Skip to content
2000
Volume 30, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The microwave-assisted synthesis of 1,3,5-triaizne (2,4,6-trichloro-1,3,5-triazine), also known as TCT analogs, is described in this review article. The reactions of TCT with different compounds that have amine functional groups or hydroxy-substituted functional groups under microwave irradiation to produce the triazine derivatives are the main topic of this review article. The microwave irradiation technique has countless benefits over the heating method, such as fast reactions, reduced reaction time from hours to minutes, fewer by-products, improved or high yields, wide temperature instability range, regioselective products, and greater energy efficiency.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728372285250324080704
2025-05-12
2025-12-05
Loading full text...

Full text loading...

References

  1. a PatelZ.M. ShahiP.J. ChavdaS.S. PatelU.P. DabhiR.C. ShrivastavP.S. MaruJ.J. Synthetic pathways to 5-fluoroindolin-2-one: key intermediate for sunitinib.Chem. Heterocycl. Compd.2024609-1042242910.1007/s10593‑024‑03356‑6
    [Google Scholar]
  2. b VaralaR. KurraM. AmanullahM. HussienM. AlamM.M. Recent methods in the synthesis of chromeno[2,3-d]pyrimidines.Chem. Heterocycl. Compd.2024603-411111710.1007/s10593‑024‑03302‑6
    [Google Scholar]
  3. c AlpatovaV.M. RysE.G. KononovaE.G. KhakinaE.A. MarkovaA.A. ShibaevaA.V. KuzminV.A. Ol’shevskayaV.A. Multicomponent molecular systems based on porphyrins, 1,3,5-triazine and carboranes: synthesis and characterization.Molecules20222719620010.3390/molecules27196200 36234729
    [Google Scholar]
  4. a DongM. TengD. CaoG. Advances in the synthesis of (3R,3aS,6aR)-hexahydrofuro-[2,3-b]furan-3-ol, a key ligand of the HIV protease inhibitors.Chem. Heterocycl. Compd.2024607-831532210.1007/s10593‑024‑03339‑7
    [Google Scholar]
  5. b MikolaichukO.V. ProtasA.V. PopovaE.A. MolchanovO.E. MaistrenkoD.N. OstrovskiiV.A. PavlyukovaY.N. SharoykoV.V. SemenovK.N. Synthesis and in vitro study of cytotoxic activity of new tetrazole-containing 2,4-diamino-1,3,5-triazine derivatives.Russ. J. Gen. Chem.20229291621162810.1134/S1070363222090055
    [Google Scholar]
  6. a MajumdarP. PatiA. PatraM. BeheraR.K. BeheraA.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings.Chem. Rev.201411452942297710.1021/cr300122t 24506477
    [Google Scholar]
  7. b KashyapA. ChoudhuryA.A.K. SahaA. AdhikariN. GhoshS.K. ShakyaA. PatgiriS.J. BhattacharyyaD.R. SinghU.P. BhatH.R. Microwave‐assisted synthesis of hybrid PABA‐1,3,5‐triazine derivatives as an antimalarial agent.J. Biochem. Mol. Toxicol.2021359e2286010.1002/jbt.22860 34313355
    [Google Scholar]
  8. a UsovaS.D. KnyazevaE.A. RakitinO.A. Cyclopent-4-ene-1,3-diones fused with heterocycles as promising anchor groups in non-fullerene acceptors (microreview).Chem. Heterocycl. Compd.2024603-412712910.1007/s10593‑024‑03306‑2
    [Google Scholar]
  9. b HashemH.E. A short review on the synthesis of 1,2,4-triazine derivatives as bioactive compounds.Mini Rev. Org. Chem.20211881127113310.2174/1570193X18666210122154419
    [Google Scholar]
