Skip to content
2000
Volume 30, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Thiocrown ethers, thiocalixarenes, and thiocyclodextrins, as important host macrocycles, have been synthesized as crown ether, calixarene, and cyclodextrin derivatives, respectively. They have shown special properties compared with their prototypes. Hemicucurbiturils, as a subset of cucurbiturils, are yet to have their thio-derivatives. In this article, methods for the synthesis of hybrid thiohemicucurbiturils were proposed, and several hybrid thiohemicucurbiturils were formed. The mono ethylene thiourea-substituted hemicucurbituril was formed by simply mixing ethylene thiourea and ethylene urea with formaldehyde in an HCl aqueous solution. The synthesis of more ethylene thioureas-substituted hemicucurbituril by acid-catalyzed conversion of an ethylene thiourea-substituted hemicucurbituril has been presented, which differs from the traditional method for synthesizing hemicucurbituril derivatives. These methods provide alternatives for the synthesis of novel hybrid hemicucurbiturils with more complex structures.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728359596250416065455
2025-05-09
2025-12-30
Loading full text...

Full text loading...

References

  1. PedersenC.J. Cyclic polyethers and their complexes with metal salts.J. Am. Chem. Soc.196789267017703610.1021/ja01002a035
    [Google Scholar]
  2. SteedJ.W. First- and second-sphere coordination chemistry of alkali metal crown ether complexes.Coord. Chem. Rev.2001215117122110.1016/S0010‑8545(01)00317‑4
    [Google Scholar]
  3. GuoJ. LeeJ. ContescuC.I. GallegoN.C. PantelidesS.T. PennycookS.J. MoyerB.A. ChisholmM.F. Crown ethers in graphene.Nat. Commun.201451538910.1038/ncomms6389 25391367
    [Google Scholar]
  4. LiJ. YimD. JangW.D. YoonJ. Recent progress in the design and applications of fluorescence probes containing crown ethers.Chem. Soc. Rev.20174692437245810.1039/C6CS00619A 27711665
    [Google Scholar]
  5. GuoK. LiuS. TuH. WangZ. ChenL. LinH. MiaoM. XuJ. LiuW. Crown ethers in hydrogenated graphene.Phys. Chem. Chem. Phys.20212334189831898910.1039/D1CP03069H 34494634
    [Google Scholar]
  6. NicoliF. BaronciniM. SilviS. GroppiJ. CrediA. Direct synthetic routes to functionalised crown ethers.Org. Chem. Front.20218195531554910.1039/D1QO00699A 34603737
    [Google Scholar]
  7. UllahF. KhanT.A. IltafJ. AnwarS. KhanM.F.A. KhanM.R. UllahS. Fayyaz ur Rehman, M.; Mustaqeem, M.; Kotwica-Mojzych, K.; Mojzych, M. Heterocyclic crown ethers with potential biological and pharmacological properties: From synthesis to applications.Appl. Sci. (Basel)2022123110210.3390/app12031102
    [Google Scholar]
  8. ItoR. OhshimoK. MisaizuF. Intra-host π–π interactions in crown ether complexes revealed by cryogenic ion mobility-mass spectrometry.Phys. Chem. Chem. Phys.20242616125371254410.1039/D4CP00835A 38619106
    [Google Scholar]
  9. GutscheC.D. DhawanB. NoK.H. MuthukrishnanR. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol.J. Am. Chem. Soc.1981103133782379210.1021/ja00403a028
    [Google Scholar]
  10. OvsyannikovA. SolovievaS. AntipinI. FerlayS. Coordination polymers based on calixarene derivatives: Structures and properties.Coord. Chem. Rev.201735215118610.1016/j.ccr.2017.09.004
    [Google Scholar]
  11. ChenC.F. HanY. Triptycene-derived macrocyclic arenes: from calixarenes to helicarenes.Acc. Chem. Res.20185192093210610.1021/acs.accounts.8b00268 30136586
    [Google Scholar]
