Skip to content
2000
Volume 30, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Heterocyclic rings containing heteroatoms at the 1,4-position and fused to a benzene ring are essential in medicinal chemistry due to their wide range of therapeutic and biological properties. Among them, 1,4-benzoxazine derivatives are distinguished by their heterocyclic structure, characterized by the fusion of a benzene ring with an oxazine ring with oxygen and nitrogen atoms in 1,4-positions. The latter heterocyclic motif gives these compounds great versatility, improving their chemical stability and promoting specific interactions with various biological targets. These compounds possess various pharmacological properties, including antifungal, antistrophic, antihypertensive, anti-Parkinson, anti-Alzheimer, anti-Huntington, antibacterial, and antirheumatic activities. Various synthetic methods have been developed to obtain 1,4-benzoxazine derivatives. These methods typically involve the condensation of 2-aminophenol with α(β)-dicarbonyl and α-halocarbonyl compounds, alkyl 2-halomalonates, and diethyl fumarate. This review focuses on synthetic approaches and methods used to synthesize 1,4-benzoxazine derivatives. It examines a range of proven pharmacological applications of these derivatives described in the literature from to . The aim is to provide valuable insights for medicinal and organic chemistry researchers, offering guidance on developing and designing novel 1,4-benzoxazine derivatives.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728376259250404151339
2025-04-21
2025-12-08
Loading full text...

Full text loading...

References

  1. BenkiraneS. MisbahiH. BoudkhiliM. RodiY.K. SebbarN.K. EssassiE.M. Synthetic routes and pharmacological activities of purine derivatives. A review.Curr. Org. Chem.202327191683169610.2174/0113852728260602231018040338
    [Google Scholar]
  2. SghyarR. LahyaouiM. El IbrahimiB. BlacqueO. KartahB.E. EzzoubiA. HökelekT. El HadramiE.M. Ben-TamaA. SebbarN.K. Development of novel antibiotics derived from pyridazine. Synthesis, spectroscopic characterization, in vitro antimicrobial activity and molecular docking studies.J. Mol. Struct.2024131413874710.1016/j.molstruc.2024.138747
    [Google Scholar]
  3. EllouzM. IhammiA. BaraichA. FarihiA. AddichiD. LoughmariS. SebbarN.K. BouhrimM. A MothanaR. M NomanO. EtoB. ChigrF. ChigrM. Synthesis and in silico analysis of new polyheterocyclic molecules derived from [1,4]-benzoxazin-3-one and their inhibitory effect against pancreatic α-amylase and intestinal α-glucosidase.Molecules20242913308610.3390/molecules29133086 38999038
    [Google Scholar]
  4. LiuY. ZhaoS. ZhangH. WangM. RunM. Synthesis, polymerization, and thermal properties of benzoxazine based on p-aminobenzonitrile.Thermochim. Acta2012549424810.1016/j.tca.2012.09.017
    [Google Scholar]
  5. PuttaV.P.R.K. VodnalaN. GujjarappaR. TyagiU. GargA. GuptaS. PujarP.P. MalakarC.C. Reagent-controlled divergent synthesis of 2- amino-1,3-benzoxazines and 2-amino-1,3-benzothiazines.J. Org. Chem.202085238039610.1021/acs.joc.9b02384 31825620
    [Google Scholar]
  6. LiuY. YuanL. LiangG. GuA. Synthesis of new biobased benzoxazine through green strategy and its polybenzoxazine resin with high thermal resistance and mechanical strength.J. Polym. Sci.202361131279128810.1002/pol.20220744
    [Google Scholar]
  7. ZhouX. FuF. ShenM. LiQ. LiuH. SongZ. Research progress of bio-based polybenzoxazine materials.Adv. Sustain. Syst.202482230037210.1002/adsu.202300372
    [Google Scholar]
  8. DileshI. ChourasiaO. LimayeS. Synthesis, characterization, of 2H-3-aryl-3,4-dihydro-1, 3-chlorobenzoxazine derivatives of benzoxazoline, antimicrobial activity and PC model computational studies.Res. J. Pharma. Sci.201321725