  10. c Marín-OcampoL. VelozaL.A. AboniaR. Sepúlveda-AriasJ.C. Anti-inflammatory activity of triazine derivatives: A systematic review.Eur. J. Med. Chem.201916243544710.1016/j.ejmech.2018.11.02730469039
    [Google Scholar]
  11. d DaiQ. SunQ. OuyangX. LiuJ. JinL. LiuA. HeB. FanT. JiangY. Antitumor activity of s-triazine derivatives: a systematic review.Molecules20232811427810.3390/molecules28114278 37298753
    [Google Scholar]
  12. e ManjushreeB.V. MatadaG.S.P. PalR. SkM.A. VijiM.P. AishwaryaN.V.S.S. DasP.K. AayishammaI. MounikaS. Exploring the anticancer potential of triazine derivatives: an outlook of designing strategies, docking studies, and structure‐activity relationships (SAR).ChemistrySelect2024941e20240276610.1002/slct.202402766
    [Google Scholar]
  13. a DeviM. JaiswalS. YaduvanshiN. KaurN. KishoreD. DwivediJ. SharmaS. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1,4‐benzodiazepine nucleus via click approach.ChemistrySelect202386e20220471010.1002/slct.202204710
    [Google Scholar]
  14. b DeviM. JaiswalS. YaduvanshiN. JainS. JainS. VermaK. VermaR. KishoreD. DwivediJ. SharmaS. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo [1,4]-benzodiazepine.J. Mol. Struct.2023128613557110.1016/j.molstruc.2023.135571
    [Google Scholar]
  15. c YaduvanshiN. DeviM. TewariS. JaiswalS. HashmiS.Z. ShuklaS. DwivediJ. SharmaS. Exploration of catalytic activity of newly developed Pd/KLR and Pd-Cu/KLR nanocomposites (NCs) for synthesis of biologically active novel heterocycles via Suzuki cross-coupling reaction.J. Mol. Struct.2023129413639510.1016/j.molstruc.2023.136395
    [Google Scholar]
  16. d JaiswalS. DeviM. YaduvanshiN. JainS. DwivediJ. KishoreD. KuznetsovA.E. SharmaS. Identification of new triazolo annulated dipyridodiazepine derivatives as HIV-1 reverse transcriptase inhibitors: Design, synthesis, DFT, molecular modelling and in silico studies.J. Mol. Struct.2024131413873410.1016/j.molstruc.2024.138734
    [Google Scholar]
  17. e JaiswalS. DeviM. SharmaN. RathiK. DwivediJ. SharmaS. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review.Org. Prep. Proced. Int.202254538742210.1080/00304948.2022.2069456
    [Google Scholar]
  18. f NosovaE.V. LipunovaG.N. ZyryanovG.V. CharushinV.N. ChupakhinO.N. Functionalized 1,3,5-triazine derivatives as components for photo- and electroluminescent materials.Org. Chem. Front.20229236646668310.1039/D2QO00961G
    [Google Scholar]
  19. g DubeyP. PathakD.P. AliF. ChauhanG. KalaiselvanV. In-vitro evaluation of triazine scaffold for anticancer drug development: a review.Curr. Drug Discov. Technol.2024212e17072321881310.2174/1570163820666230717161610 37461340
    [Google Scholar]
  20. a DeviM. JaiswalS. JainS. KaurN. DwivediJ. Synthetic and biological attributes of pyrimidine derivatives: A recent update.Curr. Org. Synth.202118879082510.2174/1570179418666210706152515 34886770
    [Google Scholar]
  21. b KaurN. DeviM. VermaY. GrewalP. BhardwajP. AhlawatN. JangidN.K. Photochemical synthesis of fused five-membered O-heterocycles.Curr. Green Chem.20196315518310.2174/2213346106666190904145200
    [Google Scholar]
  22. c KaurN. GrewalP. BhardwajP. DeviM. VermaY. Nickel-catalyzed synthesis of five-membered heterocycles.Synth. Commun.201949121543157710.1080/00397911.2019.1594306