  12. KumarR. SharmaA. SinghH. SuatingP. KimH.S. SunwooK. ShimI. GibbB.C. KimJ.S. Revisiting fluorescent calixarenes: from molecular sensors to smart materials.Chem. Rev.2019119169657972110.1021/acs.chemrev.8b00605 31306015
    [Google Scholar]
  13. GuérineauV. RolletM. VielS. LepoittevinB. CostaL. Saint-AguetP. LaurentR. RogerP. GigmesD. MartiniC. HucV. The synthesis and characterization of giant Calixarenes.Nat. Commun.201910111310.1038/s41467‑018‑07751‑4 30631073
    [Google Scholar]
  14. ShurpikD.N. PadnyaP.L. StoikovI.I. CraggP.J. Antimicrobial activity of calixarenes and related macrocycles.Molecules20202521514510.3390/molecules25215145 33167339
    [Google Scholar]
  15. LiuZ. DaiX. SunY. LiuY. Organic supramolecular aggregates based on water‐soluble cyclodextrins and calixarenes.Aggregate202011314410.1002/agt2.3
    [Google Scholar]
  16. PanY.C. HuX.Y. GuoD.S. Biomedical Applications of Calixarenes: State of the Art and Perspectives.Angew. Chem. Int. Ed.20216062768279410.1002/anie.201916380 31965674
    [Google Scholar]
  17. CrowleyP.B. Protein–calixarene complexation: from recognition to assembly.Acc. Chem. Res.202255152019203210.1021/acs.accounts.2c00206 35666543
    [Google Scholar]
  18. SakovichM. SokolovaD. AlekseevI. LentinI. GorbunovA. MalakhovaM. ErshovI. ZairovR. KorniltsevI. PodyachevS. BezzubovS. KovalevV. VatsouroI. Enriching calixarene functionality with 1,3-diketone groups.Org. Chem. Front.202310143619363610.1039/D3QO00759F
    [Google Scholar]
  19. ZhangX. TongS. ZhuJ. WangM.X. Inherently chiral calixarenes by a catalytic enantioselective desymmetrizing cross-dehydrogenative coupling.Chem. Sci. (Camb.)202314482783210.1039/D2SC06234H 36755707
    [Google Scholar]
  20. Sreenivasu MummidivarapuV.V. JosephR. Pulla RaoC. Kumar PathakR. Suprareceptors emerging from click chemistry: Comparing the triazole based scaffolds of calixarenes, cyclodextrins, cucurbiturils and pillararenes.Coord. Chem. Rev.202349321525610.1016/j.ccr.2023.215256
    [Google Scholar]
  21. CarranzaM.E. EleroH.M. HernándezP.J.P. VegliaA.V. Calixarenes and cyclodextrins as off- and on-fluorescence probes for carbazole.Methods Appl. Fluoresc.202412202500510.1088/2050‑6120/ad326d 38467069
    [Google Scholar]
  22. GaoY. GuoJ. LaiY. LinJ. LiuJ. JiJ. YinP. WangW. ZhaoH. ChenG. WangL. FangX. Polyoxometalate–organic hybrid “calixarenes” as supramolecular hosts.Angew. Chem. Int. Ed.2024634e20231569110.1002/anie.202315691 38038694
    [Google Scholar]
  23. CramerF. SaengerW. SpatzH.C. Inclusion compounds. XIX. 1a The formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics.J. Am. Chem. Soc.1967891142010.1021/ja00977a003
    [Google Scholar]
  24. CriniG. Review: a history of cyclodextrins.Chem. Rev.201411421109401097510.1021/cr500081p 25247843
    [Google Scholar]
  25. PrzybylaM.A. YilmazG. BecerC.R. Natural cyclodextrins and their derivatives for polymer synthesis.Polym. Chem.202011487582760210.1039/D0PY01464H
    [Google Scholar]
  26. PoulsonB.G. AlsulamiQ.A. SharfalddinA. El AgammyE.F. MouffoukF. EmwasA.H. JaremkoL. JaremkoM. Cyclodextrins: Structural, chemical, and physical properties, and applications.Polysaccharides20213113110.3390/polysaccharides3010001
    [Google Scholar]
  27. EstesoM.A. RomeroC.M. Cyclodextrins: Properties and applications.Int. J. Mol. Sci.2024258454710.3390/ijms25084547 38674132
    [Google Scholar]
  28. KaliG. HaddadzadeganS. Bernkop-SchnürchA. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products.Carbohydr. Polym.202432412150010.1016/j.carbpol.2023.121500 37985088