    [Google Scholar]
  9. NadeemS. RuhiA. ShamsherM.A. WaqarA. Pharmacological profile of benzoxazines. A short review.J. Chem. Pharm. Res.20102309
    [Google Scholar]
  10. HietalaP.K. VirtanenA.I. NorénB. LevitinN.E. WestinG. Precursors of benzoxazolinone in rye plants. II. Precursor I, the glucoside.Acta Chem. Scand.19601450250410.3891/acta.chem.scand.14‑0502
    [Google Scholar]
  11. NagaoT. OtsukaH. KohdaH. SatoT. YamasakiK. Benzoxazinones from Coix lachryma-jobi var. ma-yuen.Phytochemistry198524122959296210.1016/0031‑9422(85)80035‑2
    [Google Scholar]
  12. HartensteinH. SickerD. (2R)-2-β-d-Glucopyranosyloxy-4-hydroxy-2h-1,4-benzoxazin- 3(4h)-one from Secale cereale.Phytochemistry199435382782810.1016/S0031‑9422(00)90618‑6 7765693
    [Google Scholar]
  13. MinamiY. YoshidaK. AzumaR. SaekiM. OtaniT. Structure of an aromatization product of C-1027 chromophore.Tetrahedron Lett.199334162633263610.1016/S0040‑4039(00)77643‑X
    [Google Scholar]
  14. SebilleS. TullioP. BoverieS. AntoineM.H. LebrunP. PirotteB. Recent developments in the chemistry of potassium channel activators: The cromakalim analogs.Curr. Med. Chem.20041191213122210.2174/0929867043365378 15134515
    [Google Scholar]
  15. BorateH.B. MaujanS.R. SawargaveS.P. ChandavarkarM.A. VaiudeS.R. JoshiV.A. WakharkarR.D. IyerR. KelkarR.G. ChavanS.P. KunteS.S. Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-Candida agents.Bioorg. Med. Chem. Lett.201020272272510.1016/j.bmcl.2009.11.071 19963383
    [Google Scholar]
  16. FringuelliR. PietrellaD. SchiaffellaF. GuarraciA. PeritoS. BistoniF. VecchiarelliA. Anti-Candida albicans properties of novel benzoxazine analogues.Bioorg. Med. Chem.20021061681168610.1016/S0968‑0896(02)00038‑X 11937326
    [Google Scholar]
  17. HirataT. SaitoH. TomiokaH. SatoK. JidoiJ. HosoeK. HidakaT. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis.Antimicrob. Agents Chemother.199539102295230310.1128/AAC.39.10.2295 8619585
    [Google Scholar]
  18. ŠtefaničP. SimončičZ. BreznikM. PlavecJ. AnderluhM. AddicksE. GiannisA. KikeljD. Conformationally tailored N-[(2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)carbonyl]proline templates as molecular tools for the design of peptidomimetics. Design and synthesis of fibrinogen receptor antagonists.Org. Biomol. Chem.20042101511151710.1039/B400490F 15136808
    [Google Scholar]
  19. DasB.C. MadhukumarA.V. AnguianoJ. ManiS. Design, synthesis and biological evaluation of 2H-benzo[b][1,4] oxazine derivatives as hypoxia targeted compounds for cancer therapeutics.Bioorg. Med. Chem. Lett.200919154204420610.1016/j.bmcl.2009.05.110 19515559
    [Google Scholar]
  20. YamamotoT. HoriM. WatanabeI. TsutsuiH. HaradaK. IkedaS. MaruoJ. MoritaT. OhtakaH. Synthesis and quantitative structure-activity relationships of N-(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl)guanidines as Na/H exchange inhibitors.Chem. Pharm. Bull.199846111716172310.1248/cpb.46.1716 9845955
    [Google Scholar]
  21. KajinoM. ShiboutaY. NishikawaK. MeguroK. Synthesis and biological activities of new 2-substituted 1,4-benzoxazine derivatives.Chem. Pharm. Bull.199139112896290510.1248/cpb.39.2896 1799938
    [Google Scholar]
  22. HuangM.Z. LuoF.X. MoH.B. RenY.G. WangX.G. OuX.M. LeiM.X. LiuA.P. HuangL. XuM.C. Synthesis and herbicidal activity of isoindoline-1,3-dione substituted benzoxazinone derivatives containing a carboxylic ester group.J. Agric. Food Chem.200957209585959210.1021/jf901897f 19772294
    [Google Scholar]
