Skip to content
2000
Volume 30, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Abrupt increase in the cancerous cells, conventional therapies, including radiation and chemotherapy, often exhibit limited efficacy due to the heterogeneous nature of tumours, which can result in collateral damage to normal cells, severe haematological toxicities, and the development of drug resistance, ultimately compromising treatment outcomes and patient compliance. On the other hand, naturally sourced heterocyclic compounds can trigger functional versatility and play critical roles in various biochemical processes within living cells, enhancing their potential as therapeutic leads. Their ability to modulate multiple oncogenic signalling pathways influences key processes such as apoptosis, cell proliferation, migration, angiogenesis, and metastasis, thereby positioning them as promising candidates for improving chemotherapy efficacy, especially in resistant cases. With the rising costs of conventional treatments and the increasing cancer burden, there is an urgent demand for low-cost and sustainable alternatives. In view of that, natural heterocyclic bioactive compounds pave substantial advantages, including a broad chemical range with minimal toxicity and enhanced safety, making them compelling substitutes for synthetic drugs. This review illuminates the molecular mechanisms underlying the anti-cancer properties of significant heterocyclic structures from natural sources, emphasizing their potential to advance therapeutic strategies and emerging future clinical applications over the period of fifteen years.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728373092250403114423
2025-04-21
2026-01-20
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. ShuklaD. RawalR. JainN. A brief review on plant-derived natural compounds as an anti-cancer agents.Int. J. Herb. Med.2018652836
    [Google Scholar]
  3. KhanS.U. FatimaK. AishaS. MalikF. Unveiling the mechanisms and challenges of cancer drug resistance.Cell Commun. Signal.202422110910.1186/s12964‑023‑01302‑1 38347575
    [Google Scholar]
  4. BoumahdiS. SauvageD.F.J. The great escape: Tumour cell plasticity in resistance to targeted therapy.Nat. Rev. Drug Discov.2020191395610.1038/s41573‑019‑0044‑1 31601994
    [Google Scholar]
  5. NikolaouM. PavlopoulouA. GeorgakilasA.G. KyrodimosE. The challenge of drug resistance in cancer treatment: A current overview.Clin. Exp. Metastasis201835430931810.1007/s10585‑018‑9903‑0 29799080
    [Google Scholar]
  6. Al-MullaA.A. Review: Biological importance of heterocyclic compounds.Der Pharma Chem.2017913141147
    [Google Scholar]
  7. PearceS. The importance of heterocyclic compounds in anti-cancer drug design.Drug Discov. World20171826670
    [Google Scholar]
  8. KohY.C. HoC.T. PanM.H. Recent advances in cancer chemoprevention with phytochemicals.Yao Wu Shi Pin Fen Xi2020281143710.38212/2224‑6614.1219 31883602
    [Google Scholar]
  9. KumarN. GoelN. Heterocyclic compounds: Importance in anticancer drug discovery.Anticancer. Agents Med. Chem.202222193196320710.2174/1871520622666220404082648 35379130
    [Google Scholar]
  10. NaeemA. HuP. YangM. ZhangJ. LiuY. ZhuW. ZhengQ. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules27238367
    [Google Scholar]
  11. PrzystupskiD. NiemczuraM.J. AgataG. SupplittS. KotowskiK. WawrykaP. RozborskaP. WoK. MichelO. KiełbikA. BartosikW. SaczkoJ. KulbackaJ. In search of panacea-review of recent studies concerning nature-derived anticancer agents.Nutrients2019116142610.3390/nu11061426
    [Google Scholar]
  12. SinghP.K. SilakariO. The current status of O‐heterocycles: A synthetic and medicinal overview.ChemMedChem201813111071108710.1002/cmdc.201800119 29603634
    [Google Scholar]
  13. IqbalJ. AbbasiB.A. MahmoodT. KanwalS. AliB. ShahS.A. KhalilA.T. Plant-derived anticancer agents: A green anticancer approach.Asian Pac. J. Trop. Biomed.20177121129115010.1016/j.apjtb.2017.10.016
