Skip to content
2000
image of Synthesis of Hybrid Thiohemicucurbiturils via Acid-Catalyzed Conversion

Abstract

Thiocrown ethers, thiocalixarenes, and thiocyclodextrins, as important host macrocycles, have been synthesized as crown ether, calixarene, and cyclodextrin derivatives, respectively. They have shown special properties compared with their prototypes. Hemicucurbiturils, as a subset of cucurbiturils, are yet to have their thio-derivatives. In this article, methods for the synthesis of hybrid thiohemicucurbiturils were proposed, and several hybrid thiohemicucurbiturils were formed. The mono ethylene thiourea-substituted hemicucurbituril was formed by simply mixing ethylene thiourea and ethylene urea with formaldehyde in an HCl aqueous solution. The synthesis of more ethylene thioureas-substituted hemicucurbituril by acid-catalyzed conversion of an ethylene thiourea-substituted hemicucurbituril has been presented, which differs from the traditional method for synthesizing hemicucurbituril derivatives. These methods provide alternatives for the synthesis of novel hybrid hemicucurbiturils with more complex structures.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728359596250416065455
2025-05-09
2025-09-16
Loading full text...

Full text loading...

References

  1. Pedersen C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967 89 26 7017 7036 10.1021/ja01002a035
    [Google Scholar]
  2. Steed J.W. First- and second-sphere coordination chemistry of alkali metal crown ether complexes. Coord. Chem. Rev. 2001 215 1 171 221 10.1016/S0010‑8545(01)00317‑4
    [Google Scholar]
  3. Guo J. Lee J. Contescu C.I. Gallego N.C. Pantelides S.T. Pennycook S.J. Moyer B.A. Chisholm M.F. Crown ethers in graphene. Nat. Commun. 2014 5 1 5389 10.1038/ncomms6389 25391367
    [Google Scholar]
  4. Li J. Yim D. Jang W.D. Yoon J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 2017 46 9 2437 2458 10.1039/C6CS00619A 27711665
    [Google Scholar]
  5. Guo K. Liu S. Tu H. Wang Z. Chen L. Lin H. Miao M. Xu J. Liu W. Crown ethers in hydrogenated graphene. Phys. Chem. Chem. Phys. 2021 23 34 18983 18989 10.1039/D1CP03069H 34494634
    [Google Scholar]
  6. Nicoli F. Baroncini M. Silvi S. Groppi J. Credi A. Direct synthetic routes to functionalised crown ethers. Org. Chem. Front. 2021 8 19 5531 5549 10.1039/D1QO00699A 34603737
    [Google Scholar]
  7. Ullah F. Khan T.A. Iltaf J. Anwar S. Khan M.F.A. Khan M.R. Ullah S. Fayyaz ur Rehman, M.; Mustaqeem, M.; Kotwica-Mojzych, K.; Mojzych, M. Heterocyclic crown ethers with potential biological and pharmacological properties: From synthesis to applications. Appl. Sci. (Basel) 2022 12 3 1102 10.3390/app12031102
    [Google Scholar]
  8. Ito R. Ohshimo K. Misaizu F. Intra-host π–π interactions in crown ether complexes revealed by cryogenic ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 2024 26 16 12537 12544 10.1039/D4CP00835A 38619106
    [Google Scholar]
  9. Gutsche C.D. Dhawan B. No K.H. Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc. 1981 103 13 3782 3792 10.1021/ja00403a028
    [Google Scholar]
  10. Ovsyannikov A. Solovieva S. Antipin I. Ferlay S. Coordination polymers based on calixarene derivatives: Structures and properties. Coord. Chem. Rev. 2017 352 151 186 10.1016/j.ccr.2017.09.004
    [Google Scholar]
  11. Chen C.F. Han Y. Triptycene-derived macrocyclic arenes: from calixarenes to helicarenes. Acc. Chem. Res. 2018 51 9 2093 2106 10.1021/acs.accounts.8b00268 30136586
    [Google Scholar]