  23. TakemiF. MichihideS. Ken-ichiI. HidenoriS. TetsuyaT. The antiemetic profile of Y-25130, a new selective 5-HT3 receptor antagonist.Eur. J. Pharmacol.1991196329930510.1016/0014‑2999(91)90443‑T 1654255
    [Google Scholar]
  24. TobiaA. FaloticoR. SimonD. CombsD. MooreJ. BellS. RosenthaleM. Bemoradan: A novel orally potent positive inotrope/peripheral vasodilator with beneficial hemodynamics in congestive heart failure patients.Eur. J. Pharmacol.1990183377677710.1016/0014‑2999(90)92583‑5
    [Google Scholar]
  25. Chacun-LefevreL. BuonC. BouyssouP. CoudertG. Synthesis of 3-substituted-4H-1,4-benzoxazines.Tetrahedron Lett.199839325763576410.1016/S0040‑4039(98)01201‑5
    [Google Scholar]
  26. BhadraS. AdakL. SamantaS. Maidul IslamA.K.M. MukherjeeM. RanuB.C. Alumina-supported Cu(II), a versatile and recyclable catalyst for regioselective ring opening of aziridines and epoxides and subsequent cyclization to functionalized 1,4-benzoxazines and 1,4-benzodioxanes.J. Org. Chem.201075248533854110.1021/jo101916e 21070034
    [Google Scholar]
  27. López-IglesiasM. BustoE. GotorV. Gotor-FernándezV. Chemoenzymatic asymmetric synthesis of 1,4-benzoxazine derivatives: application in the synthesis of a levofloxacin precursor.J. Org. Chem.20158083815382410.1021/acs.joc.5b00056 25786159
    [Google Scholar]
  28. ChoudharyG. NaganaboinaR.T. PeddintiR.K. Expedient synthesis of novel 1,4-benzoxazine and butenolide derivatives.RSC Advances2014435179691797910.1039/C4RA01736F
    [Google Scholar]
  29. IakovouK. KazanisM. VavayannisA. BruniG. RomeoM.R. MassarelliP. TeramotoS. FujikiH. MoriT. Synthesis of oxypropanolamine derivatives of 3,4-dihydro-2H-1,4-benzoxazine, β-adrenergic affinity, inotropic, chronotropic and coronary vasodilating activities.Eur. J. Med. Chem.1999341190391710.1016/S0223‑5234(99)00109‑9 10889316
    [Google Scholar]
  30. IlašJ. AnderluhP.Š. DolencM.S. KikeljD. Recent advances in the synthesis of 2H-1,4-benzoxazin-3-(4H)-ones and 3,4-dihydro-2H-1,4-benzoxazines.Tetrahedron200561317325734810.1016/j.tet.2005.05.037
    [Google Scholar]
  31. KuroitaT. IkebeT. MurakamiS. TakeharaS. KawakitaT.N. -(2-pyrrolidinylmethyl)benzoxazine-8-carboxamides exhibiting high affinities for All of D2, 5-HT1 A, and 5-HT2 receptors.Bioorg. Med. Chem. Lett.19955121245125010.1016/0960‑894X(95)00197‑2
    [Google Scholar]
  32. KuroitaT. SakamoriM. KawakitaT. Design and synthesis of 6-chloro-3,4-dihydro-4-methyl-2H-1,4-benzoxazine-8-carboxamide derivatives as potent serotonin-3 (5-HT3) receptor antagonists.Chem. Pharm. Bull.199644475676410.1248/cpb.44.756 8681408
    [Google Scholar]
  33. ReddyC.R. VijeenderK. BhusanP.B. MadhaviP.P. ChandrasekharS. Reductive N-alkylation of aromatic amines and nitro compounds with nitriles using polymethylhydrosiloxane.Tetrahedron Lett.200748152765276810.1016/j.tetlet.2007.02.050
    [Google Scholar]
  34. BunceR.A. HerronD.M. HaleL.Y. Dihydrobenzoxazines and tetrahydroquinoxalines by a tandem reduction‐reductive amination reaction.J. Heterocycl. Chem.20034061031103910.1002/jhet.5570400611
    [Google Scholar]
  35. SchneiderR. FortY. Omar-AmraniR. Novel synthetic strategy of Narylated heterocycles via sequential palladium-catalyzed intra-and inter arylamination reactions.Synthesis20042004152527253410.1055/s‑2004‑831205
    [Google Scholar]
  36. BowerJ.F. SzetoP. GallagherT. Enantiopure 1,4-benzoxazines via 1,2-cyclic sulfamidates. Synthesis of levofloxacin.Org. Lett.20079173283328610.1021/ol0712475 17661473
    [Google Scholar]
  37. YinB.L. YangZ.M. HuT.S. WuY.L. Molecular diversity of tonghaosu. Synthesis of lactam-containing tonghaosu analogs.Synthesis200320031319952000
    [Google Scholar]