    [Google Scholar]
  23. d KaurN. BhardwajP. DeviM. VermaY. GrewalP. Synthesis of five-membered O, N -heterocycles using metal and nonmetal.Synth. Commun.201949111345138410.1080/00397911.2019.1594308 33093687
    [Google Scholar]
  24. e SharmaA. SheyiR. de la TorreB.G. El-FahamA. AlbericioF. s-Triazine: a privileged structure for drug discovery and bioconjugation.Molecules202126486410.3390/molecules26040864 33562072
    [Google Scholar]
  25. f JainS. JainP.K. SainS. KishoreD. DwivediJ. Anticancer s-triazine derivatives: a synthetic attribute.Mini Rev. Org. Chem.202017890492110.2174/1570193X17666200131111851
    [Google Scholar]
  26. a DeviM. JaiswalS. DwivediJ. KaurN. Synthetic aspects of condensed pyrimidine derivatives.Curr. Org. Synth.2021252126252649
    [Google Scholar]
  27. b KaurN. VermaY. GrewalP. BhardwajP. DeviM. Application of titanium catalysts for the syntheses of heterocycles.Synth. Commun.201949151847189410.1080/00397911.2019.1606922
    [Google Scholar]
  28. c KaurN. BhardwajP. DeviM. VermaY. AhlawatN. GrewalP. Ionic liquids for the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles.Curr. Org. Synth.2019231112141238
    [Google Scholar]
  29. d KaurN. DeviM. VermaY. GrewalP. JangidN.K. DwivediJ. Seven and higher-membered oxygen heterocycles: Metal and non-metal.Synth. Commun.201949121508154210.1080/00397911.2019.1579916
    [Google Scholar]
  30. a BarethD. JainS. KumawatJ. KishoreD. DwivediJ. HashmiS.Z. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review.Bioorg. Chem.202414310697110.1016/j.bioorg.2023.106971 38016395
    [Google Scholar]
  31. b LebedevaO. ZakharovV. KuznetsovaI. KultinD. KustovL. AslanovL. ChernyshevV. SavilovS. DunaevS. KalmykovK. Green synthesis of the triazine derivatives and their application for the benign electrocatalytic reaction of nitrate reduction to ammonia.Chemistry20243055e20240207510.1002/chem.202402075 39046852
    [Google Scholar]
  32. c Al-RasheedH.H. ZamisaS.J. ShawishI. BarakatA. El-FahamA. de la TorreB.G. AlbericioF. SharmaA. Synthesis and structural Characterization of s-triazine derivatives and their photophysical properties.Results Chem.202413101966
    [Google Scholar]
  33. d KaurN. BhardwajP. DeviM. VermaY. GrewalP. Photochemical reactions in five and six-membered polyheterocycles synthesis.Synth. Commun.201949182281231810.1080/00397911.2019.1622732
    [Google Scholar]
  34. e KaurN. GrewalP. BhardwajP. DeviM. AhlawatN. VermaY. Synthesis of five-membered N-heterocycles using silver metal.Synth. Commun.201949223058310010.1080/00397911.2019.1655767
    [Google Scholar]
  35. a HammudH.H. SheikhN.S. ShawishI. BukhamsinH.A. Al-HudairiD.E. WeeA.L.X. HamidM.H.S.A. MaacheS.A. Al-RasheedH.H. BarakatA. El-FahamA. Abd El-LateefH.M. Bis(dimethylpyrazolyl)-aniline-S-triazine derivatives as efficient corrosion inhibitors for C-steel and computational studies.R. Soc. Open Sci.202411523122910.1098/rsos.23122938721132
    [Google Scholar]
  36. b KumarS. DivyaK. SridharM. MahendraM. A new thiadiazole-triazine derivative: structural investigation, DFT studies, ADME-T analysis and SARS-CoV-2 activity by docking simulation.J. Mol. Struct.2024131713913310.1016/j.molstruc.2024.139133
