Skip to content
2000
image of Synthetic Strategies and Therapeutic Profile of Some 1,4-benzoxazine Derivatives: A Review

Abstract

Heterocyclic rings containing heteroatoms at the 1,4-position and fused to a benzene ring are essential in medicinal chemistry due to their wide range of therapeutic and biological properties. Among them, 1,4-benzoxazine derivatives are distinguished by their heterocyclic structure, characterized by the fusion of a benzene ring with an oxazine ring with oxygen and nitrogen atoms in 1,4-positions. The latter heterocyclic motif gives these compounds great versatility, improving their chemical stability and promoting specific interactions with various biological targets. These compounds possess various pharmacological properties, including antifungal, antistrophic, antihypertensive, anti-Parkinson, anti-Alzheimer, anti-Huntington, antibacterial, and antirheumatic activities. Various synthetic methods have been developed to obtain 1,4-benzoxazine derivatives. These methods typically involve the condensation of 2-aminophenol with α(β)-dicarbonyl and α-halocarbonyl compounds, alkyl 2-halomalonates, and diethyl fumarate. This review focuses on synthetic approaches and methods used to synthesize 1,4-benzoxazine derivatives. It examines a range of proven pharmacological applications of these derivatives described in the literature from to . The aim is to provide valuable insights for medicinal and organic chemistry researchers, offering guidance on developing and designing novel 1,4-benzoxazine derivatives.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728376259250404151339
2025-04-21
2025-10-13
Loading full text...

Full text loading...

References

  1. Benkirane S. Misbahi H. Boudkhili M. Rodi Y.K. Sebbar N.K. Essassi E.M. Synthetic routes and pharmacological activities of purine derivatives. A review. Curr. Org. Chem. 2023 27 19 1683 1696 10.2174/0113852728260602231018040338
    [Google Scholar]
  2. Sghyar R. Lahyaoui M. El Ibrahimi B. Blacque O. Kartah B.E. Ezzoubi A. Hökelek T. El Hadrami E.M. Ben-Tama A. Sebbar N.K. Development of novel antibiotics derived from pyridazine. Synthesis, spectroscopic characterization, in vitro antimicrobial activity and molecular docking studies. J. Mol. Struct. 2024 1314 138747 10.1016/j.molstruc.2024.138747
    [Google Scholar]
  3. Ellouz M. Ihammi A. Baraich A. Farihi A. Addichi D. Loughmari S. Sebbar N.K. Bouhrim M. A Mothana R. M Noman O. Eto B. Chigr F. Chigr M. Synthesis and in silico analysis of new polyheterocyclic molecules derived from [1,4]-benzoxazin-3-one and their inhibitory effect against pancreatic α-amylase and intestinal α-glucosidase. Molecules 2024 29 13 3086 10.3390/molecules29133086 38999038
    [Google Scholar]
  4. Liu Y. Zhao S. Zhang H. Wang M. Run M. Synthesis, polymerization, and thermal properties of benzoxazine based on p-aminobenzonitrile. Thermochim. Acta 2012 549 42 48 10.1016/j.tca.2012.09.017
    [Google Scholar]
  5. Putta V.P.R.K. Vodnala N. Gujjarappa R. Tyagi U. Garg A. Gupta S. Pujar P.P. Malakar C.C. Reagent-controlled divergent synthesis of 2- amino-1,3-benzoxazines and 2-amino-1,3-benzothiazines. J. Org. Chem. 2020 85 2 380 396 10.1021/acs.joc.9b02384 31825620
    [Google Scholar]
  6. Liu Y. Yuan L. Liang G. Gu A. Synthesis of new biobased benzoxazine through green strategy and its polybenzoxazine resin with high thermal resistance and mechanical strength. J. Polym. Sci. 2023 61 13 1279 1288 10.1002/pol.20220744
    [Google Scholar]
  7. Zhou X. Fu F. Shen M. Li Q. Liu H. Song Z. Research progress of bio-based polybenzoxazine materials. Adv. Sustain. Syst. 2024 8 2 2300372 10.1002/adsu.202300372
    [Google Scholar]
  8. Dilesh I. Chourasia O. Limaye S. Synthesis, characterization, of 2H-3-aryl-3,4-dihydro-1, 3-chlorobenzoxazine derivatives of benzoxazoline, antimicrobial activity and PC model computational studies. Res. J. Pharma. Sci. 2013 2 17 25