  38. BeifussU. MalakarC. MerisorE. ConradJ. MoO2Cl2 (DMF) 2-catalyzed domino reactions of ω-nitro alkenes to 3,4-dihydro-2H-1,4-benzothiazines and other heterocycles.Synlett20102010121766177010.1055/s‑0030‑1258119
    [Google Scholar]
  39. MizarP. MyrbohB. Synthesis of substituted 4-(3-alkyl-1,2,4-oxadiazol-5-ylmethyl)-3,4-dihydro-2H-1,4-benzoxazines and 4-(1H-benzimidazol-2-ylmethyl)-3,4-dihydro-2H-1,4-benzoxazines.Tetrahedron Lett.200647447823782610.1016/j.tetlet.2006.08.029
    [Google Scholar]
  40. MatsumotoY. TsuzukiR. MatsuhisaA. TakayamaK. YodenT. UchidaW. AsanoM. FujitaS. YanagisawaI. FujikuraT. Novel potassium channel activators: Synthesis and structure-activity relationship studies of 3,4-dihydro-2H-1,4-benzoxazine derivatives.Chem. Pharm. Bull.199644110311410.1248/cpb.44.103 8582029
    [Google Scholar]
  41. ChenD. ShenG. BaoW. An efficient cascade synthesis of various 2H-1,4-benzoxazin-3-(4H)-ones from o-halophenols and 2-halo-amides catalyzed by CuI.Org. Biomol. Chem.20097194067407310.1039/b906210f 19763313
    [Google Scholar]
  42. AschanO. Ueber die Einwirkung von Chloracetylchlorid auf o ‐Amidophenol.Ber. Dtsch. Chem. Ges.18872011523152410.1002/cber.188702001333
    [Google Scholar]
  43. KirkK.L. CohenL.A. Intramolecular aminolysis of amides. Effects of electronic variation in the attacking and leaving groups.J. Am. Chem. Soc.197294238142814710.1021/ja00778a033
    [Google Scholar]
  44. MacíasF.A. MarínD. Oliveros-BastidasA. ChinchillaD. SimonetA.M. MolinilloJ.M.G. Isolation and synthesis of allelochemicals from gramineae: Benzoxazinones and related compounds.J. Agric. Food Chem.2006544991100010.1021/jf050896x 16478208
    [Google Scholar]
  45. ZhouP. GuanM. ZhangJ. XuF. ZhaoY. Facile synthesis of benzoxazinone derivatives via palladium catalyzed intramolecular amination.Youji Huaxue20173782028203310.6023/cjoc201703012
    [Google Scholar]
  46. LiangW. MinL.J. HanL. LiuX.H. Recent advances on synthesis of 1,4-benzoxazines and its derivatives.Curr. Org. Chem.202125232840285510.2174/1385272825666211117154031
    [Google Scholar]
  47. DabholkarV.V. GavandeR.P. Synthesis and biological studies of triazolo-/thiadiazolo-benzoxazines.Acta Pol. Pharm.2012692247252 22568038
    [Google Scholar]
  48. DongK. JinX.L. ChenS. WuL.Z. LiuQ. Controllable synthesis of 2- and 3-aryl-benzomorpholines from 2-aminophenols and 4-vinylphenols.Chem. Commun.202056577941794410.1039/D0CC02662J 32531007
    [Google Scholar]
  49. IwanamiY. The reaction of acetylenecarboxylic acid with amines. XV. Reaffirmation of the enamine structure facilitated by intramolecular hydrogen bonding common to the reaction products.Bull. Chem. Soc. Jpn.19714451311131310.1246/bcsj.44.1311
    [Google Scholar]
  50. SenA. TakenakaK. SasaiH. Enantioselective aza-wacker-type cyclization promoted by Pd-SPRIX Catalyst.Org. Lett.201820216827683110.1021/acs.orglett.8b02946 30354176
    [Google Scholar]
  51. LiuG. StahlS.S. Two-faced reactivity of alkenes: Cis-versus trans-aminopalladation in aerobic Pd-catalyzed intramolecular aza-Wacker reactions.J. Am. Chem. Soc.2007129196328633510.1021/ja070424u 17439217
    [Google Scholar]
  52. YeX. LiuG. PoppB.V. StahlS.S. Mechanistic studies of Wacker-type intramolecular aerobic oxidative amination of alkenes catalyzed by Pd(OAc)2/pyridine.J. Org. Chem.20117641031104410.1021/jo102338a 21250706
    [Google Scholar]
  53. ChoudharyG. PeddintiR.K. Introduction of a clean and promising protocol for the synthesis of β-amino-acrylates and 1,4-benzoheterocycles: An emerging innovation.Green Chem.201113113290329910.1039/c1gc15701a
    [Google Scholar]
  54. WoydowskiK. LiebscherJ. Synthesis of optically active 1,4-benzoxazinones and 1,5-benzoxazepinones by regiocontrolled ring transformations of oxirane carboxylic acids and esters with aromatic o-hydroxyarylamines.Tetrahedron199955309205922010.1016/S0040‑4020(99)00488‑3