  12. Kumar R. Sharma A. Singh H. Suating P. Kim H.S. Sunwoo K. Shim I. Gibb B.C. Kim J.S. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 2019 119 16 9657 9721 10.1021/acs.chemrev.8b00605 31306015
    [Google Scholar]
  13. Guérineau V. Rollet M. Viel S. Lepoittevin B. Costa L. Saint-Aguet P. Laurent R. Roger P. Gigmes D. Martini C. Huc V. The synthesis and characterization of giant Calixarenes. Nat. Commun. 2019 10 1 113 10.1038/s41467‑018‑07751‑4 30631073
    [Google Scholar]
  14. Shurpik D.N. Padnya P.L. Stoikov I.I. Cragg P.J. Antimicrobial activity of calixarenes and related macrocycles. Molecules 2020 25 21 5145 10.3390/molecules25215145 33167339
    [Google Scholar]
  15. Liu Z. Dai X. Sun Y. Liu Y. Organic supramolecular aggregates based on water‐soluble cyclodextrins and calixarenes. Aggregate 2020 1 1 31 44 10.1002/agt2.3
    [Google Scholar]
  16. Pan Y.C. Hu X.Y. Guo D.S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew. Chem. Int. Ed. 2021 60 6 2768 2794 10.1002/anie.201916380 31965674
    [Google Scholar]
  17. Crowley P.B. Protein–calixarene complexation: from recognition to assembly. Acc. Chem. Res. 2022 55 15 2019 2032 10.1021/acs.accounts.2c00206 35666543
    [Google Scholar]
  18. Sakovich M. Sokolova D. Alekseev I. Lentin I. Gorbunov A. Malakhova M. Ershov I. Zairov R. Korniltsev I. Podyachev S. Bezzubov S. Kovalev V. Vatsouro I. Enriching calixarene functionality with 1,3-diketone groups. Org. Chem. Front. 2023 10 14 3619 3636 10.1039/D3QO00759F
    [Google Scholar]
  19. Zhang X. Tong S. Zhu J. Wang M.X. Inherently chiral calixarenes by a catalytic enantioselective desymmetrizing cross-dehydrogenative coupling. Chem. Sci. (Camb.) 2023 14 4 827 832 10.1039/D2SC06234H 36755707
    [Google Scholar]
  20. Sreenivasu Mummidivarapu V.V. Joseph R. Pulla Rao C. Kumar Pathak R. Suprareceptors emerging from click chemistry: Comparing the triazole based scaffolds of calixarenes, cyclodextrins, cucurbiturils and pillararenes. Coord. Chem. Rev. 2023 493 215256 10.1016/j.ccr.2023.215256
    [Google Scholar]
  21. Carranza M.E. Elero H.M. Hernández P.J.P. Veglia A.V. Calixarenes and cyclodextrins as off- and on-fluorescence probes for carbazole. Methods Appl. Fluoresc. 2024 12 2 025005 10.1088/2050‑6120/ad326d 38467069
    [Google Scholar]
  22. Gao Y. Guo J. Lai Y. Lin J. Liu J. Ji J. Yin P. Wang W. Zhao H. Chen G. Wang L. Fang X. Polyoxometalate–organic hybrid “calixarenes” as supramolecular hosts. Angew. Chem. Int. Ed. 2024 63 4 e202315691 10.1002/anie.202315691 38038694
    [Google Scholar]
  23. Cramer F. Saenger W. Spatz H.C. Inclusion compounds. XIX. 1a The formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Am. Chem. Soc. 1967 89 1 14 20 10.1021/ja00977a003
    [Google Scholar]
  24. Crini G. Review: a history of cyclodextrins. Chem. Rev. 2014 114 21 10940 10975 10.1021/cr500081p 25247843
    [Google Scholar]
  25. Przybyla M.A. Yilmaz G. Becer C.R. Natural cyclodextrins and their derivatives for polymer synthesis. Polym. Chem. 2020 11 48 7582 7602 10.1039/D0PY01464H
    [Google Scholar]
  26. Poulson B.G. Alsulami Q.A. Sharfalddin A. El Agammy E.F. Mouffouk F. Emwas A.H. Jaremko L. Jaremko M. Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides 2021 3 1 1 31 10.3390/polysaccharides3010001
    [Google Scholar]
  27. Esteso M.A. Romero C.M. Cyclodextrins: Properties and applications. Int. J. Mol. Sci. 2024 25 8 4547 10.3390/ijms25084547 38674132
    [Google Scholar]
  28. Kali G. Haddadzadegan S. Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr. Polym. 2024 324 121500 10.1016/j.carbpol.2023.121500 37985088
    [Google Scholar]