    [Google Scholar]
  37. a AggarwalS. AwasthiS.K. Emerging trends in the development and applications of triazine-based covalent organic polymers: a comprehensive review.Dalton Trans.20245328116011164310.1039/D4DT01127A 38916403
    [Google Scholar]
  38. b YaduvanshiN. TewariS. JaiswalS. DeviM. ShuklaS. DwivediJ. SharmaS. Biogenic synthesis of Pd-Fe@LLR nanocomposites as magnetically recyclable catalysts for C C and C N bond formation.Inorg. Chem. Commun.202416111192710.1016/j.inoche.2023.111927
    [Google Scholar]
  39. c JaiswalS. AryaN. YaduvanshiN. DeviM. JainS. JainS. DwivediJ. SharmaS. Current updates on green synthesis and biological properties of 4-quinolone derivatives.J. Mol. Struct.2023129413656510.1016/j.molstruc.2023.136565
    [Google Scholar]
  40. HayatA. AliH. AjmalZ. AlshammariA. AlghamdiM.M. El-ZahharA.A. AlmuqatiN. SohailM. Abu-DiefA.M. KhanS. Al-HadeethiY. Emerging breakthroughs in covalent triazine frameworks: from fundamentals towards photocatalytic water splitting and challenges.Prog. Mater. Sci.2024147101352
    [Google Scholar]
  41. a MikołajS. Alternative synthetic protocols as a way to mask unreliability in organic chemistry research, case of nitrones.Sci. Rad.202444287293
    [Google Scholar]
  42. b PriecelP. Lopez-SanchezJ.A. Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals.ACS Sustain. Chem.& Eng.20197132110.1021/acssuschemeng.8b03286
    [Google Scholar]
  43. c SuratiM.A. JauhariS. DesaiK.R. A brief review: microwave assisted organic reaction.Arch. Appl. Sci. Res.201241645661
    [Google Scholar]
  44. MooibroekT.J. GamezP. The s-triazine ring, a remarkable unit to generate supramolecular interactions.Inorg. Chim. Acta2007360138140410.1016/j.ica.2006.07.061
    [Google Scholar]
  45. MunakataM. WenM. SuenagaY. Kuroda-SowaT. MaekawaM. AnahataM. Silver(I) complexes of triazine derivatives having stepped π–π interactions and 2D sheets.Polyhedron20012015-162037204310.1016/S0277‑5387(01)00802‑6
    [Google Scholar]
  46. Díaz-OrtizA. ElgueroJ. Foces-FocesC. HozA. MorenoA. MorenoS. Sánchez-MigallónA. ValienteG. Synthesis, structural determination and dynamic behavior of 2-chloro-4,6-bis(pyrazolylamino)-1,3,5-triazines.Org. Biomol. Chem.20031244451445710.1039/B310693D 14727638
    [Google Scholar]
  47. XueX.Y. HeJ.L. LiR. DingB. WuW.L. CaoY.Y. HeR. HuP.H. JiJ. ShiD.H. Design, synthesis and anticancer evaluation of imamine-1,3,5-triazine derivatives.New J. Chem.20244827121881219810.1039/D4NJ00819G
    [Google Scholar]
  48. ZhangX.Q. WangJ. ZouJ.P. CaoY. XuX.H. DingB. LiuW.W. MaS.J. ShiD.H. Design, synthesis and anticholinesterase activity of coumarin‐1,3,5‐triazine derivatives.ChemistrySelect202493e20230342810.1002/slct.202303428
    [Google Scholar]
  49. PatelR.V. KumarP. RajaniD.P. ChikhaliK.H. Synthesis of potential antimicrobial/antitubercular s-triazine scaffolds endowed with quinoline and quinazoline heterocycles.Int. J. Drug Des. Discov.201231739730
    [Google Scholar]
  50. ProtasA.V. MikolaichukO.V. PopovaE.A. TimoshchukK.V. KornyakovI.V. MaistrenkoD.N. MolchanovO.E. SharoykoV.V. SemenovK.N. Aziridine‐functionalized 1,3,5‐triazine derivatives as promising anticancer agents: synthesis, DFT study, DNA binding investigations and in vitro cytotoxic activity.J. Heterocycl. Chem.202461111801180610.1002/jhet.4908