    [Google Scholar]
  55. Torres-PastorM.Á. EsproC. SelvaM. PerosaA. Romero ReyesA.A. OsmanS.M. LuqueR. Rodríguez-PadrónD. Glycerol valorization towards a benzoxazine derivative through a milling and microwave sequential strategy.Molecules202227363210.3390/molecules27030632 35163895
    [Google Scholar]
  56. WolferJ. BekeleT. AbrahamC.J. Dogo-IsonagieC. LectkaT. Catalytic, asymmetric synthesis of 1,4-benzoxazinones: A remarkably enantioselective route to α-amino acid derivatives from o-benzoquinone imides.Angew. Chem. Int. Ed.200645447398740010.1002/anie.200602801 17036371
    [Google Scholar]
  57. ZidarN. KikeljD. A convenient synthesis of 3,4-dihydro-1,4-benzoxazin-2-ones.Tetrahedron200864245756576110.1016/j.tet.2008.04.010
    [Google Scholar]
  58. JaiswalP.K. SharmaV. PrikhodkoJ. MashevskayaI.V. ChaudharyS. “On water” ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo[1,4]oxazines: First application to the synthesis of anticancer indole alkaloid.Cephalandole A. Tetrahedron Lett.201758222077208310.1016/j.tetlet.2017.03.048
    [Google Scholar]
  59. FengG. WuJ. DaiW.M. One-pot regioselective annulation toward 3,4-dihydro-3-oxo-2H-1,4-benzoxazine scaffolds under controlled microwave heating.Tetrahedron200662194635464210.1016/j.tet.2005.12.059
    [Google Scholar]
  60. ZuoH. MengL. GhateM. HwangK.H. Kweon ChoY. ChandrasekharS. Raji ReddyC. ShinD.S. Microwave-assisted one-pot synthesis of benzo[b][1,4]oxazin-3(4H)-ones via Smiles rearrangement.Tetrahedron Lett.200849233827383010.1016/j.tetlet.2008.03.120
    [Google Scholar]
  61. FilimonovS.I. ChirkovaZ.V. AbramovI.G. FirgangS.I. StashinaG.A. Synthesis of novel substituted 4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazine- 6,7-dicarbonitriles.Heterocycles20118375576310.3987/COM‑10‑12128
    [Google Scholar]
  62. RostamiH. ShiriL. One-pot multicomponent synthesis of pyrrolo[1,2-d][1,4]benzoxazines and pyrrolo[1,2-a]pyrazines in water catalyzed by Fe3O4@SiO2@L-arginine-SA magnetic nanoparticles.Curr. Org. Synth.202017647348210.2174/1573409916666200128163047 32003675
    [Google Scholar]
  63. LiuZ. ChenY. Efficient synthesis of 2,3-dihydro-1,4-benzoxazines via intramolecular copper-catalyzed O-arylation.Tetrahedron Lett.200950273790379310.1016/j.tetlet.2009.04.055
    [Google Scholar]
  64. WangL. LiuJ. TianH. QianC. Ytterbium triflate catalyzed heterocyclization of 1,2-phenylenediamines and alkyl oxalates under solvent-free conditions via phillips reaction. A facile synthesis of quinoxaline-2,3-diones derivatives.Synth. Commun.20043481349135710.1081/SCC‑120030683
    [Google Scholar]
  65. SmissmanE.E. CorbettM.D. Syntheses of 4-acylamido-1,4-benzoxazine-2,3-diones and 4-(p-toluenesulfonamido)-1,4-benzoxazine-2,3-dione.J. Org. Chem.197237111704170710.1021/jo00976a006
    [Google Scholar]
  66. LargeronM. DupuyH. FleuryM.B. Novel 1,4-benzoxazine derivatives of pharmacological interest. Electrochemical and chemical syntheses.Tetrahedron199551174953496810.1016/0040‑4020(95)98693‑C
    [Google Scholar]
  67. SánchezI. LópezN. PujolM.D. New synthesis of methylfuro [3, 4-b][1,4] benzoxazine as an intermediate in the preparation of polycyclic compounds.ARKIVOC200618188
    [Google Scholar]
  68. RahimiS. SoleimaniE. Synthesis of 2-substituted benzimidazole, coumarin, benzo[b][1,4]oxazin and dihydropyrimidinone derivatives using core-shell structured Fe3O4@SiO2-ZnCl2 nanoparticles as an effective catalyst.Results in Chemistry2020210006010.1016/j.rechem.2020.100060
    [Google Scholar]