    [Google Scholar]
  9. Nadeem S. Ruhi A. Shamsher M.A. Waqar A. Pharmacological profile of benzoxazines. A short review. J. Chem. Pharm. Res. 2010 2 309
    [Google Scholar]
  10. Hietala P.K. Virtanen A.I. Norén B. Levitin N.E. Westin G. Precursors of benzoxazolinone in rye plants. II. Precursor I, the glucoside. Acta Chem. Scand. 1960 14 502 504 10.3891/acta.chem.scand.14‑0502
    [Google Scholar]
  11. Nagao T. Otsuka H. Kohda H. Sato T. Yamasaki K. Benzoxazinones from Coix lachryma-jobi var. ma-yuen. Phytochemistry 1985 24 12 2959 2962 10.1016/0031‑9422(85)80035‑2
    [Google Scholar]
  12. Hartenstein H. Sicker D. (2R)-2-β-d-Glucopyranosyloxy-4-hydroxy-2h-1,4-benzoxazin- 3(4h)-one from Secale cereale. Phytochemistry 1994 35 3 827 828 10.1016/S0031‑9422(00)90618‑6 7765693
    [Google Scholar]
  13. Minami Y. Yoshida K. Azuma R. Saeki M. Otani T. Structure of an aromatization product of C-1027 chromophore. Tetrahedron Lett. 1993 34 16 2633 2636 10.1016/S0040‑4039(00)77643‑X
    [Google Scholar]
  14. Sebille S. Tullio P. Boverie S. Antoine M.H. Lebrun P. Pirotte B. Recent developments in the chemistry of potassium channel activators: The cromakalim analogs. Curr. Med. Chem. 2004 11 9 1213 1222 10.2174/0929867043365378 15134515
    [Google Scholar]
  15. Borate H.B. Maujan S.R. Sawargave S.P. Chandavarkar M.A. Vaiude S.R. Joshi V.A. Wakharkar R.D. Iyer R. Kelkar R.G. Chavan S.P. Kunte S.S. Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-Candida agents. Bioorg. Med. Chem. Lett. 2010 20 2 722 725 10.1016/j.bmcl.2009.11.071 19963383
    [Google Scholar]
  16. Fringuelli R. Pietrella D. Schiaffella F. Guarraci A. Perito S. Bistoni F. Vecchiarelli A. Anti-Candida albicans properties of novel benzoxazine analogues. Bioorg. Med. Chem. 2002 10 6 1681 1686 10.1016/S0968‑0896(02)00038‑X 11937326
    [Google Scholar]
  17. Hirata T. Saito H. Tomioka H. Sato K. Jidoi J. Hosoe K. Hidaka T. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1995 39 10 2295 2303 10.1128/AAC.39.10.2295 8619585
    [Google Scholar]
  18. Štefanič P. Simončič Z. Breznik M. Plavec J. Anderluh M. Addicks E. Giannis A. Kikelj D. Conformationally tailored N-[(2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)carbonyl]proline templates as molecular tools for the design of peptidomimetics. Design and synthesis of fibrinogen receptor antagonists. Org. Biomol. Chem. 2004 2 10 1511 1517 10.1039/B400490F 15136808
    [Google Scholar]
  19. Das B.C. Madhukumar A.V. Anguiano J. Mani S. Design, synthesis and biological evaluation of 2H-benzo[b][1,4] oxazine derivatives as hypoxia targeted compounds for cancer therapeutics. Bioorg. Med. Chem. Lett. 2009 19 15 4204 4206 10.1016/j.bmcl.2009.05.110 19515559
    [Google Scholar]
  20. Yamamoto T. Hori M. Watanabe I. Tsutsui H. Harada K. Ikeda S. Maruo J. Morita T. Ohtaka H. Synthesis and quantitative structure-activity relationships of N-(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl)guanidines as Na/H exchange inhibitors. Chem. Pharm. Bull. 1998 46 11 1716 1723 10.1248/cpb.46.1716 9845955
    [Google Scholar]
  21. Kajino M. Shibouta Y. Nishikawa K. Meguro K. Synthesis and biological activities of new 2-substituted 1,4-benzoxazine derivatives. Chem. Pharm. Bull. 1991 39 11 2896 2905 10.1248/cpb.39.2896 1799938
    [Google Scholar]
  22. Huang M.Z. Luo F.X. Mo H.B. Ren Y.G. Wang X.G. Ou X.M. Lei M.X. Liu A.P. Huang L. Xu M.C. Synthesis and herbicidal activity of isoindoline-1,3-dione substituted benzoxazinone derivatives containing a carboxylic ester group. J. Agric. Food Chem. 2009 57 20 9585 9592 10.1021/jf901897f 19772294
    [Google Scholar]