    [Google Scholar]
  51. MibuN. YokomizoK. SanoM. KawaguchiY. MorimotoK. ShimomuraS. SatoR. HiragaN. MatsunagaA. ZhouJ.R. OhataT. AkiH. SumotoK. Preparation and antiviral activity of some new C3- and CS-symmetrical tri-substituted triazine derivatives having benzylamine substituents.Chem. Pharm. Bull. (Tokyo)201866883083810.1248/cpb.c18‑00274 30068804
    [Google Scholar]
  52. MelatoS. ProsperiD. CoghiP. BasilicoN. MontiD. A combinatorial approach to 2,4,6-trisubstituted triazines with potent antimalarial activity: combining conventional synthesis and microwave-assistance.ChemMedChem20083687387610.1002/cmdc.200700344 18297663
    [Google Scholar]
  53. LaymanR.M. HanH.S. RugoH.S. Stringer-ReasorE.M. SpechtJ.M. DeesE.C. KabosP. SuzukiS. MutkaS.C. SullivanB.F. GorbatchevskyI. WesolowskiR. Gedatolisib in combination with palbociclib and endocrine therapy in women with hormone receptor-positive, HER2-negative advanced breast cancer: results from the dose expansion groups of an open-label, phase 1b study.Lancet Oncol.202425447448710.1016/S1470‑2045(24)00034‑2 38547892
    [Google Scholar]
  54. ReyV. TornínJ. Alba-LinaresJ.J. RobledoC. MurilloD. RodríguezA. GallegoB. HuergoC. VieraC. BrañaA. AstudilloA. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma.EBioMedicine2024102
    [Google Scholar]
  55. GoswamiS. GhoshR. PrasanthanP. KishoreN. Mode of interaction of altretamine with calf thymus DNA: biophysical insights.J. Biomol. Struct. Dyn.20234193728374010.1080/07391102.2022.2054472 35343872
    [Google Scholar]
  56. DiNardoC.D. SchuhA.C. SteinE.M. MontesinosP. WeiA.H. de BottonS. ZeidanA.M. FathiA.T. KantarjianH.M. BennettJ.M. FrattiniM.G. Martin-RegueiraP. LerschF. GongJ. HasanM. VyasP. DöhnerH. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial.Lancet Oncol.202122111597160810.1016/S1470‑2045(21)00494‑0 34672961
    [Google Scholar]
  57. WangY. TongC. DaiH. WuZ. HanX. GuoY. ChenD. WeiJ. TiD. LiuZ. MeiQ. LiX. DongL. NieJ. ZhangY. HanW. Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming.Nat. Commun.202112140910.1038/s41467‑020‑20696‑x 33462245
    [Google Scholar]
  58. GhanemA. Al-KarmalawyA.A. Abd El MaksoudA.I. HanafyS.M. EmaraH.A. SalehR.M. ElshalM.F. Rumex vesicarius L. extract improves the efficacy of doxorubicin in triple-negative breast cancer through inhibiting Bcl2, mTOR, JNK1 and augmenting p21 expression.Inform. Med. Unlocked20222910086910.1016/j.imu.2022.100869
    [Google Scholar]
  59. WuY. ZhaoD. ShangJ. HuangW. ChenZ. A novel star-shaped trinuclear platinum(II) complex based on a 1,3,5-triazine core displaying potent antiproliferative activity against TNBC by the mitochondrial injury and DNA damage mechanism.Dalton Trans.20225129109301094210.1039/D2DT00895E 35731536
    [Google Scholar]
  60. SavaniyaN.P. KhakhariyaA.D. PankhaniyaP.P. LadvaK.D. Synthesis, spectral analysis and antimicrobial activity of 2(1H)-quinolinone tethered 1,3,5-triazine derivatives.World News Nat. Sci.2024552532
    [Google Scholar]