    [Google Scholar]
  14. SunJ. ZhanX. WangW. YangX. LiuY. YangH. DengJ. YangH. Natural aporphine alkaloids: A comprehensive review of phytochemistry, pharmacokinetics, anticancer activities, and clinical application.J. Adv. Res.20246323125310.1016/j.jare.2023.11.003 37935346
    [Google Scholar]
  15. BanyalA. TiwariS. SharmaA. ChananaI. PatelS.K.S. KulshresthaS. KumarP. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges.3 Biotech.202313621110.1007/s13205‑023‑03636‑6 37251731
    [Google Scholar]
  16. AshokaH. HegdeP. MadihalliC. ManasaK.H. PradeepS. ShettihalliA.K. Isolation and detection of vinca alkaloids from endophytes isolated from Catharanthus Roseus.Eur. J. Biomed. Pharm. Sci2017410675683
    [Google Scholar]
  17. ŠkubníkJ. PavlíčkováV.S. RumlT. RimpelováS. Vincristine in combination therapy of cancer: Emerging trends in clinics.Biology202110984910.3390/biology10090849 34571726
    [Google Scholar]
  18. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑9
    [Google Scholar]
  19. MengF.C. WuZ.F. YinZ.Q. LinL.G. WangR. ZhangQ.W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity.Chin. Med.20181311310.1186/s13020‑018‑0171‑3 29541156
    [Google Scholar]
  20. WangJ. WangL. LouG.H. ZengH.R. HuJ. HuangQ.W. PengW. YangX.B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.Pharm. Biol.201957119322510.1080/13880209.2019.1577466 30963783
    [Google Scholar]
  21. SefidabiR. MortazaviP. HosseiniS. Antiproliferative effect of berberine on canine mammary gland cancer cell culture.Biomed. Rep.201761959810.3892/br.2016.809 28123715
    [Google Scholar]
  22. SunY. WangW. TongY. Berberine inhibits proliferative ability of breast cancer cells by reducing metadherin.Med. Sci. Monit.2019259058906610.12659/MSM.914486 31779025
    [Google Scholar]
  23. OuyangL. ShiZ. ZhaoS. WangF.T. ZhouT.T. LiuB. BaoJ.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis.Cell Prolif.201245648749810.1111/j.1365‑2184.2012.00845.x 23030059
    [Google Scholar]
  24. PanY. ZhangF. ZhaoY. ShaoD. ZhengX. ChenY. HeK. LiJ. ChenL. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated ampk signaling in breast cancer.J. Cancer2017891679168910.7150/jca.19106 28775788
    [Google Scholar]
  25. GaoX. WangJ. LiM. WangJ. LvJ. ZhangL. SunC. JiJ. YangW. ZhaoZ. MaoW. Berberine attenuates XRCC1‐mediated base excision repair and sensitizes breast cancer cells to the chemotherapeutic drugs.J. Cell. Mol. Med.201923106797680410.1111/jcmm.14560 31338966
    [Google Scholar]
  26. ChenP. DaiC.H. ShiZ.H. WangY. WuJ.N. ChenK. SuJ.Y. LiJ. Synergistic inhibitory effect of berberine and icotinib on non-small cell lung cancer cells via inducing autophagic cell death and apoptosis.Apoptosis20212611-1263965610.1007/s10495‑021‑01694‑w 34743246
    [Google Scholar]
  27. KouY. TongB. WuW. LiaoX. ZhaoM. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing pi3k/akt/mtor signaling pathway in gastric cancer.Front. Pharmacol.20201161625110.3389/fphar.2020.616251 33362566
    [Google Scholar]
  28. WangJ. YangS. CaiX. DongJ. ChenZ. WangR. ZhangS. CaoH. LuD. JinT. NieY. HaoJ. FanD. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer.Oncotarget2016746760767608610.18632/oncotarget.12589 27738318
    [Google Scholar]
  29. LiH.L. WuH. ZhangB.B. ShiH.L. WuX.J. MAPK pathways are involved in the inhibitory effect of berberine hydrochloride on gastric cancer MGC 803 cell proliferation and IL-8 secretion in vitro and in vivo.Mol. Med. Rep.20161421430143810.3892/mmr.2016.5361 27278862
    [Google Scholar]
  30. LiuL. SunL. ZhengJ. CuiL. Berberine modulates Keratin 17 to inhibit cervical cancer cell viability and metastasis.J. Recept. Signal Transduct. Res.202141652153110.1080/10799893.2020.1830110 33045871
    [Google Scholar]
