholar]
  104. BoyleR.W. JonassonI.R. The geochemistry of arsenic and its use as an indicator nlm in geochemical prospecting.J. Geochem. Explor.19732325129610.1016/0375‑6742(73)90003‑4
    [Google Scholar]
  105. ShrivasK. ShankarR. DewanganK. Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples.Sens. Actuators B Chem.20152201376138310.1016/j.snb.2015.07.058
    [Google Scholar]
  106. ChowdhuryU.K. BiswasB.K. ChowdhuryT.R. SamantaG. QuamruzzamanQ. ChakrabortiD. Groundwater Arsenic Contamination in Bangladesh and West Bengal, India.Environ. Health Perspect.2000108539310.1289/ehp.00108393
    [Google Scholar]
  107. BhandariN. ReederR.J. StronginD.R. Photoinduced oxidation of arsenite to arsenate in the presence of goethite.Environ. Sci. Technol.201246158044805110.1021/es300988p 22703473
    [Google Scholar]
  108. ShajiE. SantoshM. SarathK.V. PrakashP. DeepchandV. DivyaB.V. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula.Geoscience Frontiers202112310107910.1016/j.gsf.2020.08.015
    [Google Scholar]
  109. BaglanM. AtılganS. Selective and sensitive turn-on fluorescent sensing of arsenite based on cysteine fused tetraphenylethene with AIE characteristics in aqueous media.Chem. Commun. (Camb.)201349465325532710.1039/c3cc42238k 23649172
    [Google Scholar]
  110. YadavN. SinghA.K. Dual anion colorimetric and fluorometric sensing of arsenite and cyanide ions.RSC Advances2016610210013610014410.1039/C6RA19781G
    [Google Scholar]
  111. ChauhanK. SinghP. KumariB. SinghalR.K. Synthesis of new benzothiazole Schiff base as selective and sensitive colorimetric sensor for arsenic on-site detection at ppb level.Anal. Methods20179111779178510.1039/C6AY03302D
    [Google Scholar]
  112. SutariyaP.G. SoniH. GandhiS.A. PandyaA. Single-step fluorescence recognition of As 3+, Nd 3+ and Br − using pyrene-linked calix[4]arene: application to real samples, computational modelling and paper-based device.New J. Chem.201943273774710.1039/C8NJ03506G
    [Google Scholar]
  113. PaulS. BhuyanS. MukhopadhyayS.K. MurmuN.C. BanerjeeP. Sensitive and selective in vitro recognition of biologically toxic As(III) by rhodamine based chemoreceptor.2019716136871369710.1021/acssuschemeng.9b00935
    [Google Scholar]
  114. LoharS. SahanaA. BanerjeeA. BanikA. MukhopadhyayS.K. Sanmartín MatalobosJ. DasD. Antipyrine based arsenate selective fluorescent probe for living cell imaging.Anal. Chem.20138531778178310.1021/ac3031338 23298301
    [Google Scholar]
  115. DasS. BanerjeeA. LoharS. SarkarB. MukhopadhyayS.K. MatalobosJ.S. SahanaA. DasD. 2-(2-Pyridyl) benzimidazole-based ternary Mn(ii) complex as an arsenate selective turn-on fluorescence probe: ppb level determination and cell imaging studies.New J. Chem.20143872744274710.1039/c3nj01514a
    [Google Scholar]
  116. IslamA.S.M. AlamR. KatarkarA. ChaudhuriK. AliM. Di-oxime based selective fluorescent probe for arsenate and arsenite ions in a purely aqueous medium with living cell imaging applications and H-bonding induced microstructure formation.Analyst (Lond.)201514092979298310.1039/C5AN00236B 25790966
    [Google Scholar]
  117. MaityD. Kumar MandalS. GuhaB. RoyP. A salicylaldehyde based dual chemosensor for zinc and arsenate ion detection: Biological application.Inorg. Chim. Acta202151912025810.1016/j.ica.2021.120258
    [Google Scholar]