  29. Sehgal V. Pandey S.P. Singh P.K. Prospects of charged cyclodextrins in biomedical applications. Carbohydr. Polym. 2024 323 121348 10.1016/j.carbpol.2023.121348 37940240
    [Google Scholar]
  30. Murray S.G. Hartley F.R. Coordination chemistry of thioethers, selenoethers, and telluroethers in transition-metal complexes. Chem. Rev. 1981 81 4 365 414 10.1021/cr00044a003
    [Google Scholar]
  31. Hu S.X. Liu J.J. Gibson J.K. Li J. Periodic trends in actinyl thio-crown ether complexes. Inorg. Chem. 2018 57 5 2899 2907 10.1021/acs.inorgchem.7b03277 29457895
    [Google Scholar]
  32. Hirabayashi K. Nakashizuka M. Shimizu T. Synthesis, structure, and properties of unsaturated thiacrown ethers possessing sulfonium groups. Chem. Asian J. 2022 17 5 e202101329 10.1002/asia.202101329 35032110
    [Google Scholar]
  33. Odhiambo R.A. Njenga L.W. Synthesis, characterization and photophysical properties of rhenium(I) tricarbonyl complexes with thiacrown ethers. Inorg. Chim. Acta 2024 564 121943 10.1016/j.ica.2024.121943
    [Google Scholar]
  34. Ashram M. Al-Mustafa A. Habashneh A.Y. Mizyed S.A. Al-Sha’er M.A. Synthesis, complexation, in vitro cholinesterase inhibitory activities and molecular docking of azinethiacrown ethers and acyclic thiacrown ethers derived indole. J. Mol. Struct. 2024 1303 137623 10.1016/j.molstruc.2024.137623
    [Google Scholar]
  35. Gutsche C.D. Synthesis of calixarenes and thiacalixarenes. Cham Calixarenes 2001 1 25 10.1007/0‑306‑47522‑7_1
    [Google Scholar]
  36. Lhoták P. Chemistry of thiacalixarenes. Eur. J. Org. Chem. 2004 2004 8 1675 1692 10.1002/ejoc.200300492
    [Google Scholar]
  37. Rojas M.T. Koeniger R. Stoddart J.F. Kaifer A.E. Supported monolayers containing preformed binding sites. synthesis and interfacial binding properties of a thiolated P-cyclodextrin derivative. J. Am. Chem. Soc. 1995 117 1 336 343 10.1021/ja00106a036
    [Google Scholar]
  38. Freeman W.A. Mock W.L. Shih N.Y. Cucurbituril. J. Am. Chem. Soc. 1981 103 24 7367 7368 10.1021/ja00414a070
    [Google Scholar]
  39. Kim J. Jung I.S. Kim S.Y. Lee E. Kang J.K. Sakamoto S. Yamaguchi K. Kim K. New cucurbituril homologues: syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000 122 3 540 541 10.1021/ja993376p
    [Google Scholar]
  40. Jon S.Y. Selvapalam N. Oh D.H. Kang J.K. Kim S.Y. Jeon Y.J. Lee J.W. Kim K. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 2003 125 34 10186 10187 10.1021/ja036536c 12926937
    [Google Scholar]
  41. Lee J.W. Samal S. Selvapalam N. Kim H.J. Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 2003 36 8 621 630 10.1021/ar020254k 12924959
    [Google Scholar]
  42. Ko Y.H. Kim E. Hwang I. Kim K. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem. Commun. (Camb.) 2007 13 1305 1315 10.1039/B615103E 17377666
    [Google Scholar]
  43. Lucas D. Minami T. Iannuzzi G. Cao L. Wittenberg J.B. Anzenbacher P. Jr Isaacs L. Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives. J. Am. Chem. Soc. 2011 133 44 17966 17976 10.1021/ja208229d 21970313
    [Google Scholar]
  44. Kaifer A.E. Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 2014 47 7 2160 2167 10.1021/ar5001204 24884003
    [Google Scholar]
  45. Barbero H. Thompson N.A. Masson E. “Dual layer” self-sorting with cucurbiturils. J. Am. Chem. Soc. 2020 142 2 867 873 10.1021/jacs.9b09751 31833768
    [Google Scholar]
  46. Huang Y. Gao R.H. Liu M. Chen L.X. Ni X.L. Xiao X. Cong H. Zhu Q.J. Chen K. Tao Z. Cucurbit[n]uril‐based supramolecular frameworks assembled through outer‐surface interactions. Angew. Chem. Int. Ed. 2021 60 28 15166 15191 10.1002/anie.202002666 32330344