  31. ZengX. WanL. WangY. XueJ. YangH. ZhuY. Effect of low dose of berberine on the radioresistance of cervical cancer cells via a PI3K/HIF-1 pathway under nutrient-deprived conditions.Int. J. Radiat. Biol.20209681060106710.1080/09553002.2020.1770358 32412317
    [Google Scholar]
  32. PaudelK.R. MehtaM. YinG.H.S. YenL.L. MalylaV. PatelV.K. PanneerselvamJ. MadheswaranT. MacLoughlinR. JhaN.K. GuptaP.K. SinghS.K. GuptaG. KumarP. OliverB.G. HansbroP.M. ChellappanD.K. DuaK. Berberine-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro.Environ. Sci. Pollut. Res. Int.20222931468304684710.1007/s11356‑022‑19158‑2 35171422
    [Google Scholar]
  33. BhanumathiR. VimalaK. ShanthiK. ThangarajR. KannanS. Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer.New J. Chem.20174123144661447710.1039/C7NJ02531A
    [Google Scholar]
  34. ThomasA. KambleS. DeshkarS. KothapalliL. ChitlangeS. Bioavailability of berberine: Challenges and solutions. İstanb.J. Pharm.202151114115310.26650/IstanbulJPharm.2020.0056
    [Google Scholar]
  35. KitisripanyaT. KomaikulJ. TawinkanN. AtsawinkowitC. PutalunW. Dicentrine production in callus and cell suspension cultures of Stephania venosa.Nat. Prod. Commun.2013841934578X130080040810.1177/1934578X1300800408 23738448
    [Google Scholar]
  36. OoppachaiC. DejkriengkraikulL.P. YodkeereeS. Dicentrine potentiates TNF-α-induced apoptosis and suppresses invasion of a549 lung adenocarcinoma cells via modulation of NF-κB and AP-1 activation.Molecules20192422410010.3390/molecules24224100 31766230
    [Google Scholar]
  37. PatilS. ParadeshiJ. ChaudhariB. Anti-melanoma and UV-B protective effect of microbial pigment produced by marine Pseudomonas aeruginosa GS-33.Nat. Prod. Res.201630242835283910.1080/14786419.2016.1154057 26961322
    [Google Scholar]
  38. TabassumS. KhanR.A. ArjmandF. SenS. KayalJ. JuvekarA.S. ZingdeS.M. Synthesis and characterization of glycoconjugate tin(IV) complexes: In vitro DNA binding studies, cytotoxicity, and cell death.J. Organomet. Chem.201169681600160810.1016/j.jorganchem.2011.01.012
    [Google Scholar]
  39. PommierY. Drugging topoisomerases: Lessons and challenges.ACS Chem. Biol.201381829510.1021/cb300648v 23259582
    [Google Scholar]
  40. JainC. MajumderH. RoychoudhuryS. Natural compounds as anticancer agents targeting dna topoisomerases.Curr. Genomics2016181759210.2174/1389202917666160808125213 28503091
    [Google Scholar]
  41. BeheraA. PadhiS. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: A review.Environ. Chem. Lett.20201851557156710.1007/s10311‑020‑01022‑9
    [Google Scholar]
  42. StiborováM. FreiE. Ellipticines as DNA-targeted chemotherapeutics.Curr. Med. Chem.201421557559110.2174/09298673113206660272 24059226
    [Google Scholar]
  43. DeepA. KumarD. BansalN. NarasimhanB. MarwahaR.K. SharmaP.C. Understanding mechanistic aspects and therapeutic potential of natural substances as anticancer agents.Phytomed. Plus20233210041810.1016/j.phyplu.2023.100418
    [Google Scholar]
  44. MazumderK. AktarA. RoyP. BiswasB. HossainM.E. SarkarK.K. BacharS.C. AhmedF. Monjur-Al-HossainA.S.M. FukaseK. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship.Molecules2022279303610.3390/molecules27093036 35566385
    [Google Scholar]
  45. LiX.L. YaoJ.Y. ZhouZ.M. ShenJ.Y. RuH. LiuX.L. Activity of the chelerythrine, a quaternary benzo[c]phenanthridine alkaloid from Chelidonium majus L. on Dactylogyrus intermedius.Parasitol. Res.2011109124725210.1007/s00436‑011‑2320‑9 21400114
    [Google Scholar]
  46. LiuQ. SunC. MengF. ZhaoW. LiD. WangX. Preparative Separation of Chelerythrine and Sanguinarine from Macleaya cordata by pH-Zone-Refining Counter-current Chromatography.J. Liq. Chromatogr. Relat. Technol.201538201789179310.1080/10826076.2015.1105257
    [Google Scholar]
  47. BasuP. BhowmikD. KumarS.G. The benzophenanthridine alkaloid chelerythrine binds to DNA by intercalation: Photophysical aspects and thermodynamic results of iminium versus alkanolamine interaction.J. Photochem. Photobiol. B2013129576810.1016/j.jphotobiol.2013.09.011 24177205