  61. KalitaJ.M. GhoshS.K. SahuS. DuttaM. Rational design and microwave assisted synthesis of some novel phenyl thiazolyl clubbed s-triazine derivatives as antimalarial antifolate.Future J. Pharm. Sci.201731111710.1016/j.fjps.2016.09.004
    [Google Scholar]
  62. PanchalJ. JainS. JainP.K. KishoreD. DwivediJ. Greener approach toward synthesis of biologically active s‐Triazine (TCT) derivatives: A recent update.J. Heterocycl. Chem.202158112049206610.1002/jhet.4343
    [Google Scholar]
  63. LimF.P.L. LowS.T. HoE.L.K. HalcovitchN.R. TiekinkE.R.T. DolzhenkoA.V. A multicomponent reaction of 2-aminoimidazoles: microwave-assisted synthesis of novel 5-aza-7-deaza-adenines.RSC Advances2017781510625106810.1039/C7RA11305F
    [Google Scholar]
  64. LuR. YangH. A novel approach to phosphonyl-substituted heterocyclic system(I).Tetrahedron Lett.199738295201520410.1016/S0040‑4039(97)01111‑8
    [Google Scholar]
  65. LimF.P.L. LunaG. TanK.C. TiekinkE.R.T. DolzhenkoA.V. A synthesis of new 7-amino-substituted 4-aminopyrazolo[1,5-a][1,3,5]triazines via a selective three-component triazine ring annulation.Tetrahedron201975152322232910.1016/j.tet.2019.03.002
    [Google Scholar]
  66. LimF.P.L. DolzhenkoA.V. 4-Amino-substituted pyrazolo[1,5-a][1,3,5] triazin-2-amines: a new practical synthesis and biological activity.Tetrahedron Lett.201455496684668810.1016/j.tetlet.2014.10.057
    [Google Scholar]
  67. LimF.P.L. LunaG. DolzhenkoA.V. A new, one-pot, multicomponent synthesis of 5-aza-9-deaza-adenines under microwave irradiation.Tetrahedron Lett.201455375159516310.1016/j.tetlet.2014.07.105
    [Google Scholar]
  68. MoustafaM.S. MekheimerR.A. Al-MousawiS.M. Abd-ElmonemM. El-ZorbaH. HameedA.M.A. MohamedT.M. SadekK.U. Microwave-assisted efficient one-pot synthesis of N2-(tetrazol-5-yl)-6-aryl/heteroaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines.Beilstein J. Org. Chem.20201611706171210.3762/bjoc.16.142 32733614
    [Google Scholar]
  69. Kumar GhoshS. SahaA. HazarikaB. Pratap SinghU. Raj BhatH. GahtoriP. Design, facile synthesis, antibacterial activity and structure-activity relationship of novel di- and tri-substituted 1,3,5-triazines.Lett. Drug Des. Discov.20129332933510.2174/157018012799129846
    [Google Scholar]
  70. BlaneyJ.M. HanschC. SilipoC. VittoriaA. Structure-activity relationships of dihydrofolated reductase inhibitors.Chem. Rev.198484433340710.1021/cr00062a002
    [Google Scholar]
  71. KidwaiM. MothsraP. MohanR. BiswasS. 1-Aryl-4,6-diamino-1,2-dihydrotriazine as antimalarial agent: a new synthetic route.Bioorg. Med. Chem. Lett.200515491591710.1016/j.bmcl.2004.12.049 15686886
    [Google Scholar]
  72. PengY. SongG. Microwave-assisted clean synthesis of 6-aryl-2,4-diamino-1,3,5-triazines in [bmim][PF6].Tetrahedron Lett.200445275313531610.1016/j.tetlet.2004.04.195
    [Google Scholar]
  73. JunaidA. LimF.P.L. TiekinkE.R.T. DolzhenkoA.V. New one-pot synthesis of 1,3,5-triazines: three-component condensation, Dimroth rearrangement, and dehydrogenative aromatization.ACS Comb. Sci.201921754855510.1021/acscombsci.9b00079 31180634
    [Google Scholar]
  74. JunaidA. DolzhenkoA.V. Microwave-assisted synthesis of 1,3,5-triazines: efficient approaches to therapeutically valuable scaffold.Heterocycles2020981216781706
    [Google Scholar]