  118. FlegalA.R. SmithD.R. Current needs for increased accuracy and precision in measurements of low levels of lead in blood.Environ. Res.1992581-212513310.1016/S0013‑9351(05)80209‑9 1511668
    [Google Scholar]
  119. NeedlemanH.L. Human Lead Exposure.CRC Press1991
    [Google Scholar]
  120. WinderC. CarmichaelN.G. LewisP.D. Effects of chronic low level lead exposure on brain development and function.Trends Neurosci.1982520720910.1016/0166‑2236(82)90116‑3
    [Google Scholar]
  121. ArakiS. SatoH. YokoyamaK. MurataK. Subclinical neurophysiological effects of lead: A review on peripheral, central, and autonomic nervous system effects in lead workers.Am. J. Ind. Med.200037219320410.1002/(SICI)1097‑0274(200002)37:2<193:AID‑AJIM5>3.0.CO;2‑J 10615100
    [Google Scholar]
  122. WaniA.L. AraA. UsmaniJ.A. Lead toxicity: A review.Interdiscip. Toxicol.201582556410.1515/intox‑2015‑0009 27486361
    [Google Scholar]
  123. PanichS. WilsonK.A. NuttallP. WoodC.K. AlbrechtT. EdelJ.B. Label-free Pb(II) whispering gallery mode sensing using self-assembled glutathione-modified gold nanoparticles on an optical microcavity.Anal. Chem.201486136299630610.1021/ac500845h 24871358
    [Google Scholar]
  124. WuF.Y. ZhangH. XiaoM. HanB.X. A dual colorimetric and fluorescent sensor for lead ion based on naphthalene hydrazone derivative.Spectrochim. Acta A Mol. Biomol. Spectrosc.201310922122510.1016/j.saa.2013.03.020 23542496
    [Google Scholar]
  125. SinhaS. Rani KonerR. KumarS. MathewJ. RoyA. Kanti MukhopadhyayS. NandiC.K. GhoshS. Structurally tuned benzo[h]chromene derivative as Pb2+ selective ‘turn-on’ fluorescence sensor for living cell imaging.J. Lumin.201314335536010.1016/j.jlumin.2013.05.012
    [Google Scholar]
  126. GhoraiA. MondalJ. SahaR. BhattacharyaS. PatraG.K. A highly sensitive reversible fluorescent-colorimetric azino bis-Schiff base sensor for rapid detection of Pb2+ in aqueous media.Anal. Methods2016892032204010.1039/C5AY03374H
    [Google Scholar]
  127. KimH.N. LeeM.H. KimH.J. KimJ.S. YoonJ. A new trend in rhodamine-based chemosensors: Application of spirolactam ring-opening to sensing ions.Chem. Soc. Rev.20083781465147210.1039/b802497a 18648672
    [Google Scholar]
  128. WanJ. ZhangK. LiC. LiY. NiuS. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion.Sens. Actuators B Chem.201724669670210.1016/j.snb.2017.02.126
    [Google Scholar]
  129. WangY.T. HuS. ZhangY. GongH. SunR. MaoW. WangD.H. ChenY. A colorimetric Pb2+ chemosensor: Rapid naked-eye detection, high selectivity, theoretical insights, and applications.J. Photochem. Photobiol. Chem.201835510110810.1016/j.jphotochem.2017.10.027
    [Google Scholar]
  130. MengX. CaoD. HuZ. HanX. LiZ. MaW. A highly sensitive and selective chemosensor for Pb2+ based on quinoline–coumarin.RSC Advances2018859339473395110.1039/C8RA04935A 35548814
    [Google Scholar]
  131. ShailyK. KumarA. ParveenI. AhmedN. Highly selective and sensitive coumarin–triazole‐based fluorometric ‘turn‐off’ sensor for detection of Pb2+ ions.Luminescence201833471372110.1002/bio.3468 29498808
    [Google Scholar]
  132. SinghR. DasG. “Turn-on” Pb2+ sensing and rapid detection of biothiols in aqueous medium and real samples.Analyst (Lond.)2019144256757210.1039/C8AN01624K 30426975
    [Google Scholar]
  133. SuX. AprahamianI. Hydrazone-based switches, metallo-assemblies and sensors.Chem. Soc. Rev.20144361963198110.1039/c3cs60385g 24429467
    [Google Scholar]