    [Google Scholar]
  48. ChenN. QiY. MaX. XiaoX. LiuQ. XiaT. XiangJ. ZengJ. TangJ. Rediscovery of traditional plant medicine: An underestimated anticancer drug of chelerythrine.Front. Pharmacol.20221390630110.3389/fphar.2022.906301 35721116
    [Google Scholar]
  49. AmewuR.K. SakyiP.O. Osei-SafoD. Addae-MensahI. Synthetic and naturally occurring heterocyclic anticancer compounds with multiple biological targets.Molecules20212623713410.3390/molecules26237134 34885716
    [Google Scholar]
  50. AvulaS.K. DasB. CsukR. Al-HarrasiA. Naturally occurring o-heterocycles as anticancer agents.Anticancer. Agents Med. Chem.202222193208321810.2174/1871520621666211108091444 34749628
    [Google Scholar]
  51. RefaatJ. YehiaS.Y. KamelM.S. RamadanA. DesoukeyS.Y. RamadanM.A. Rhoifolin: A review of sources and biological activities.Int. J. Pharm. Sci. Res.20152310210910.13040/IJPSR.0975‑8232.IJP.2(3).102‑09
    [Google Scholar]
  52. HattoriS. MatsudaH. Rhoifolin, a new flavone glycoside, isolated from the leaves of Rhus succedanea.Arch. Biochem. Biophys.1952371858910.1016/0003‑9861(52)90164‑1 12997192
    [Google Scholar]
  53. EldahshanO. Rhoifolin; a potent antiproliferative effect on cancer cell lines.Br. J. Pharm. Res.201331465310.9734/BJPR/2013/1864
    [Google Scholar]
  54. IkramN.K.B.K. SimonsenH.T. A review of biotechnological artemisinin production in plants.Front. Plant Sci.20178196610.3389/fpls.2017.01966 29187859
    [Google Scholar]
  55. XieD.Y. MaD.M. JuddR. JonesA.L. Artemisinin biosynthesis in Artemisia annua and metabolic engineering: Questions, challenges, and perspectives.Phytochem. Rev.20161561093111410.1007/s11101‑016‑9480‑2
    [Google Scholar]
  56. JiangF. ZhouJ.Y. ZhangD. LiuM.H. ChenY.G. Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate induced apoptosis.Int. J. Mol. Med.20184231295130410.3892/ijmm.2018.3712 29901098
    [Google Scholar]
  57. GreenshieldsA.L. FernandoW. HoskinD.W. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells.Exp. Mol. Pathol.2019107102210.1016/j.yexmp.2019.01.006 30660598
    [Google Scholar]
  58. XuC. ZhangH. MuL. YangX. Artemisinins as anticancer drugs: Novel therapeutic approaches, molecular mechanisms, and clinical trials.Front. Pharmacol.20201152988110.3389/fphar.2020.529881
    [Google Scholar]
  59. KoleyM. HanJ. SoloshonokV.A. MojumderS. JavahershenasR. MakaremA. Latest developments in coumarin-based anticancer agents: Mechanism of action and structure–activity relationship studies.RSC Med. Chem.2024151105410.1039/D3MD00511A 38283214
    [Google Scholar]
  60. MuralikrishnanA. SekarM. KumarasamyV. GanS.H. RaviS. SubramaniyanV. WongL.S. WuY. KhattulanuarF. RaniM.N. Chemistry, pharmacology and therapeutic potential of decursin: A promising natural lead for new drug discovery and development.Drug Des. Devel. Ther.202418183741376310.2147/DDDT.S476279 39286287
    [Google Scholar]
  61. ChuY. YuanQ. JiangH. WuL. XieY. ZhangX. LiL. A comprehensive review of the anticancer effects of decursin.Front. Pharmacol.202415130341210.3389/fphar.2024.1303412
    [Google Scholar]
  62. MajikM. TilviS. ParvatkarP. Recent developments towards the synthesis of varitriol: An antitumour agent from marine derived fungus Emericella variecolor.Curr. Org. Synth.201411226828710.2174/1570179410666131124134200
    [Google Scholar]
  63. González-AndrésP. Fernández-PeñaL. Díez-PozaC. BarberoA. The tetrahydrofuran motif in marine lipids and terpenes.Marine Drugs2022201064210.3390/md20100642
    [Google Scholar]
  64. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑0916 25213191
    [Google Scholar]
  65. BarbutiA. ChenZ.S. Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy.Cancers2015742360237110.3390/cancers7040897 26633515
    [Google Scholar]