  23. Takemi F. Michihide S. Ken-ichi I. Hidenori S. Tetsuya T. The antiemetic profile of Y-25130, a new selective 5-HT3 receptor antagonist. Eur. J. Pharmacol. 1991 196 3 299 305 10.1016/0014‑2999(91)90443‑T 1654255
    [Google Scholar]
  24. Tobia A. Falotico R. Simon D. Combs D. Moore J. Bell S. Rosenthale M. Bemoradan: A novel orally potent positive inotrope/peripheral vasodilator with beneficial hemodynamics in congestive heart failure patients. Eur. J. Pharmacol. 1990 183 3 776 777 10.1016/0014‑2999(90)92583‑5
    [Google Scholar]
  25. Chacun-Lefevre L. Buon C. Bouyssou P. Coudert G. Synthesis of 3-substituted-4H-1,4-benzoxazines. Tetrahedron Lett. 1998 39 32 5763 5764 10.1016/S0040‑4039(98)01201‑5
    [Google Scholar]
  26. Bhadra S. Adak L. Samanta S. Maidul Islam A.K.M. Mukherjee M. Ranu B.C. Alumina-supported Cu(II), a versatile and recyclable catalyst for regioselective ring opening of aziridines and epoxides and subsequent cyclization to functionalized 1,4-benzoxazines and 1,4-benzodioxanes. J. Org. Chem. 2010 75 24 8533 8541 10.1021/jo101916e 21070034
    [Google Scholar]
  27. López-Iglesias M. Busto E. Gotor V. Gotor-Fernández V. Chemoenzymatic asymmetric synthesis of 1,4-benzoxazine derivatives: application in the synthesis of a levofloxacin precursor. J. Org. Chem. 2015 80 8 3815 3824 10.1021/acs.joc.5b00056 25786159
    [Google Scholar]
  28. Choudhary G. Naganaboina R.T. Peddinti R.K. Expedient synthesis of novel 1,4-benzoxazine and butenolide derivatives. RSC Advances 2014 4 35 17969 17979 10.1039/C4RA01736F
    [Google Scholar]
  29. Iakovou K. Kazanis M. Vavayannis A. Bruni G. Romeo M.R. Massarelli P. Teramoto S. Fujiki H. Mori T. Synthesis of oxypropanolamine derivatives of 3,4-dihydro-2H-1,4-benzoxazine, β-adrenergic affinity, inotropic, chronotropic and coronary vasodilating activities. Eur. J. Med. Chem. 1999 34 11 903 917 10.1016/S0223‑5234(99)00109‑9 10889316
    [Google Scholar]
  30. Ilaš J. Anderluh P.Š. Dolenc M.S. Kikelj D. Recent advances in the synthesis of 2H-1,4-benzoxazin-3-(4H)-ones and 3,4-dihydro-2H-1,4-benzoxazines. Tetrahedron 2005 61 31 7325 7348 10.1016/j.tet.2005.05.037
    [Google Scholar]
  31. Kuroita T. Ikebe T. Murakami S. Takehara S. Kawakita T. N-(2-pyrrolidinylmethyl)benzoxazine-8-carboxamides exhibiting high affinities for All of D2, 5-HT1 A, and 5-HT2 receptors. Bioorg. Med. Chem. Lett. 1995 5 12 1245 1250 10.1016/0960‑894X(95)00197‑2
    [Google Scholar]
  32. Kuroita T. Sakamori M. Kawakita T. Design and synthesis of 6-chloro-3,4-dihydro-4-methyl-2H-1,4-benzoxazine-8-carboxamide derivatives as potent serotonin-3 (5-HT3) receptor antagonists. Chem. Pharm. Bull. 1996 44 4 756 764 10.1248/cpb.44.756 8681408
    [Google Scholar]
  33. Reddy C.R. Vijeender K. Bhusan P.B. Madhavi P.P. Chandrasekhar S. Reductive N-alkylation of aromatic amines and nitro compounds with nitriles using polymethylhydrosiloxane. Tetrahedron Lett. 2007 48 15 2765 2768 10.1016/j.tetlet.2007.02.050
    [Google Scholar]
  34. Bunce R.A. Herron D.M. Hale L.Y. Dihydrobenzoxazines and tetrahydroquinoxalines by a tandem reduction‐reductive amination reaction. J. Heterocycl. Chem. 2003 40 6 1031 1039 10.1002/jhet.5570400611
    [Google Scholar]
  35. Schneider R. Fort Y. Omar-Amrani R. Novel synthetic strategy of Narylated heterocycles via sequential palladium-catalyzed intra-and inter arylamination reactions. Synthesis 2004 2004 15 2527 2534 10.1055/s‑2004‑831205
    [Google Scholar]
  36. Bower J.F. Szeto P. Gallagher T. Enantiopure 1,4-benzoxazines via 1,2-cyclic sulfamidates. Synthesis of levofloxacin. Org. Lett. 2007 9 17 3283 3286 10.1021/ol0712475 17661473
    [Google Scholar]
  37. Yin B.L. Yang Z.M. Hu T.S. Wu Y.L. Molecular diversity of tonghaosu. Synthesis of lactam-containing tonghaosu analogs. Synthesis 2003 2003 13 1995 2000
    [Google Scholar]