    [Google Scholar]
  29. SehgalV. PandeyS.P. SinghP.K. Prospects of charged cyclodextrins in biomedical applications.Carbohydr. Polym.202432312134810.1016/j.carbpol.2023.121348 37940240
    [Google Scholar]
  30. MurrayS.G. HartleyF.R. Coordination chemistry of thioethers, selenoethers, and telluroethers in transition-metal complexes.Chem. Rev.198181436541410.1021/cr00044a003
    [Google Scholar]
  31. HuS.X. LiuJ.J. GibsonJ.K. LiJ. Periodic trends in actinyl thio-crown ether complexes.Inorg. Chem.20185752899290710.1021/acs.inorgchem.7b03277 29457895
    [Google Scholar]
  32. HirabayashiK. NakashizukaM. ShimizuT. Synthesis, structure, and properties of unsaturated thiacrown ethers possessing sulfonium groups.Chem. Asian J.2022175e20210132910.1002/asia.202101329 35032110
    [Google Scholar]
  33. OdhiamboR.A. NjengaL.W. Synthesis, characterization and photophysical properties of rhenium(I) tricarbonyl complexes with thiacrown ethers.Inorg. Chim. Acta202456412194310.1016/j.ica.2024.121943
    [Google Scholar]
  34. AshramM. Al-MustafaA. HabashnehA.Y. MizyedS.A. Al-Sha’erM.A. Synthesis, complexation, in vitro cholinesterase inhibitory activities and molecular docking of azinethiacrown ethers and acyclic thiacrown ethers derived indole.J. Mol. Struct.2024130313762310.1016/j.molstruc.2024.137623
    [Google Scholar]
  35. GutscheC.D. Synthesis of calixarenes and thiacalixarenes.ChamCalixarenes200112510.1007/0‑306‑47522‑7_1
    [Google Scholar]
  36. LhotákP. Chemistry of thiacalixarenes.Eur. J. Org. Chem.2004200481675169210.1002/ejoc.200300492
    [Google Scholar]
  37. RojasM.T. KoenigerR. StoddartJ.F. KaiferA.E. Supported monolayers containing preformed binding sites. synthesis and interfacial binding properties of a thiolated P-cyclodextrin derivative.J. Am. Chem. Soc.1995117133634310.1021/ja00106a036
    [Google Scholar]
  38. FreemanW.A. MockW.L. ShihN.Y. Cucurbituril.J. Am. Chem. Soc.1981103247367736810.1021/ja00414a070
    [Google Scholar]
  39. KimJ. JungI.S. KimS.Y. LeeE. KangJ.K. SakamotoS. YamaguchiK. KimK. New cucurbituril homologues: syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8).J. Am. Chem. Soc.2000122354054110.1021/ja993376p
    [Google Scholar]
  40. JonS.Y. SelvapalamN. OhD.H. KangJ.K. KimS.Y. JeonY.J. LeeJ.W. KimK. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril.J. Am. Chem. Soc.200312534101861018710.1021/ja036536c 12926937
    [Google Scholar]
  41. LeeJ.W. SamalS. SelvapalamN. KimH.J. KimK. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry.Acc. Chem. Res.200336862163010.1021/ar020254k 12924959
    [Google Scholar]
  42. KoY.H. KimE. HwangI. KimK. Supramolecular assemblies built with host-stabilized charge-transfer interactions.Chem. Commun. (Camb.)2007131305131510.1039/B615103E 17377666
    [Google Scholar]
  43. LucasD. MinamiT. IannuzziG. CaoL. WittenbergJ.B. AnzenbacherP.Jr IsaacsL. Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives.J. Am. Chem. Soc.201113344179661797610.1021/ja208229d 21970313
    [Google Scholar]
  44. KaiferA.E. Toward reversible control of cucurbit[n]uril complexes.Acc. Chem. Res.20144772160216710.1021/ar5001204 24884003
    [Google Scholar]
  45. BarberoH. ThompsonN.A. MassonE. “Dual layer” self-sorting with cucurbiturils.J. Am. Chem. Soc.2020142286787310.1021/jacs.9b09751 31833768
    [Google Scholar]