  66. RenX. ZhaoB. ChangH. XiaoM. WuY. LiuY. Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells.Mol. Med. Rep.20181768289829910.3892/mmr.2018.8868 29658576
    [Google Scholar]
  67. LiM. YinL. WuL. ZhuY. WangX. Paclitaxel inhibits proliferation and promotes apoptosis through regulation ROS and endoplasmic reticulum stress in osteosarcoma cell.Mol. Cell. Toxicol.202016437738410.1007/s13273‑020‑00093‑7
    [Google Scholar]
  68. LaxmanS.P. MittalK.N. Chickani. Cancer targeting through biomolecules: Role of heterocycles containing nitrogen, oxygen and sulphur.J. Biol. Sci.202461210.48047/AFJBS.6.12.2024.2139‑2158
    [Google Scholar]
  69. WuJ. LvT. LiuY. LiuY. HanY. LiuX. PengX. TangF. CaiJ. The role of quercetin in NLRP3-associated inflammation.Inflammopharmacology20243263585361010.1007/s10787‑024‑01566‑0 39306817
    [Google Scholar]
  70. SulO-J. RaW.S. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells.Molecules20212622694910.3390/molecules26226949
    [Google Scholar]
  71. EndaleM. ParkS.C. KimS. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells.Immunobiology2013218121452146710.1016/j.imbio.2013.04.019
    [Google Scholar]
  72. AhmadA. KaleemM. AhmedZ. ShafiqH. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review.Food Res. Int.20157722123510.1016/j.foodres.2015.06.021
    [Google Scholar]
  73. OsongaF.J. AkgulA. MillerR.M. EshunG.B. YazganI. AkgulA. SadikO.A. Antimicrobial activity of a new class of phosphorylated and modified flavonoids.ACS Omega201947128651287110.1021/acsomega.9b00077 31460413
    [Google Scholar]
  74. PapakyriakopoulouP. VelidakisN. KhattabE. ValsamiG. KorakianitisI. KadoglouN.P.E. Potential pharmaceutical applications of quercetin in cardiovascular diseases.Pharmaceuticals2022158101910.3390/ph15081019 36015169
    [Google Scholar]
  75. Nazari-KhanamiriF. Ghasemnejad-BerenjiM. Quercetin and heart health: From molecular pathways to clinical findings.J. Food Biochem.2023202311910.1155/2023/8459095
    [Google Scholar]
  76. WangD. AliF. LiuH. ChengY. WuM. SaleemM.Z. ZhengH. WeiL. ChuJ. XieQ. ShenA. PengJ. Quercetin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and activation of JAK2/STAT3 pathway: A target based networking pharmacology approach.Front. Pharmacol.202213100236310.3389/fphar.2022.1002363 36324691
    [Google Scholar]
  77. WangY. LiZ. HeJ. ZhaoY. Quercetin regulates lipid metabolism and fat accumulation by regulating inflammatory responses and glycometabolism pathways: A review.Nutrients2024168110210.3390/nu16081102 38674793
    [Google Scholar]
  78. MuhtadiM. HaryotoH. SujonoT. SuhendiA. Antidiabetic and antihypercholesterolemia activities of rambutan (Nephelium lappaceum l.) and durian (Durio zibethinus murr.) fruit peel extracts.J. Appl. Pharm. Sci.201660419019410.7324/JAPS.2016.60427
    [Google Scholar]
  79. AsgharianP. TazekandA.P. HosseiniK. ForouhandehH. GhasemnejadT. RanjbarM. HasanM. KumarM. BeiramiS.M. TarhrizV. SoofiyaniS.R. KozhamzharovaL. Sharifi-RadJ. CalinaD. ChoW.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets.Cancer Cell Int.202222125710.1186/s12935‑022‑02677‑w
    [Google Scholar]
  80. LanC.Y. ChenS.Y. KuoC.W. LuC.C. YenG.C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells.J. Food Drug Anal.201927488789610.1016/j.jfda.2019.07.001 31590760
    [Google Scholar]
  81. ZhouH. LiF. LiY. Anti-cancer activity of gedunin by induction of apoptosis in human gastric cancer ags cells.Appl. Biochem. Biotechnol.2022194115322533210.1007/s12010‑022‑04001‑8 35759172
    [Google Scholar]
  82. AvilaC. Angulo-PrecklerC. A minireview on biodiscovery in antarctic marine benthic invertebrates.Front. Mar. Sci.2021868647710.3389/fmars.2021.686477
    [Google Scholar]
  83. NoguezJ.H. DiyabalanageT.K.K. MiyataY. XieX.S. ValerioteF.A. AmslerC.D. McClintockJ.B. BakerB.J. Palmerolide macrolides from the antarctic tunicate synoicum adareanum.Bioorg. Med. Chem.201119226608661410.1016/j.bmc.2011.06.004 21737286
    [Google Scholar]