  38. Beifuss U. Malakar C. Merisor E. Conrad J. MoO2Cl2 (DMF) 2-catalyzed domino reactions of ω-nitro alkenes to 3,4-dihydro-2H-1,4-benzothiazines and other heterocycles. Synlett 2010 2010 12 1766 1770 10.1055/s‑0030‑1258119
    [Google Scholar]
  39. Mizar P. Myrboh B. Synthesis of substituted 4-(3-alkyl-1,2,4-oxadiazol-5-ylmethyl)-3,4-dihydro-2H-1,4-benzoxazines and 4-(1H-benzimidazol-2-ylmethyl)-3,4-dihydro-2H-1,4-benzoxazines. Tetrahedron Lett. 2006 47 44 7823 7826 10.1016/j.tetlet.2006.08.029
    [Google Scholar]
  40. Matsumoto Y. Tsuzuki R. Matsuhisa A. Takayama K. Yoden T. Uchida W. Asano M. Fujita S. Yanagisawa I. Fujikura T. Novel potassium channel activators: Synthesis and structure-activity relationship studies of 3,4-dihydro-2H-1,4-benzoxazine derivatives. Chem. Pharm. Bull. 1996 44 1 103 114 10.1248/cpb.44.103 8582029
    [Google Scholar]
  41. Chen D. Shen G. Bao W. An efficient cascade synthesis of various 2H-1,4-benzoxazin-3-(4H)-ones from o-halophenols and 2-halo-amides catalyzed by CuI. Org. Biomol. Chem. 2009 7 19 4067 4073 10.1039/b906210f 19763313
    [Google Scholar]
  42. Aschan O. Ueber die Einwirkung von Chloracetylchlorid auf o ‐Amidophenol. Ber. Dtsch. Chem. Ges. 1887 20 1 1523 1524 10.1002/cber.188702001333
    [Google Scholar]
  43. Kirk K.L. Cohen L.A. Intramolecular aminolysis of amides. Effects of electronic variation in the attacking and leaving groups. J. Am. Chem. Soc. 1972 94 23 8142 8147 10.1021/ja00778a033
    [Google Scholar]
  44. Macías F.A. Marín D. Oliveros-Bastidas A. Chinchilla D. Simonet A.M. Molinillo J.M.G. Isolation and synthesis of allelochemicals from gramineae: Benzoxazinones and related compounds. J. Agric. Food Chem. 2006 54 4 991 1000 10.1021/jf050896x 16478208
    [Google Scholar]
  45. Zhou P. Guan M. Zhang J. Xu F. Zhao Y. Facile synthesis of benzoxazinone derivatives via palladium catalyzed intramolecular amination. Youji Huaxue 2017 37 8 2028 2033 10.6023/cjoc201703012
    [Google Scholar]
  46. Liang W. Min L.J. Han L. Liu X.H. Recent advances on synthesis of 1,4-benzoxazines and its derivatives. Curr. Org. Chem. 2021 25 23 2840 2855 10.2174/1385272825666211117154031
    [Google Scholar]
  47. Dabholkar V.V. Gavande R.P. Synthesis and biological studies of triazolo-/thiadiazolo-benzoxazines. Acta Pol. Pharm. 2012 69 2 247 252 22568038
    [Google Scholar]
  48. Dong K. Jin X.L. Chen S. Wu L.Z. Liu Q. Controllable synthesis of 2- and 3-aryl-benzomorpholines from 2-aminophenols and 4-vinylphenols. Chem. Commun. 2020 56 57 7941 7944 10.1039/D0CC02662J 32531007
    [Google Scholar]
  49. Iwanami Y. The reaction of acetylenecarboxylic acid with amines. XV. Reaffirmation of the enamine structure facilitated by intramolecular hydrogen bonding common to the reaction products. Bull. Chem. Soc. Jpn. 1971 44 5 1311 1313 10.1246/bcsj.44.1311
    [Google Scholar]
  50. Sen A. Takenaka K. Sasai H. Enantioselective aza-wacker-type cyclization promoted by Pd-SPRIX Catalyst. Org. Lett. 2018 20 21 6827 6831 10.1021/acs.orglett.8b02946 30354176
    [Google Scholar]
  51. Liu G. Stahl S.S. Two-faced reactivity of alkenes: Cis- versus trans-aminopalladation in aerobic Pd-catalyzed intramolecular aza-Wacker reactions. J. Am. Chem. Soc. 2007 129 19 6328 6335 10.1021/ja070424u 17439217
    [Google Scholar]
  52. Ye X. Liu G. Popp B.V. Stahl S.S. Mechanistic studies of Wacker-type intramolecular aerobic oxidative amination of alkenes catalyzed by Pd(OAc)2/pyridine. J. Org. Chem. 2011 76 4 1031 1044 10.1021/jo102338a 21250706
    [Google Scholar]
  53. Choudhary G. Peddinti R.K. Introduction of a clean and promising protocol for the synthesis of β-amino-acrylates and 1,4-benzoheterocycles: An emerging innovation. Green Chem. 2011 13 11 3290 3299 10.1039/c1gc15701a
    [Google Scholar]