  134. SainiN. WannasiriC. ChanmungkalakulS. PrigyaiN. ErvithayasupornV. KiatkamjornwongS. Furan/thiophene-based fluorescent hydrazones as fluoride and cyanide sensors.J. Photochem. Photobiol. Chem.201938511203810.1016/j.jphotochem.2019.112038
    [Google Scholar]
  135. ChenY. BaiB. ChaiQ. ZhangM. WeiJ. WangH. LiM. A colorimetric and fluorescent sensor for the detection of both fluoride ions and trifluoroacetic acid based on acylhydrazone derivatives.Soft Matter201915336690669510.1039/C9SM01394F 31380555
    [Google Scholar]
  136. Anbu DuraiW. RamuA. DhakshinamoorthyA. A visual and ratiometric chemosensor using thiophene functionalized hydrazone for the selective sensing of Pb2+ and F– ions.J. Fluoresc.202131246547410.1007/s10895‑020‑02673‑1 33417109
    [Google Scholar]
  137. XieX. PanM. HongL. LiuK. YangJ. WangS. WangS. An “off-on” rhodamine 6G hydrazide-based output platform for fluorescence and visual dual-mode detection of lead(II).J. Agric. Food Chem.202169257209721710.1021/acs.jafc.1c02568 34133167
    [Google Scholar]
  138. MehtaP.K. JeonJ. RyuK. ParkS.H. LeeK.H. Ratiometric fluorescent detection of lead ions in aquatic environment and living cells using a fluorescent peptide-based probe.J. Hazard. Mater.202242712816110.1016/j.jhazmat.2021.128161 35033727
    [Google Scholar]
  139. SugunaS. Parimala devi, D.; Abiram, A.; Mukhil sukitha, P.; Rajesh kannan, V.; Suresh Kumar, R.; Almansour, A.I.; Perumal, K.; Prabhu, J.; Nandhakumar, R. Symmetric and disulfide linked reversible fluorescent organic material: A chemosensor for Pb2+ ion and its applications in real world sample analysis.J. Photochem. Photobiol. Chem.202344211477710.1016/j.jphotochem.2023.114777
    [Google Scholar]
  140. Azizi KhereshkiN. MohammadiA. Zavvar MousaviH. AlizadehN. EvazalipourM. An optical chemosensor for nano-level determination of Pb2+ and Cu2+ in aqueous media and its application in cell imaging.Chem. Zvesti20237784201421510.1007/s11696‑023‑02770‑y
    [Google Scholar]
  141. Jessy MercyD. KiranV. ThirumalaiA. HariniK. GirigoswamiK. GirigoswamiA. Rice husk assisted carbon quantum dots synthesis for amoxicillin sensing.Results in Chemistry.2023610121910.1016/j.rechem.2023.101219
    [Google Scholar]
  142. HariniK. GirigoswamiK. PallaviP. GowthamP. ThirumalaiA. CharulekhaK. GirigoswamiA. MoS2 nanocomposites for biomolecular sensing, disease monitoring, and therapeutic applications.Nano Futures20237303200110.1088/2399‑1984/ace178
    [Google Scholar]
  143. GhotekarS. RavikumarC.R. ChauhanA. HikkuG.S. LinK-Y.A. RahdarA. HitlerL. JabirM.S. MarzbanA. OzaR. Eco-friendly fabrication of CdO nanoparticles using Polyalthia longifolia leaves extract for antibacterial and electrochemical sensing studies.J. Sol.-Gel Sci. Technol2024110122123210.1007/s10971‑024‑06352‑6
    [Google Scholar]
  144. PaulS. MajumdarT. MallickA. Hydrogen bond regulated hydrogen sulfate ion recognition: An overview.Dalton Trans.20215051531154910.1039/D0DT03611K 33439195
    [Google Scholar]
  145. ThirumalaiA. GirigoswamiK. PrabhuA.D. DurgadeviP. KiranV. GirigoswamiA. 8-Anilino-1-naphthalenesulfonate-conjugated carbon-coated ferrite nanodots for fluoromagnetic imaging, smart drug delivery, and biomolecular sensing.Pharmaceutics20241611137810.3390/pharmaceutics16111378 39598502
    [Google Scholar]
/content/journals/coc/10.2174/0113852728379544250526070414
Loading
/content/journals/coc/10.2174/0113852728379544250526070414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test