  69. TouzeauF. ArraultA. GuillaumetG. ScalbertE. PfeifferB. RettoriM.C. RenardP. MérourJ.Y. Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives.J. Med. Chem.200346101962197910.1021/jm021050c 12723959
    [Google Scholar]
  70. ZhuL. RenX. DuJ. WuJ.H. TanJ.P. CheJ. PanJ. WangT. A transition-metal-free multicomponent reaction towards constructing chiral 2 H -1,4-benzoxazine scaffolds.Green Chem.202022217506751210.1039/D0GC02134B
    [Google Scholar]
  71. GhanbariM. JadidiK. MehrdadM. AssempourN. A simple route for the synthesis of novel 1,4-benzoxazine derivatives by Baeyer–Villiger oxidation reaction.Tetrahedron201672294355436010.1016/j.tet.2016.05.086
    [Google Scholar]
  72. ChoH. IwamaY. SugimotoK. MoriS. TokuyamaH. Regioselective synthesis of heterocycles containing nitrogen neighboring an aromatic ring by reductive ring expansion using diisobutylaluminum hydride and studies on the reaction mechanism.J. Org. Chem.201075362763610.1021/jo902177p 20039606
    [Google Scholar]
  73. SilvaJ.F.M. GardenS.J. PintoA.C. The chemistry of isatins: A review from 1975 to 1999.J. Braz. Chem. Soc.200112327332410.1590/S0103‑50532001000300002
    [Google Scholar]
  74. ChaudhariM.B. ChaudharyA. KumarV. GnanaprakasamB. The rearrangement of peroxides for the construction of fluorophoric 1,4-benzoxazin- 3-one derivatives.Org. Lett.20192161617162110.1021/acs.orglett.9b00155 30794417
    [Google Scholar]
  75. Praveena DeviC.B. VijayK. HariBabu B.; Adil, S.F.; Mujahid Alam, M.; Vijjulatha, M.; Ansari, M.B. CuSO4/sodium ascorbate catalysed synthesis of benzosuberone and 1,2,3-triazole conjugates: Design, synthesis and in vitro anti-proliferative activity.J. Saudi Chem. Soc.201923798099110.1016/j.jscs.2019.05.002
    [Google Scholar]
  76. SebbarN.K. MekhzoumM.E.M. EssassiE.M. ZerzoufA. TalbaouiA. BakriY. SaadiM. AmmariL.E. Novel 1,4-benzothiazine derivatives: Synthesis, crystal structure, and anti-bacterial properties.Res. Chem. Intermed.20164296845686210.1007/s11164‑016‑2499‑6
    [Google Scholar]
  77. SebbarN.K. LabdM. MokhtarE. AbdallahB. ZakariaM. MagueT. Synthesis, dft study and antibacterial activity of some isoxazoline derivatives containing 1,4-benzothiazin-3-one nucleus obtained using 1,3-dipolar cycloaddition reaction.Iran. J. Chem. Chem. Eng.2020395367
    [Google Scholar]
  78. PerryB. AlexanderR. BennettG. BuckleyG. CeskaT. CrabbeT. DaleV. GowersL. HorsleyH. JamesL. JenkinsK. CrépyK. KulisaC. LightfootH. LockC. MackS. MorganT. NicolasA.L. PittW. SabinV. WrightS. Achieving multi-isoform PI3K inhibition in a series of substituted 3,4-dihydro-2H-benzo[1,4]oxazines.Bioorg. Med. Chem. Lett.200818164700470410.1016/j.bmcl.2008.06.104 18644721
    [Google Scholar]
  79. Cymerman-CraigJ. RogersW.P. TateM.E. Chemical constitution and anthelmintic activity. III. Preparation of subtituted phenothiazines and some mono and dicyclic analogues.Aust. J. Chem.19569339740210.1071/CH9560397
    [Google Scholar]
  80. HlimiF. SebbarN.K. HimmiB. KitaneS. Synthese, reactivite et proprietes biologiques des derives de la 1,4-benzoxazine.Moroccan J. Heterocyclic Chem.2018171132
    [Google Scholar]
  81. ZhangD. YangY. GaoM. ShuW. WuL. ZhuY. WuA. A new route to construct 1,2-dihydroquinoxaline and 1,4-benzoxazine derivatives stereoselectively and its application to novel pyrazolo[1,5-α]quinoxaline oxides.Tetrahedron20136971849185610.1016/j.tet.2012.12.060
    [Google Scholar]
  82. LaudeB. SoufiaouiM. ArriauE.J. 1,3-Dipolar cycloadditions II. Addition of diarylnitrilimines to N-methyl-indole. experimental study and attempt at interpretation.J. Heterocycl. Chem.19771471183119010.1002/jhet.5570140711
    [Google Scholar]