  54. Woydowski K. Liebscher J. Synthesis of optically active 1,4-benzoxazinones and 1,5-benzoxazepinones by regiocontrolled ring transformations of oxirane carboxylic acids and esters with aromatic o-hydroxyarylamines. Tetrahedron 1999 55 30 9205 9220 10.1016/S0040‑4020(99)00488‑3
    [Google Scholar]
  55. Torres-Pastor M.Á. Espro C. Selva M. Perosa A. Romero Reyes A.A. Osman S.M. Luque R. Rodríguez-Padrón D. Glycerol valorization towards a benzoxazine derivative through a milling and microwave sequential strategy. Molecules 2022 27 3 632 10.3390/molecules27030632 35163895
    [Google Scholar]
  56. Wolfer J. Bekele T. Abraham C.J. Dogo-Isonagie C. Lectka T. Catalytic, asymmetric synthesis of 1,4-benzoxazinones: A remarkably enantioselective route to α-amino acid derivatives from o-benzoquinone imides. Angew. Chem. Int. Ed. 2006 45 44 7398 7400 10.1002/anie.200602801 17036371
    [Google Scholar]
  57. Zidar N. Kikelj D. A convenient synthesis of 3,4-dihydro-1,4-benzoxazin-2-ones. Tetrahedron 2008 64 24 5756 5761 10.1016/j.tet.2008.04.010
    [Google Scholar]
  58. Jaiswal P.K. Sharma V. Prikhodko J. Mashevskaya I.V. Chaudhary S. “On water” ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo[1,4]oxazines: First application to the synthesis of anticancer indole alkaloid, Cephalandole A. Tetrahedron Lett. 2017 58 22 2077 2083 10.1016/j.tetlet.2017.03.048
    [Google Scholar]
  59. Feng G. Wu J. Dai W.M. One-pot regioselective annulation toward 3,4-dihydro-3-oxo-2H-1,4-benzoxazine scaffolds under controlled microwave heating. Tetrahedron 2006 62 19 4635 4642 10.1016/j.tet.2005.12.059
    [Google Scholar]
  60. Zuo H. Meng L. Ghate M. Hwang K.H. Kweon Cho Y. Chandrasekhar S. Raji Reddy C. Shin D.S. Microwave-assisted one-pot synthesis of benzo[b][1,4]oxazin-3(4H)-ones via Smiles rearrangement. Tetrahedron Lett. 2008 49 23 3827 3830 10.1016/j.tetlet.2008.03.120
    [Google Scholar]
  61. Filimonov S.I. Chirkova Z.V. Abramov I.G. Firgang S.I. Stashina G.A. Synthesis of novel substituted 4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazine- 6,7-dicarbonitriles. Heterocycles 2011 83 755 763 10.3987/COM‑10‑12128
    [Google Scholar]
  62. Rostami H. Shiri L. One-pot multicomponent synthesis of pyrrolo[1,2-d][1,4]benzoxazines and pyrrolo[1,2-a]pyrazines in water catalyzed by Fe3O4@SiO2@L-arginine-SA magnetic nanoparticles. Curr. Org. Synth. 2020 17 6 473 482 10.2174/1573409916666200128163047 32003675
    [Google Scholar]
  63. Liu Z. Chen Y. Efficient synthesis of 2,3-dihydro-1,4-benzoxazines via intramolecular copper-catalyzed O-arylation. Tetrahedron Lett. 2009 50 27 3790 3793 10.1016/j.tetlet.2009.04.055
    [Google Scholar]
  64. Wang L. Liu J. Tian H. Qian C. Ytterbium triflate catalyzed heterocyclization of 1,2-phenylenediamines and alkyl oxalates under solvent-free conditions via phillips reaction. A facile synthesis of quinoxaline-2,3-diones derivatives. Synth. Commun. 2004 34 8 1349 1357 10.1081/SCC‑120030683
    [Google Scholar]
  65. Smissman E.E. Corbett M.D. Syntheses of 4-acylamido-1,4-benzoxazine-2,3-diones and 4-(p-toluenesulfonamido)-1,4-benzoxazine-2,3-dione. J. Org. Chem. 1972 37 11 1704 1707 10.1021/jo00976a006
    [Google Scholar]
  66. Largeron M. Dupuy H. Fleury M.B. Novel 1,4-benzoxazine derivatives of pharmacological interest. Electrochemical and chemical syntheses. Tetrahedron 1995 51 17 4953 4968 10.1016/0040‑4020(95)98693‑C
    [Google Scholar]
  67. Sánchez I. López N. Pujol M.D. New synthesis of methylfuro [3, 4-b][1,4] benzoxazine as an intermediate in the preparation of polycyclic compounds. ARKIVOC 2006 1 81 88
    [Google Scholar]
  68. Rahimi S. Soleimani E. Synthesis of 2-substituted benzimidazole, coumarin, benzo[b][1,4]oxazin and dihydropyrimidinone derivatives using core-shell structured Fe3O4@SiO2-ZnCl2 nanoparticles as an effective catalyst. Results in Chemistry 2020 2 100060 10.1016/j.rechem.2020.100060
    [Google Scholar]