  84. ZishanM. SaidurrahmanS. AnayatullahA. AzeemuddinA. AhmadZ. HussainM.W. Review article n atural products used as anti-cancer agents.J. Drug Deliv. Ther.201773111810.22270/jddt.v7i3.1443
    [Google Scholar]
  85. ChenX. DaiX. LiuY. YangY. YuanL. HeX. GongG. Solanum nigrum linn.: An insight into current research on traditional uses, phytochemistry, and pharmacology.Front. Pharmacol.20221391807110.3389/fphar.2022.918071 36052142
    [Google Scholar]
  86. PeiH. YangJ. LiW. LuoX. XuY. SunX. ChenQ. ZhaoQ. HouL. TanG. JiD. Solanum nigrum linn.: Advances in anti-cancer activity and mechanism in digestive system tumors.Med. Oncol.2023401131110.1007/s12032‑023‑02167‑7 37775552
    [Google Scholar]
  87. WangL. SunQ.Q. ZhangS.J. DuY.W. WangY.Y. ZangW.Q. ChenX.N. ZhaoG.Q. Inhibitory effect of α-solanine on esophageal carcinoma in vitro.Exp. Ther. Med.20161231525153010.3892/etm.2016.3500 27588073
    [Google Scholar]
  88. SinaniA.S.S. EltayebE.A. CoomberB.L. AdhamS.A. Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway.Cancer Cell Int.20161611110.1186/s12935‑016‑0287‑4 26889092
    [Google Scholar]
  89. ZhongY. LiS. ChenL. LiuZ. LuoX. XuP. ChenL. In vivo toxicity of solasonine and its effects on cyp450 family gene expression in the livers of male mice from four strains.Toxins2018101248710.3390/toxins10120487 30477109
    [Google Scholar]
  90. ChengZ. ZhangZ. HanY. WangJ. WangY. ChenX. ShaoY. ChengY. ZhouW. LuX. WuZ. A review on anti-cancer effect of green tea catechins.J. Funct. Foods20207410417210.1016/j.jff.2020.104172
    [Google Scholar]
  91. ShirakamiY. ShimizuM. Possible mechanisms of green tea and its constituents against cancer.Molecules2018239228410.3390/molecules23092284 30205425
    [Google Scholar]
  92. FujikiH. SueokaE. WatanabeT. SuganumaM. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds.J. Cancer Res. Clin. Oncol.201514191511152210.1007/s00432‑014‑1899‑5 25544670
    [Google Scholar]
  93. HuangC.Y. HanZ. LiX. XieH.H. ZhuS.S. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer.Oncol. Lett.20171433623362710.3892/ol.2017.6641 28927122
    [Google Scholar]
  94. RivankarS. An overview of doxorubicin formulations in cancer therapy.J. Cancer Res. Ther.201410485385810.4103/0973‑1482.139267 25579518
    [Google Scholar]
  95. TacarO. SriamornsakP. DassC.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems.J. Pharm. Pharmacol.201365215717010.1111/j.2042‑7158.2012.01567.x 23278683
    [Google Scholar]
  96. JawadB. PoudelL. PodgornikR. SteinmetzN.F. ChingW.Y. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA.Phys. Chem. Chem. Phys.20192173877389310.1039/C8CP06776G 30702122
    [Google Scholar]
  97. ChaikomonK. ChattongS. ChaiyaT. TiwawechD. Sritana-AnantY. SereemaspunA. ManothamK. Doxorubicin-conjugated dexamethasone induced MCF-7 apoptosis without entering the nucleus and able to overcome MDR-1-induced resistance.Drug Des. Devel. Ther.2018122361236910.2147/DDDT.S168588 30122894
    [Google Scholar]
  98. DeviK.P. RajavelT. NabaviS.F. SetzerW.N. AhmadiA. MansouriK. NabaviS.M. Hesperidin: A promising anticancer agent from nature.Ind. Crops Prod.20157658258910.1016/j.indcrop.2015.07.051
    [Google Scholar]
  99. NingL. ZhaoW. GaoH. WuY. Hesperidin induces anticancer effects on human prostate cancer cells via ROS-mediated necrosis like cell death.JBUON202025626292634 33455106
    [Google Scholar]
  100. PhitakT. KongtawelertP. WudtiwaiB. ShweT.H. PothacharoenP. Inhibitory effect of hesperidin on the expression of programmed death ligand (PD-L1) in breast cancer.Molecules202025225210.3390/molecules25020252
    [Google Scholar]
  101. DuttaR. KhalilR. GreenR. MohapatraS.S. MohapatraS. Withania Somnifera (Ashwagandha) and withaferin a: Potential in integrative oncology.Int. J. Mol. Sci.20192021531010.3390/ijms20215310 31731424
    [Google Scholar]