  83. KitaneS. BerradaM. VebrelJ. LaudeB. Addition of diarylnitrilimines to N-methylindole. Experimental study and attempt at interpretation.C.R. Acad. Sci. Paris. Series II19831497487489
    [Google Scholar]
  84. SedquiA. VebrelJ. LaudeB. Preliminary results in cycloaddition of diphenylnitrilimine to phosphindole oxides.Chem. Lett.198413696596810.1246/cl.1984.965
    [Google Scholar]
  85. KitaneS. TshiamalaK. LaudeB. Stereochemistry of cycloaddition of diarylnitrilimines on n-alkyl and dialkyl-1,2-dihydro-1,2-isoquinolines.Chem. Lett.19854137373751
    [Google Scholar]
  86. HlimiF. TshiamalaK. VebrelJ. LaudeB. Reaction of diarylnitrilimines with ethyl 1,4-benzodioxine-2-carboxylate. Synthesis of 4 ο-hydroxyphen-oxy-1,3-diarylpyrazoles.J. Chem. Res.19867266267
    [Google Scholar]
  87. KavithaN. Anantha LakshmiP.V. Transition metal complexes supported by ONNN/ONNS bis-bidentate benzoxazine Schiff base: Synthesis, characterization, geometry optimization and non-isothermal kinetic parameters.J. Mol. Struct.2019117679881410.1016/j.molstruc.2018.09.042
    [Google Scholar]
  88. GugulothV. Synthesis of a novel derivatives of [1,4]benzoxazinone.Rasayan J. Chem.202114144845310.31788/RJC.2021.1415938
    [Google Scholar]
  89. FisherJ.F. MerouehS.O. MobasheryS. Bacterial resistance to β-lactam antibiotics: Compelling opportunism, compelling opportunity.Chem. Rev.2005105239542410.1021/cr030102i 15700950
    [Google Scholar]
  90. KaatzG.W. McAleeseF. SeoS.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein.Antimicrob. Agents Chemother.20054951857186410.1128/AAC.49.5.1857‑1864.2005 15855507
    [Google Scholar]
  91. DyatkinaN.B. RobertsC.D. KeicherJ.D. DaiY. NadhernyJ.P. ZhangW. SchmitzU. KongpachithA. FungK. NovikovA.A. LouL. VelliganM. KhorlinA.A. ChenM.S. Minor groove DNA binders as antimicrobial agents. 1. Pyrrole tetraamides are potent antibacterials against vancomycin resistant Enterococci and methicillin resistant Staphylococcus aureus.J. Med. Chem.200245480581710.1021/jm010375a 11831893
    [Google Scholar]
  92. TricaricoD. RollandJ.F. CannoneG. MeleA. CipponeV. LaghezzaA. CarbonaraG. FracchiollaG. TortorellaP. LoiodiceF. Conte CamerinoD. Structural nucleotide analogs are potent activators/inhibitors of pancreatic β cell KATP channels: An emerging mechanism supporting their use as antidiabetic drugs.J. Pharmacol. Exp. Ther.2012340226627610.1124/jpet.111.185835 22028392
    [Google Scholar]
  93. AllenR.C. To Market, To Market-1983.Annu. Rep. Med. Chem.198422117
    [Google Scholar]
  94. ÖzdenS. Murat ÖztürkA. GökerH. AltanlarN. Synthesis and antimicrobial activity of some new 4-hydroxy-2H-1,4-benzoxazin-3(4H)-ones.Farmaco20005511-1271571810.1016/S0014‑827X(00)00098‑7 11204947
    [Google Scholar]
  95. Alper-HaytaS. Akı-SenerE. Tekiner-GulbasB. YıldızI. Temiz-ArpacıO. YalcınI. AltanlarN. Synthesis, antimicrobial activity and QSARs of new benzoxazine-3-ones.Eur. J. Med. Chem.200641121398140410.1016/j.ejmech.2006.06.011 16996656
    [Google Scholar]
  96. MukovozP.P. SlepukhinP.A. DanilovaE.A. AysuvakovaO.P. GlinushkinA.P. Synthesis, structure, and biological activity of products of reactions of 3,4-dioxohexane-1,6-dioic acid esters with 2-aminophenol.Russ. J. Gen. Chem.20188871363136810.1134/S1070363218070022
    [Google Scholar]
  97. TricaricoD. BarbieriM. AntonioL. TortorellaP. LoiodiceF. CamerinoD.C. Dualistic actions of cromakalim and new potent 2H‐1,4‐benzoxazine derivatives on the native skeletal muscle KATP channel.Br. J. Pharmacol.2003139225526210.1038/sj.bjp.0705233 12770930
    [Google Scholar]