    [Google Scholar]
  47. Liu Y.H. Zhang Y.M. Yu H.J. Liu Y. Cucurbituril‐based biomacromolecular assemblies. Angew. Chem. Int. Ed. 2021 60 8 3870 3880 10.1002/anie.202009797 32856749
    [Google Scholar]
  48. Mukhopadhyay R.D. Kim K. Cucurbituril curiosities. Nat. Chem. 2023 15 3 438 438 10.1038/s41557‑023‑01141‑0 36805036
    [Google Scholar]
  49. Li Q. Yu Z. Redshaw C. Xiao X. Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem. Soc. Rev. 2024 53 7 3536 3560 10.1039/D3CS00961K 38414424
    [Google Scholar]
  50. Miyahara Y. Goto K. Oka M. Inazu T. Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. Angew. Chem. Int. Ed. 2004 43 38 5019 5022 10.1002/anie.200460764 15384112
    [Google Scholar]
  51. Pichierri F. Density functional study of cucurbituril and its sulfur analogue. Chem. Phys. Lett. 2004 390 1-3 214 219 10.1016/j.cplett.2004.04.006
    [Google Scholar]
  52. Singh M. Parvari G. Botoshansky M. Keinan E. Reany O. The synthetic challenge of thioglycolurils. Eur. J. Org. Chem. 2014 2014 5 933 940 10.1002/ejoc.201301672
    [Google Scholar]
  53. Day A.I. Blanch R.J. Arnold A.P. Lorenzo S. Lewis G.R. Dance I. A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem. Int. Ed. 2002 41 2 275 277 10.1002/1521‑3773(20020118)41:2<275:AID‑ANIE275>3.0.CO;2‑M 12491407
    [Google Scholar]
  54. Liu J.X. Long L.S. Huang R.B. Zheng L.S. Interesting anion-inclusion behavior of cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg. Chem. 2007 46 24 10168 10173 10.1021/ic701236v 17960900
    [Google Scholar]
  55. Aav R. Shmatova E. Reile I. Borissova M. Topić F. Rissanen K. New chiral cyclohexylhemicucurbit[6]uril. Org. Lett. 2013 15 14 3786 3789 10.1021/ol401766a 23841756
    [Google Scholar]
  56. Yawer M.A. Havel V. Sindelar V. A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew. Chem. Int. Ed. 2015 54 1 276 279 10.1002/anie.201409895 25385515
    [Google Scholar]
  57. Lisbjerg M. Nielsen B.E. Milhøj B.O. Sauer S.P.A. Pittelkow M. Anion binding by biotin[6]uril in water. Org. Biomol. Chem. 2015 13 2 369 373 10.1039/C4OB02211D 25407665
    [Google Scholar]
  58. Lisbjerg M. Valkenier H. Jessen B.M. Al-Kerdi H. Davis A.P. Pittelkow M. Biotin[6]uril esters: chloride-selective transmembrane anion carriers employing C—H···anion interactions. J. Am. Chem. Soc. 2015 137 15 4948 4951 10.1021/jacs.5b02306 25851041
    [Google Scholar]
  59. Andersen N.N. Lisbjerg M. Eriksen K. Pittelkow M. Hemicucurbit[ n]urils and their derivatives – synthesis and applications. Isr. J. Chem. 2018 58 3-4 435 448 10.1002/ijch.201700129
    [Google Scholar]
  60. Lisbjerg M. Jessen B.M. Rasmussen B. Nielsen B.E. Madsen A.Ø. Pittelkow M. Discovery of a cyclic 6 + 6 hexamer of d-biotin and formaldehyde. Chem. Sci. (Camb.) 2014 5 7 2647 2650 10.1039/C4SC00990H
    [Google Scholar]
  61. Andersen N.N. Eriksen K. Lisbjerg M. Ottesen M.E. Milhøj B.O. Sauer S.P.A. Pittelkow M. Entropy/enthalpy compensation in anion binding: biotin [6] uril and biotin-l-sulfoxide [6] uril reveal strong solvent dependency. J. Org. Chem. 2019 84 5 2577 2584 10.1021/acs.joc.8b02797 30721069
    [Google Scholar]
  62. Svec J. Necas M. Sindelar V. Bambus[6]uril. Angew. Chem. Int. Ed. 2010 49 13 2378 2381 10.1002/anie.201000420 20217882
    [Google Scholar]
  63. Fiala T. Ludvíková L. Heger D. Švec J. Slanina T. Vetráková L. Babiak M. Nečas M. Kulhánek P. Klán P. Sindelar V. Bambusuril as a one-electron donor for photoinduced electron transfer to methyl viologen in mixed crystals. J. Am. Chem. Soc. 2017 139 7 2597 2603 10.1021/jacs.6b08589 28222609
    [Google Scholar]