  102. LeeI.C. ChoiB. Withaferin-A—A natural anticancer agent with pleitropic mechanisms of action.Int. J. Mol. Sci.201617329010.3390/ijms17030290 26959007
    [Google Scholar]
  103. HassanniaB. LogieE. VandenabeeleP. BergheT.V. BergheW.V. WithaferinA. From ayurvedic folk medicine to preclinical anti-cancer drug.Biochem. Pharmacol.202017311360210.1016/j.bcp.2019.08.004
    [Google Scholar]
  104. HahmE.R. MouraM.B. KelleyE.E. HoutenV.B. ShivaS. SinghS.V. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species.PLoS One201168e2335410.1371/journal.pone.0023354 21853114
    [Google Scholar]
  105. WidodoN. KaurK. ShresthaB.G. TakagiY. IshiiT. WadhwaR. KaulS.C. Selective killing of cancer cells by leaf extract of Ashwagandha: Identification of a tumor-inhibitory factor and the first molecular insights to its effect.Clin. Cancer Res.20071372298230610.1158/1078‑0432.CCR‑06‑0948 17404115
    [Google Scholar]
  106. ChandrasekaranB. PalD. KolluruV. TyagiA. BabyB. DahiyaN.R. YoussefK. AlatassiH. AnkemM.K. SharmaA.K. DamodaranC. The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models.Carcinogenesis201839121537154710.1093/carcin/bgy109 30124785
    [Google Scholar]
  107. HsuJ.H.M. ChangP.M.H. ChengT.S. KuoY.L. WuA.T.H. TranT.H. YangY.H. ChenJ.M. TsaiY.C. ChuY.S. HuangT.H. HuangC.Y.F. LaiJ.M. Identification of withaferin a as a potential candidate for anti-cancer therapy in non-small cell lung cancer.Cancers2019117100310.3390/cancers11071003 31319622
    [Google Scholar]
  108. KakarS.S. WorthC.A. WangZ. CarterK. RatajczakM.Z. GunjalP. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer.J. Cancer Stem Cell Res.201642110.14343/JCSCR.2016.4e1002 27668267
    [Google Scholar]
  109. KimG. KimT.H. HwangE.H. ChangK.T. HongJ.J. ParkJ.H. Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis.Oncol. Lett.201714141642210.3892/ol.2017.6169 28693185
    [Google Scholar]
  110. WuL. HuangX. KuangY. XingZ. DengX. LuoZ. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: An in vitro and in vivo study.Drug Des. Devel. Ther.2019132787279810.2147/DDDT.S209947 31496655
    [Google Scholar]
  111. JiangX. LiD. WangG. LiuJ. SuX. YuW. WangY. ZhaiC. LiuY. ZhaoZ. Thapsigargin promotes colorectal cancer cell migration through upregulation of lncRNA MALAT1.Oncol. Rep.20204341245125510.3892/or.2020.7502 32323831
    [Google Scholar]
  112. JaskulskaA. JaneckaA.E. Gach-JanczakK. Thapsigargin—from traditional medicine to anticancer drug.Int. J. Mol. Sci.2020221410.3390/ijms22010004 33374919
    [Google Scholar]
  113. GanleyI.G. WongP.M. GammohN. JiangX. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest.Mol. Cell201142673174310.1016/j.molcel.2011.04.024 21700220
    [Google Scholar]
  114. KarmazynM. GanX.T. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension.Mol. Cell. Biochem.2021476133334710.1007/s11010‑020‑03910‑8 32940821
    [Google Scholar]
  115. ChungK.S. ChoS.H. ShinJ.S. KimD.H. ChoiJ.H. ChoiS.Y. RheeY.K. HongH.D. LeeK.T. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-β expression.Carcinogenesis201334233134010.1093/carcin/bgs341 23125221
    [Google Scholar]
  116. HongH. BaatarD. HwangS.G. Anticancer activities of ginsenosides, the main active components of ginseng.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/8858006 33623532
    [Google Scholar]
  117. SunC. YuY. WangL. WuB. XiaL. FengF. LingZ. WangS. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro.J. Exp. Clin. Cancer Res.20163513210.1186/s13046‑015‑0274‑y 26872471
    [Google Scholar]
  118. DengS. WongC.K.C. LaiH.C. WongA.S.T. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition.Oncotarget2017816258972591410.18632/oncotarget.13071 27825116
    [Google Scholar]
  119. Noor-E-Tabassum; Das, R.; Lami, M.S.; Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Idroes, R.; Mohamed, A.A-R.; Hossain, M.J.; Dhama, K.; Mostafa-Hedeab, G.; Emran, T.B. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications.Evid. Based Complement. Alternat. Med.2022202213010.1155/2022/8288818