  75. Siva Sankara BabuT. SrinivasuN. SahaB. Venkat ReddyS. Synthesis and antimicrobial activity of 1-aryl-4-(arylimino)-6-iminohexahydro-1,3,5-triazine-2-thione derivatives.Russ. J. Gen. Chem.201989482483010.1134/S1070363219040303
    [Google Scholar]
  76. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis—a review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  77. ElanderN. JonesJ.R. LuS.Y. Stone-ElanderS. Microwave-enhanced radiochemistry.Chem. Soc. Rev.200029423924910.1039/a901713e
    [Google Scholar]
  78. BagS. TawariN.R. QueenerS.F. DeganiM.S. Synthesis and biological evaluation of biguanide and dihydrotriazine derivatives as potential inhibitors of dihydrofolate reductase of opportunistic microorganisms.J. Enzyme Inhib. Med. Chem.201025333133910.3109/14756360903179443 19874136
    [Google Scholar]
  79. AfonsoC.A.M. LourençoN.M.T. RosatellaA.A. Synthesis of 2,4,6-tri-substituted-1,3,5-triazines.Molecules20061118110210.3390/11010081 17962749
    [Google Scholar]
  80. ŁażewskaD. MogilskiS. HagenowS. KuderK. Głuch-LutwinM. SiwekA. WięcekM. KaletaM. SeibelU. BuschauerA. FilipekB. StarkH. Kieć-KononowiczK. Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands.Bioorg. Med. Chem.20192771254126210.1016/j.bmc.2019.02.020 30792106
    [Google Scholar]
  81. H Al RasheedH.H.A. M MalebariA.M. A DahlousK.A. El-FahamA. Synthesis and characterization of new series of 1,3-5-triazine hydrazone derivatives with promising antiproliferative activity.Molecules20202511270810.3390/molecules25112708 32545272
    [Google Scholar]
  82. HerreraA. RiañoA. MorenoR. CasoB. PardoZ.D. FernándezI. SáezE. MoleroD. Sánchez-VázquezA. Martínez-AlvarezR. One-pot synthesis of 1,3,5-triazine derivatives via controlled cross-cyclotrimerization of nitriles: a mechanism approach.J. Org. Chem.201479157012702410.1021/jo501144v 25010006
    [Google Scholar]
  83. PatelR.V. KumariP. ChikhaliaK.H. Microwave assisted synthesis and determination of in-vitro antimicrobial efficacy of well characterized s-triazinyl piperazines and piperidines.Acta Pol. Pharm.2012693423432 22594256
    [Google Scholar]
  84. ShaY. DongY. Microwave assisted synthesis of 2,4,6-triarylamino-1,3,5-triazines as potential UV absorbent.Synth. Commun.200333152599260410.1081/SCC‑120021979
    [Google Scholar]
  85. ShindeR.S. DakeS.A. PawarR.P. Design, synthesis and antimicrobial activity of some triazine chalcone derivatives.Antiinfect. Agents202118433233810.2174/2211352517666190710115111
    [Google Scholar]
  86. ShindeR.S. SalunkeS.D. Facile synthesis of some triazine based chalcones as potential antioxidant and anti-diabetic agents.J. Chem. Pharm. Res.201579114120
    [Google Scholar]
  87. ShindeR.S. SalunkeS.D. Synthesis of novel substituted 4,6-dimethoxy-N-phenyl-1,3,5-triazin-2-amine derivatives and their antibacterial and antifungal activities.Asian J. Chem.201527114130413410.14233/ajchem.2015.19114
    [Google Scholar]
  88. HuangL. HuangZ. BaiZ. XieR. SunL. LinK. Development and strategies of VEGFR-2/KDR inhibitors.Future Med. Chem.20124141839185210.4155/fmc.12.121 23043480
    [Google Scholar]
  89. DandiaA. AryaK. SatiM. Microwave assisted synthesis of fluorinated hexahydro 1,3,5‐triazine derivatives in aqueous medium and one pot synthesis of 1,2,4‐triazolo(4,3‐a)1,3,5‐triazines.Synth. Commun.20043461141115510.1081/SCC‑120028646