  64. Havel V. Sadilová T. Šindelář V. Unsubstituted bambusurils: post-macrocyclization modification of versatile intermediates. ACS Omega 2018 3 4 4657 4663 10.1021/acsomega.8b00497 31458686
    [Google Scholar]
  65. Singh M. Solel E. Keinan E. Reany O. Dual‐functional semithiobambusurils. Chemistry 2015 21 2 536 540 10.1002/chem.201404210 25417852
    [Google Scholar]
  66. Li Y. Li L. Zhu Y. Meng X. Wu A. Solvent effect on pseudopolymorphism of hemicyclohexylcucurbit [6] uril. Cryst. Growth Des. 2009 9 10 4255 4257 10.1021/cg9007262
    [Google Scholar]
  67. Öeren M. Shmatova E. Tamm T. Aav R. Computational and ion mobility MS study of (all-S)-cyclohexylhemicucurbit[6]uril structure and complexes. Phys. Chem. Chem. Phys. 2014 16 36 19198 19205 10.1039/C4CP02202E 25046516
    [Google Scholar]
  68. Kaabel S. Adamson J. Topić F. Kiesilä A. Kalenius E. Öeren M. Reimund M. Prigorchenko E. Lõokene A. Reich H.J. Rissanen K. Aav R. Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution. Chem. Sci. (Camb.) 2017 8 3 2184 2190 10.1039/C6SC05058A 28694954
    [Google Scholar]
  69. Fomitšenko M. Peterson A. Reile I. Cong H. Kaabel S. Prigorchenko E. Järving I. Aav R. A quantitative method for analysis of mixtures of homologues and stereoisomers of hemicucurbiturils that allows us to follow their formation and stability. New J. Chem. 2017 41 6 2490 2497 10.1039/C6NJ03050E
    [Google Scholar]
  70. Kaabel S. Stein R.S. Fomitšenko M. Järving I. Friščić T. Aav R. Size‐control by anion templating in mechanochemical synthesis of hemicucurbiturils in the solid state. Angew. Chem. Int. Ed. 2019 58 19 6230 6234 10.1002/anie.201813431 30664335
    [Google Scholar]
  71. Sindelar V. Fiala T. Synthesis of norbornahemicucurbiturils. Synlett 2013 24 18 2443 2445 10.1055/s‑0033‑1339850
    [Google Scholar]
  72. Zeng Q. Long Q. Lu J. Wang L. You Y. Yuan X. Zhang Q. Ge Q. Cong H. Liu M. Synthesis of a novel aminobenzene-containing hemicucurbituril and its fluorescence spectral properties with ions. Beilstein J. Org. Chem. 2021 17 2840 2847 10.3762/bjoc.17.195 34956406
    [Google Scholar]
  73. Yuan X. Zeng Q. Wang L. You Y. Cen X. Zhang Q. Ge Q. Cong H. Liu M. Synthesis of multi-hybrid hemicucurbiturils. J. Incl. Phenom. Macrocycl. Chem. 2023 103 1-2 57 61 10.1007/s10847‑022‑01176‑9
    [Google Scholar]
  74. You Y. Wang A. Liu M. Synthesis and properties of a new sulfonamide modified hemicucurbituril. Russ. J. Gen. Chem. 2023 93 7 1920 1930 10.1134/S1070363223070289
    [Google Scholar]
  75. Del Mauro A. Lapešová J. Rando C. Šindelář V. Merging Bambus[6]uril and Biotin[6]uril into an enantiomerically pure monofunctionalized hybrid macrocycle. Org. Lett. 2024 26 1 106 109 10.1021/acs.orglett.3c03715 38153981
    [Google Scholar]
  76. Wang L. Han J. Pan R. Yuan X. You Y. Cen X. Zhang Q. Ge Q. Cong H. Liu M. Synthesis of hybrid thiohemicucurbiturils. Tetrahedron Lett. 2022 101 153918 10.1016/j.tetlet.2022.153918
    [Google Scholar]
  77. Gujjarappa R. Khurana R. Fridman N. Keinan E. Reany O. Conformationally adaptive thio-hemicucurbiturils exhibit promiscuous anion binding by induced fit. Cell Rep. Phys. Sci. 2024 5 6 102011 10.1016/j.xcrp.2024.102011
    [Google Scholar]
  78. Kaabel S. Aav R. Templating effects in the dynamic chemistry of cucurbiturils and hemicucurbiturils. Isr. J. Chem. 2018 58 3-4 296 313 10.1002/ijch.201700106
    [Google Scholar]
/content/journals/coc/10.2174/0113852728359596250416065455
Loading
/content/journals/coc/10.2174/0113852728359596250416065455
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test