  46. HuangY. GaoR.H. LiuM. ChenL.X. NiX.L. XiaoX. CongH. ZhuQ.J. ChenK. TaoZ. Cucurbit[n]uril‐based supramolecular frameworks assembled through outer‐surface interactions.Angew. Chem. Int. Ed.20216028151661519110.1002/anie.202002666 32330344
    [Google Scholar]
  47. LiuY.H. ZhangY.M. YuH.J. LiuY. Cucurbituril‐based biomacromolecular assemblies.Angew. Chem. Int. Ed.20216083870388010.1002/anie.202009797 32856749
    [Google Scholar]
  48. MukhopadhyayR.D. KimK. Cucurbituril curiosities.Nat. Chem.202315343843810.1038/s41557‑023‑01141‑0 36805036
    [Google Scholar]
  49. LiQ. YuZ. RedshawC. XiaoX. TaoZ. Double-cavity cucurbiturils: synthesis, structures, properties, and applications.Chem. Soc. Rev.20245373536356010.1039/D3CS00961K 38414424
    [Google Scholar]
  50. MiyaharaY. GotoK. OkaM. InazuT. Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril.Angew. Chem. Int. Ed.200443385019502210.1002/anie.200460764 15384112
    [Google Scholar]
  51. PichierriF. Density functional study of cucurbituril and its sulfur analogue.Chem. Phys. Lett.20043901-321421910.1016/j.cplett.2004.04.006
    [Google Scholar]
  52. SinghM. ParvariG. BotoshanskyM. KeinanE. ReanyO. The synthetic challenge of thioglycolurils.Eur. J. Org. Chem.20142014593394010.1002/ejoc.201301672
    [Google Scholar]
  53. DayA.I. BlanchR.J. ArnoldA.P. LorenzoS. LewisG.R. DanceI. A cucurbituril-based gyroscane: a new supramolecular form.Angew. Chem. Int. Ed.200241227527710.1002/1521‑3773(20020118)41:2<275:AID‑ANIE275>3.0.CO;2‑M 12491407
    [Google Scholar]
  54. LiuJ.X. LongL.S. HuangR.B. ZhengL.S. Interesting anion-inclusion behavior of cucurbit[5]uril and its lanthanide-capped molecular capsule.Inorg. Chem.20074624101681017310.1021/ic701236v 17960900
    [Google Scholar]
  55. AavR. ShmatovaE. ReileI. BorissovaM. TopićF. RissanenK. New chiral cyclohexylhemicucurbit[6]uril.Org. Lett.201315143786378910.1021/ol401766a 23841756
    [Google Scholar]
  56. YawerM.A. HavelV. SindelarV. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.Angew. Chem. Int. Ed.201554127627910.1002/anie.201409895 25385515
    [Google Scholar]
  57. LisbjergM. NielsenB.E. MilhøjB.O. SauerS.P.A. PittelkowM. Anion binding by biotin[6]uril in water.Org. Biomol. Chem.201513236937310.1039/C4OB02211D 25407665
    [Google Scholar]
  58. LisbjergM. ValkenierH. JessenB.M. Al-KerdiH. DavisA.P. PittelkowM. Biotin[6]uril esters: chloride-selective transmembrane anion carriers employing C—H···anion interactions.J. Am. Chem. Soc.2015137154948495110.1021/jacs.5b02306 25851041
    [Google Scholar]
  59. AndersenN.N. LisbjergM. EriksenK. PittelkowM. Hemicucurbit[ n]urils and their derivatives – synthesis and applications.Isr. J. Chem.2018583-443544810.1002/ijch.201700129
    [Google Scholar]
  60. LisbjergM. JessenB.M. RasmussenB. NielsenB.E. MadsenA.Ø. PittelkowM. Discovery of a cyclic 6 + 6 hexamer of d-biotin and formaldehyde.Chem. Sci. (Camb.)2014572647265010.1039/C4SC00990H
    [Google Scholar]
  61. AndersenN.N. EriksenK. LisbjergM. OttesenM.E. MilhøjB.O. SauerS.P.A. PittelkowM. Entropy/enthalpy compensation in anion binding: biotin [6] uril and biotin-l-sulfoxide [6] uril reveal strong solvent dependency.J. Org. Chem.20198452577258410.1021/acs.joc.8b02797 30721069
    [Google Scholar]
  62. SvecJ. NecasM. SindelarV. Bambus[6]uril.Angew. Chem. Int. Ed.201049132378238110.1002/anie.201000420 20217882
    [Google Scholar]
  63. FialaT. LudvíkováL. HegerD. ŠvecJ. SlaninaT. VetrákováL. BabiakM. NečasM. KulhánekP. KlánP. SindelarV. Bambusuril as a one-electron donor for photoinduced electron transfer to methyl viologen in mixed crystals.J. Am. Chem. Soc.201713972597260310.1021/jacs.6b08589 28222609