  69. Touzeau F. Arrault A. Guillaumet G. Scalbert E. Pfeiffer B. Rettori M.C. Renard P. Mérour J.Y. Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives. J. Med. Chem. 2003 46 10 1962 1979 10.1021/jm021050c 12723959
    [Google Scholar]
  70. Zhu L. Ren X. Du J. Wu J.H. Tan J.P. Che J. Pan J. Wang T. A transition-metal-free multicomponent reaction towards constructing chiral 2 H -1,4-benzoxazine scaffolds. Green Chem. 2020 22 21 7506 7512 10.1039/D0GC02134B
    [Google Scholar]
  71. Ghanbari M. Jadidi K. Mehrdad M. Assempour N. A simple route for the synthesis of novel 1,4-benzoxazine derivatives by Baeyer–Villiger oxidation reaction. Tetrahedron 2016 72 29 4355 4360 10.1016/j.tet.2016.05.086
    [Google Scholar]
  72. Cho H. Iwama Y. Sugimoto K. Mori S. Tokuyama H. Regioselective synthesis of heterocycles containing nitrogen neighboring an aromatic ring by reductive ring expansion using diisobutylaluminum hydride and studies on the reaction mechanism. J. Org. Chem. 2010 75 3 627 636 10.1021/jo902177p 20039606
    [Google Scholar]
  73. Silva J.F.M. Garden S.J. Pinto A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc. 2001 12 3 273 324 10.1590/S0103‑50532001000300002
    [Google Scholar]
  74. Chaudhari M.B. Chaudhary A. Kumar V. Gnanaprakasam B. The rearrangement of peroxides for the construction of fluorophoric 1,4-benzoxazin- 3-one derivatives. Org. Lett. 2019 21 6 1617 1621 10.1021/acs.orglett.9b00155 30794417
    [Google Scholar]
  75. Praveena Devi C.B. Vijay K. Hari Babu B. Adil S.F. Mujahid Alam M. Vijjulatha M. Ansari M.B. CuSO4/sodium ascorbate catalysed synthesis of benzosuberone and 1,2,3-triazole conjugates: Design, synthesis and in vitro anti-proliferative activity. J. Saudi Chem. Soc. 2019 23 7 980 991 10.1016/j.jscs.2019.05.002
    [Google Scholar]
  76. Sebbar N.K. Mekhzoum M.E.M. Essassi E.M. Zerzouf A. Talbaoui A. Bakri Y. Saadi M. Ammari L.E. Novel 1,4-benzothiazine derivatives: Synthesis, crystal structure, and anti-bacterial properties. Res. Chem. Intermed. 2016 42 9 6845 6862 10.1007/s11164‑016‑2499‑6
    [Google Scholar]
  77. Sebbar N.K. Labd M. Mokhtar E. Abdallah B. Zakaria M. Mague T. Synthesis, dft study and antibacterial activity of some isoxazoline derivatives containing 1,4-benzothiazin-3-one nucleus obtained using 1,3-dipolar cycloaddition reaction. Iran. J. Chem. Chem. Eng. 2020 39 53 67
    [Google Scholar]
  78. Perry B. Alexander R. Bennett G. Buckley G. Ceska T. Crabbe T. Dale V. Gowers L. Horsley H. James L. Jenkins K. Crépy K. Kulisa C. Lightfoot H. Lock C. Mack S. Morgan T. Nicolas A.L. Pitt W. Sabin V. Wright S. Achieving multi-isoform PI3K inhibition in a series of substituted 3,4-dihydro-2H-benzo[1,4]oxazines. Bioorg. Med. Chem. Lett. 2008 18 16 4700 4704 10.1016/j.bmcl.2008.06.104 18644721
    [Google Scholar]
  79. Cymerman-Craig J. Rogers W.P. Tate M.E. Chemical constitution and anthelmintic activity. III. Preparation of subtituted phenothiazines and some mono and dicyclic analogues. Aust. J. Chem. 1956 9 3 397 402 10.1071/CH9560397
    [Google Scholar]
  80. Hlimi F. Sebbar N.K. Himmi B. Kitane S. Synthese, reactivite et proprietes biologiques des derives de la 1,4-benzoxazine. Moroccan J. Heterocyclic Chem. 2018 17 1 1 32
    [Google Scholar]
  81. Zhang D. Yang Y. Gao M. Shu W. Wu L. Zhu Y. Wu A. A new route to construct 1,2-dihydroquinoxaline and 1,4-benzoxazine derivatives stereoselectively and its application to novel pyrazolo[1,5-α]quinoxaline oxides. Tetrahedron 2013 69 7 1849 1856 10.1016/j.tet.2012.12.060
    [Google Scholar]
  82. Laude B. Soufiaoui M. Arriau E.J. 1,3-Dipolar cycloadditions II. Addition of Diarylnitrilimines to N-Methyl-Indole. Experimental study and attempt at interpretation. J. Heterocycl. Chem. 1977 14 7 1183 1190 10.1002/jhet.5570140711
    [Google Scholar]