    [Google Scholar]
  120. ShuP. SunM. LiJ. ZhangL. XuH. LouY. JuZ. WeiX. WuW. SunN. Chemical constituents from Ginkgo biloba leaves and their cytotoxicity activity.J. Nat. Med.202074126927410.1007/s11418‑019‑01359‑8 31493217
    [Google Scholar]
  121. AhmedH.H. ShoushaW.G. El-MezayenH.A. El-ToumyS.A. SayedA.H. RamadanA.R. Biochemical and molecular evidences for the antitumor potential of Ginkgo biloba leaves extract in rodents.Acta Biochim. Pol.1970641253310.18388/abp.2015_1200 27741326
    [Google Scholar]
  122. ImranM. SalehiB. Sharifi-RadJ. GondalA.T. SaeedF. ImranA. ShahbazM. FokouT.P.V. ArshadU.M. KhanH. GuerreiroS.G. MartinsN. EstevinhoL.M. Kaempferol: A key emphasis to its anticancer potential.Molecules20192412227710.3390/molecules24122277 31248102
    [Google Scholar]
  123. SarkarC. QuispeC. JamaddarS. HossainR. RayP. MondalM. MohamedA.Z. JaafaruS.M. SalehiB. IslamM.T. RazisF.A.A. MartorellM. Pastene-NavarreteE. Sharifi-RadJ. Therapeutic promises of ginkgolide A: A literature-based review.Biomed. Pharmacother.202013211090810.1016/j.biopha.2020.110908 33254431
    [Google Scholar]
  124. BiswasP. KaiumM.A. TareqI.M.M. TauhidaS.J. HossainM.R. SiamL.S. ParvezA. BibiS. HasanM.H. RahmanM.M. HosenD. SiddiqueeI.M.A. AhmedN. SohelM. AzadS.A. AlhadramiA.H. KamelM. AlamoudiM.K. HasanM.N. Abdel-DaimM.M. The experimental significance of isorhamnetin as an effective therapeutic option for cancer: A comprehensive analysis.Biomed. Pharmacother.202417611686010.1016/j.biopha.2024.116860 38861855
    [Google Scholar]
  125. RahmanS. CarterP. BhattaraiN. Aloe vera for tissue engineering applications.J. Funct. Biomater.201781610.3390/jfb8010006 28216559
    [Google Scholar]
  126. SandersB. RayA.M. GoldbergS. ClarkT. McDanielH.R. AtlasS.E. FarooqiA. KonefalJ. LagesL.C. LopezJ. RasulA. TiozzoE. WoolgerJ.M. LewisJ.E. Anti-cancer effects of aloe-emodin: A systematic review.Syst. Rev.201733283296 30895270
    [Google Scholar]
  127. ZhangL. LvR. QuX. ChenX. LuH. WangY. Aloesin suppresses cell growth and metastasis in ovarian cancer skov3 cells through the inhibition of the mapk signaling pathway.Anal. Cell. Pathol.201720171910.1155/2017/8158254 28702312
    [Google Scholar]
  128. ZimboneS. RomanucciV. ZarrelliA. GiuffridaM.L. SciaccaM.F.M. LanzaV. CampagnaT. MaugeriL. PetraliaS. ConsoliG.M.L. FabioD.G. MilardiD. Exploring the therapeutic potential of Aloin: Unraveling neuroprotective and anticancer mechanisms, and strategies for enhanced stability and delivery.Sci. Rep.20241411673110.1038/s41598‑024‑67397‑9 39030250
    [Google Scholar]
  129. PathaniaS. NarangR.K. RawalR.K. Role of sulphur-heterocycles in medicinal chemistry: An update.Eur. J. Med. Chem.201918048650810.1016/j.ejmech.2019.07.043 31330449
    [Google Scholar]
  130. NguyenV.T. LeeJ. QianZ.J. LiY.X. KimK.N. HeoS.J. JeonY.J. ParkW. ChoiI.W. JeJ.Y. JungW.K. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells.Mar. Drugs2013121698710.3390/md12010069 24368570
    [Google Scholar]
  131. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054
    [Google Scholar]
  132. ChenJ. WangC. LanW. HuangC. LinM. WangZ. LiangW. IwamotoA. YangX. LiuH. LongP. Gliotoxin inhibits proliferation and induces apoptosis in colorectal cancer cells.Mar. Drugs201513106259627310.3390/md13106259 26445050
    [Google Scholar]
  133. LinJ. ZhengY. ChenK. HuangZ. WuX. ZhangN. Inhibition of FOXM1 by thiostrepton sensitizes medulloblastoma to the effects of chemotherapy.Oncol. Rep.20133041739174410.3892/or.2013.2654 23912794
    [Google Scholar]
/content/journals/coc/10.2174/0113852728373092250403114423
Loading
/content/journals/coc/10.2174/0113852728373092250403114423
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anticancer; drug resistance; heterocycles; metastasis; natural sources; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test