  98. ZhouD. HarrisonB.L. ShahU. AndreeT.H. HornbyG.A. ScerniR. SchechterL.E. SmithD.L. SullivanK.M. MewshawR.E. Studies toward the discovery of the next generation of antidepressants. Part 5. 3,4-dihydro-2H-benzo[1,4]oxazine derivatives with dual 5-HT1A receptor and serotonin transporter affinity.Bioorg. Med. Chem. Lett.20061651338134110.1016/j.bmcl.2005.11.054 16332439
    [Google Scholar]
  99. LiX. LiuN. ZhangH. KnudsonS.E. SlaydenR.A. TongeP.J. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis.Bioorg. Med. Chem. Lett.201020216306630910.1016/j.bmcl.2010.08.076 20850304
    [Google Scholar]
  100. v, B.; B, S.; Gangadhar K, H.; Sailaja B, B.V. Synthesis of new 1,3,4-oxadiazole-1,4-benzoxazinone hybrids as tubulin polymerization inhibiting anticancer agents and their in silico studies.Tetrahedron202212413297910.1016/j.tet.2022.132979
    [Google Scholar]
  101. BalakrishnaR. Biological activity of newly synthesised compounds of 2-(3- oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)-N-substituted phenyl acetamide and its derivatives.Int. J. Clin. Pharm. Med. Sci202221417
    [Google Scholar]
  102. BenarjeeV. SarithaB. Hari GangadharK. SailajaB.B.V. Synthesis of some new 1,4-benzoxazine-pyrazoles in water as EGFR targeting anticancer agents.J. Mol. Struct.2022126513318810.1016/j.molstruc.2022.133188
    [Google Scholar]
  103. KrasnovV.P. VozdvizhenskayaO.A. BaryshnikovaM.A. PershinaA.G. MusiyakV.V. MatveevaT.V. NevskayaK.V. BrikunovaO.Y. GruzdevD.A. LevitG.L. Synthesis and cytotoxic activity of the derivatives of N-(Purin-6-yl)aminopolymethylene carboxylic acids and related compounds.Molecules2023284185310.3390/molecules28041853 36838839
    [Google Scholar]
  104. XiangY. WangX.H. YangQ. TanJ.L. JangH.J. ZuoH. ShinD.S. Rational design, synthesis, and biological activity of N-(1,4-benzoxazinone) acetamide derivatives as potent platelet aggregation inhibitors.Bull. Korean Chem. Soc.201839214615510.1002/bkcs.11359
    [Google Scholar]
  105. YiC. XingG. WangS. LiX. LiuY. LiJ. LinB. WooA.Y.H. ZhangY. PanL. ChengM. Design, synthesis and biological evaluation of 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one derivatives as potent β2-adrenoceptor agonists.Bioorg. Med. Chem.202028111517810.1016/j.bmc.2019.115178 31753798
    [Google Scholar]
  106. FuX. WenholzD. ChanD.S.H. BlackD.S. KumarN. Rational design, synthesis, and anti-proliferative evaluation of novel 4-Aryl-3,4-Dihydro-2H-1,4-Benzoxazines.Molecules202329116610.3390/molecules29010166 38202749
    [Google Scholar]
  107. BlattesE. LockhartB. LestageP. SchwendimannL. GressensP. FleuryM.B. LargeronM. Novel 2-alkylamino-1,4-benzoxazine derivatives as potent neuroprotective agents: Structure-activity relationship studies.J. Med. Chem.20054841282128610.1021/jm040874m 15715499
    [Google Scholar]
  108. BolluR. PalemJ.D. BantuR. GugulothV. NagarapuL. PolepalliS. JainN. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids.Eur. J. Med. Chem.20158913814610.1016/j.ejmech.2014.10.051 25462234
    [Google Scholar]
  109. FringuelliR. GiacchèN. MilaneseL. CenciE. MacchiaruloA. VecchiarelliA. CostantinoG. SchiaffellaF. Bulky 1,4-benzoxazine derivatives with antifungal activity.Bioorg. Med. Chem.200917113838384610.1016/j.bmc.2009.04.051 19433362
    [Google Scholar]
  110. ShindeM.V. 1,4 Benzoxazine derivatives: Synthesis, in-silico studies and antimicrobial evaluation.Int. J. of Pharma Sci.2024282932294510.5281/zenodo.13333837
    [Google Scholar]
  111. ChatterjeeI. AliK. PandaG. A synthetic overview of benzoxazines and benzoxazepines as anticancer agents.ChemMedChem2023185e20220061710.1002/cmdc.202200617 36598081
    [Google Scholar]
/content/journals/coc/10.2174/0113852728376259250404151339
Loading
/content/journals/coc/10.2174/0113852728376259250404151339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test