  83. Kitane S. Berrada M. Vebrel J. Laude B. Addition of diarylnitrilimines to N-methylindole. Experimental study and attempt at interpretation. C.R. Acad. Sci. Paris. Series II 1983 14 97 487 489
    [Google Scholar]
  84. Sedqui A. Vebrel J. Laude B. Preliminary results in cycloaddition of diphenylnitrilimine to phosphindole oxides. Chem. Lett. 1984 13 6 965 968 10.1246/cl.1984.965
    [Google Scholar]
  85. Kitane S. Tshiamala K. Laude B. Stereochemistry of cycloaddition of diarylnitrilimines on n-alkyl and dialkyl-1,2-dihydro-1,2-isoquinolines. Chem. Lett. 1985 41 3737 3751
    [Google Scholar]
  86. Hlimi F. Tshiamala K. Vebrel J. Laude B. Reaction of diarylnitrilimines with ethyl 1, 4-benzodioxine-2-carboxylate. Synthesis of 4 ο-hydroxyphenoxy- 1,3-diarylpyrazoles. J. Chem. Res. 1986 7 266 267
    [Google Scholar]
  87. Kavitha N. Anantha Lakshmi P.V. Transition metal complexes supported by ONNN/ONNS bis-bidentate benzoxazine Schiff base: Synthesis, characterization, geometry optimization and non-isothermal kinetic parameters. J. Mol. Struct. 2019 1176 798 814 10.1016/j.molstruc.2018.09.042
    [Google Scholar]
  88. Guguloth V. Synthesis of a novel derivatives of [1,4]benzoxazinone. Rasayan J. Chem. 2021 14 1 448 453 10.31788/RJC.2021.1415938
    [Google Scholar]
  89. Fisher J.F. Meroueh S.O. Mobashery S. Bacterial resistance to β-lactam antibiotics: Compelling opportunism, compelling opportunity. Chem. Rev. 2005 105 2 395 424 10.1021/cr030102i 15700950
    [Google Scholar]
  90. Kaatz G.W. McAleese F. Seo S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother. 2005 49 5 1857 1864 10.1128/AAC.49.5.1857‑1864.2005 15855507
    [Google Scholar]
  91. Dyatkina N.B. Roberts C.D. Keicher J.D. Dai Y. Nadherny J.P. Zhang W. Schmitz U. Kongpachith A. Fung K. Novikov A.A. Lou L. Velligan M. Khorlin A.A. Chen M.S. Minor groove DNA binders as antimicrobial agents. 1. Pyrrole tetraamides are potent antibacterials against vancomycin resistant Enterococci and methicillin resistant Staphylococcus aureus. J. Med. Chem. 2002 45 4 805 817 10.1021/jm010375a 11831893
    [Google Scholar]
  92. Tricarico D. Rolland J.F. Cannone G. Mele A. Cippone V. Laghezza A. Carbonara G. Fracchiolla G. Tortorella P. Loiodice F. Conte Camerino D. Structural nucleotide analogs are potent activators/inhibitors of pancreatic β cell KATP channels: An emerging mechanism supporting their use as antidiabetic drugs. J. Pharmacol. Exp. Ther. 2012 340 2 266 276 10.1124/jpet.111.185835 22028392
    [Google Scholar]
  93. Allen R.C. To Market, To Market-1983. Annu. Rep. Med. Chem. 1984 22 117
    [Google Scholar]
  94. Özden S. Murat Öztürk A. Göker H. Altanlar N. Synthesis and antimicrobial activity of some new 4-hydroxy-2H-1,4-benzoxazin-3(4H)-ones. Farmaco 2000 55 11-12 715 718 10.1016/S0014‑827X(00)00098‑7 11204947
    [Google Scholar]
  95. Alper-Hayta S. Akı-Sener E. Tekiner-Gulbas B. Yıldız I. Temiz-Arpacı O. Yalcın I. Altanlar N. Synthesis, antimicrobial activity and QSARs of new benzoxazine-3-ones. Eur. J. Med. Chem. 2006 41 12 1398 1404 10.1016/j.ejmech.2006.06.011 16996656
    [Google Scholar]
  96. Mukovoz P.P. Slepukhin P.A. Danilova E.A. Aysuvakova O.P. Glinushkin A.P. Synthesis, structure, and biological activity of products of reactions of 3,4-dioxohexane-1,6-dioic acid esters with 2-aminophenol. Russ. J. Gen. Chem. 2018 88 7 1363 1368 10.1134/S1070363218070022
    [Google Scholar]
  97. Tricarico D. Barbieri M. Antonio L. Tortorella P. Loiodice F. Camerino D.C. Dualistic actions of cromakalim and new potent 2 H ‐1,4‐benzoxazine derivatives on the native skeletal muscle K ATP channel. Br. J. Pharmacol. 2003 139 2 255 262 10.1038/sj.bjp.0705233 12770930
    [Google Scholar]