    [Google Scholar]
  64. HavelV. SadilováT. ŠindelářV. Unsubstituted bambusurils: post-macrocyclization modification of versatile intermediates.ACS Omega2018344657466310.1021/acsomega.8b00497 31458686
    [Google Scholar]
  65. SinghM. SolelE. KeinanE. ReanyO. Dual‐functional semithiobambusurils.Chemistry201521253654010.1002/chem.201404210 25417852
    [Google Scholar]
  66. LiY. LiL. ZhuY. MengX. WuA. Solvent effect on pseudopolymorphism of hemicyclohexylcucurbit [6] uril.Cryst. Growth Des.20099104255425710.1021/cg9007262
    [Google Scholar]
  67. ÖerenM. ShmatovaE. TammT. AavR. Computational and ion mobility MS study of (all-S)-cyclohexylhemicucurbit[6]uril structure and complexes.Phys. Chem. Chem. Phys.20141636191981920510.1039/C4CP02202E 25046516
    [Google Scholar]
  68. KaabelS. AdamsonJ. TopićF. KiesiläA. KaleniusE. ÖerenM. ReimundM. PrigorchenkoE. LõokeneA. ReichH.J. RissanenK. AavR. Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution.Chem. Sci. (Camb.)2017832184219010.1039/C6SC05058A 28694954
    [Google Scholar]
  69. FomitšenkoM. PetersonA. ReileI. CongH. KaabelS. PrigorchenkoE. JärvingI. AavR. A quantitative method for analysis of mixtures of homologues and stereoisomers of hemicucurbiturils that allows us to follow their formation and stability.New J. Chem.20174162490249710.1039/C6NJ03050E
    [Google Scholar]
  70. KaabelS. SteinR.S. FomitšenkoM. JärvingI. FriščićT. AavR. Size‐control by anion templating in mechanochemical synthesis of hemicucurbiturils in the solid state.Angew. Chem. Int. Ed.201958196230623410.1002/anie.201813431 30664335
    [Google Scholar]
  71. SindelarV. FialaT. Synthesis of norbornahemicucurbiturils.Synlett201324182443244510.1055/s‑0033‑1339850
    [Google Scholar]
  72. ZengQ. LongQ. LuJ. WangL. YouY. YuanX. ZhangQ. GeQ. CongH. LiuM. Synthesis of a novel aminobenzene-containing hemicucurbituril and its fluorescence spectral properties with ions.Beilstein J. Org. Chem.2021172840284710.3762/bjoc.17.195 34956406
    [Google Scholar]
  73. YuanX. ZengQ. WangL. YouY. CenX. ZhangQ. GeQ. CongH. LiuM. Synthesis of multi-hybrid hemicucurbiturils.J. Incl. Phenom. Macrocycl. Chem.20231031-2576110.1007/s10847‑022‑01176‑9
    [Google Scholar]
  74. YouY. WangA. LiuM. Synthesis and properties of a new sulfonamide modified hemicucurbituril.Russ. J. Gen. Chem.20239371920193010.1134/S1070363223070289
    [Google Scholar]
  75. Del MauroA. LapešováJ. RandoC. ŠindelářV. Merging Bambus[6]uril and Biotin[6]uril into an enantiomerically pure monofunctionalized hybrid macrocycle.Org. Lett.202426110610910.1021/acs.orglett.3c03715 38153981
    [Google Scholar]
  76. WangL. HanJ. PanR. YuanX. YouY. CenX. ZhangQ. GeQ. CongH. LiuM. Synthesis of hybrid thiohemicucurbiturils.Tetrahedron Lett.202210115391810.1016/j.tetlet.2022.153918
    [Google Scholar]
  77. GujjarappaR. KhuranaR. FridmanN. KeinanE. ReanyO. Conformationally adaptive thio-hemicucurbiturils exhibit promiscuous anion binding by induced fit.Cell Rep. Phys. Sci.20245610201110.1016/j.xcrp.2024.102011
    [Google Scholar]
  78. KaabelS. AavR. Templating effects in the dynamic chemistry of cucurbiturils and hemicucurbiturils.Isr. J. Chem.2018583-429631310.1002/ijch.201700106
    [Google Scholar]
/content/journals/coc/10.2174/0113852728359596250416065455
Loading
/content/journals/coc/10.2174/0113852728359596250416065455
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test