  98. Zhou D. Harrison B.L. Shah U. Andree T.H. Hornby G.A. Scerni R. Schechter L.E. Smith D.L. Sullivan K.M. Mewshaw R.E. Studies toward the discovery of the next generation of antidepressants. Part 5. 3,4-dihydro-2H-benzo[1,4]oxazine derivatives with dual 5-HT1A receptor and serotonin transporter affinity. Bioorg. Med. Chem. Lett. 2006 16 5 1338 1341 10.1016/j.bmcl.2005.11.054 16332439
    [Google Scholar]
  99. Li X. Liu N. Zhang H. Knudson S.E. Slayden R.A. Tonge P.J. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2010 20 21 6306 6309 10.1016/j.bmcl.2010.08.076 20850304
    [Google Scholar]
  100. v B. B S. Gangadhar K H. Sailaja B B.V. Synthesis of new 1,3,4-oxadiazole-1,4-benzoxazinone hybrids as tubulin polymerization inhibiting anticancer agents and their in silico studies. Tetrahedron 2022 124 132979 10.1016/j.tet.2022.132979
    [Google Scholar]
  101. Balakrishna R. Biological activity of newly synthesised compounds of 2-(3- oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)-N-substituted phenyl acetamide and its derivatives. Int. J. Clin. Pharm. Med. Sci 2022 2 14 17
    [Google Scholar]
  102. Benarjee V. Saritha B. Hari Gangadhar K. Sailaja B.B.V. Synthesis of some new 1,4-benzoxazine-pyrazoles in water as EGFR targeting anticancer agents. J. Mol. Struct. 2022 1265 133188 10.1016/j.molstruc.2022.133188
    [Google Scholar]
  103. Krasnov V.P. Vozdvizhenskaya O.A. Baryshnikova M.A. Pershina A.G. Musiyak V.V. Matveeva T.V. Nevskaya K.V. Brikunova O.Y. Gruzdev D.A. Levit G.L. Synthesis and cytotoxic activity of the derivatives of N-(Purin-6-yl)aminopolymethylene carboxylic acids and related compounds. Molecules 2023 28 4 1853 10.3390/molecules28041853 36838839
    [Google Scholar]
  104. Xiang Y. Wang X.H. Yang Q. Tan J.L. Jang H.J. Zuo H. Shin D.S. Rational design, synthesis, and biological activity of N-(1,4-benzoxazinone) acetamide derivatives as potent platelet aggregation inhibitors. Bull. Korean Chem. Soc. 2018 39 2 146 155 10.1002/bkcs.11359
    [Google Scholar]
  105. Yi C. Xing G. Wang S. Li X. Liu Y. Li J. Lin B. Woo A.Y.H. Zhang Y. Pan L. Cheng M. Design, synthesis and biological evaluation of 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one derivatives as potent β2-adrenoceptor agonists. Bioorg. Med. Chem. 2020 28 1 115178 10.1016/j.bmc.2019.115178 31753798
    [Google Scholar]
  106. Fu X. Wenholz D. Chan D.S.H. Black D.S. Kumar N. Rational design, synthesis, and anti-proliferative evaluation of novel 4-Aryl-3,4-Dihydro-2H-1,4-Benzoxazines. Molecules 2023 29 1 166 10.3390/molecules29010166 38202749
    [Google Scholar]
  107. Blattes E. Lockhart B. Lestage P. Schwendimann L. Gressens P. Fleury M.B. Largeron M. Novel 2-alkylamino-1,4-benzoxazine derivatives as potent neuroprotective agents: Structure-activity relationship studies. J. Med. Chem. 2005 48 4 1282 1286 10.1021/jm040874m 15715499
    [Google Scholar]
  108. Bollu R. Palem J.D. Bantu R. Guguloth V. Nagarapu L. Polepalli S. Jain N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem. 2015 89 138 146 10.1016/j.ejmech.2014.10.051 25462234
    [Google Scholar]
  109. Fringuelli R. Giacchè N. Milanese L. Cenci E. Macchiarulo A. Vecchiarelli A. Costantino G. Schiaffella F. Bulky 1,4-benzoxazine derivatives with antifungal activity. Bioorg. Med. Chem. 2009 17 11 3838 3846 10.1016/j.bmc.2009.04.051 19433362
    [Google Scholar]
  110. Shinde M.V. 1,4 Benzoxazine derivatives: Synthesis, in-silico studies and antimicrobial evaluation. Int. J. of Pharm. Sci. 2024 2 8 2932 2945 10.5281/zenodo.13333837
    [Google Scholar]
  111. Chatterjee I. Ali K. Panda G. A synthetic overview of benzoxazines and benzoxazepines as anticancer agents. ChemMedChem 2023 18 5 e202200617 10.1002/cmdc.202200617 36598081
    [Google Scholar]
/content/journals/coc/10.2174/0113852728376259250404151339
Loading
/content/journals/coc/10.2174/0113852728376259250404151339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test