    [Google Scholar]
  90. BhattacharyaA.K. ThyagarajanG. Michaelis-Arbuzov rearrangement.Chem. Rev.198181441543010.1021/cr00044a004
    [Google Scholar]
  91. JunaidA. LimF.P.L. ChuahL.H. DolzhenkoA.V. 6, N2 -Diaryl-1,3,5-triazine-2,4-diamines: synthesis, antiproliferative activity and 3D-QSAR modeling.RSC Advances20201021121351214410.1039/D0RA00643B 35497593
    [Google Scholar]
  92. KułagaD. JaśkowskaJ. SatałaG. LataczG. ŚliwaP. Aminotriazines with indole motif as novel, 5-HT7 receptor ligands with a typical binding mode.Bioorg. Chem.202010410425410.1016/j.bioorg.2020.104254 32919133
    [Google Scholar]
  93. DahlousK.A. AlmarhoonZ. Badjah-Hadj-AhmedA.Y. AL OthmanZ.A. El-FahamA. Microwave irradiation assists the synthesis of a novel series of bis-arm s-triazine oxy-Schiff base and oxybenzylidene barbiturate derivatives.Molecules20182311297610.3390/molecules23112976 30441854
    [Google Scholar]
  94. SharmaA. GhabbourH. KhanS.T. de la TorreB.G. AlbericioF. El-FahamA. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity.J. Mol. Struct.2017114524425310.1016/j.molstruc.2017.05.040
    [Google Scholar]
  95. El-FahamA. ElnakadyY. Synthesis, characterization of novel morpholino-1,3,5-triazinyl amino acid ester derivatives and their anti-proliferation activities.Lett. Org. Chem.2015121075375810.2174/1570178612666150709165843
    [Google Scholar]
  96. HassanA. HeakalB.H. KhamisH. HassanG.A.N. MarzoukE. AbdelmoazM.A. YounisA. Design, synthesis, DFT studies and anticancer activity of novel metal complexes containing 1,3,5-triazino[1,2-a]benzimidazole moiety using microwave as an approach for green chemistry.Egypt. J. Chem.2021641323340
    [Google Scholar]
  97. ZouJ.P. ZhangX.Q. GuoQ.W. XuX.H. LiuW.W. ZhangF. ShiD.H. Synthesis, biological activity, X-ray crystallographic, DFT calculations and molecular dynamics simulation studies of 2-phenylthiazole-1,3,5-triazine derivatives as potential cholinesterase inhibitors.J. Mol. Struct.2024130913820310.1016/j.molstruc.2024.138203
    [Google Scholar]
  98. NoureenS. AliS. ZiaM.A. AfzalM. AyubA.R. El-NaggarM. Synthesis, combined theoretical and spectral characterization of some new 1,3,5 triazine compounds, and their in vitro biological analysis.React. Chem. Eng.20238246548110.1039/D2RE00389A
    [Google Scholar]
  99. RaoN. DingY. YangL. ZhouY. LeY. YanL. LiuL. Synthesis, crystal structure, DFT calculation and biological activity of 3-((4-chloro-6-((4-morpholinophenyl)amino)-1,3,5-triazin-2-yl)amino)-N-methylthiophene-2-carboxamide.Mol. Cryst. Liq. Cryst. (Phila. Pa.)202375719510610.1080/15421406.2022.2138112
    [Google Scholar]
  100. NoureenS. AliS. IqbalJ. ZiaM.A. HussainT. Synthesis, comparative theoretical and experimental characterization of some new 1,3,5 triazine based heterocyclic compounds and in vitro evaluation as promising biologically active agents.J. Mol. Struct.2022126813362210.1016/j.molstruc.2022.133622
    [Google Scholar]
  101. Díaz-OrtizÁ. ElgueroJ. Foces-FocesC. de la HozA. MorenoA. del Carmen MateoM. Sánchez-MigallónA. ValienteG. Green synthesis and self-association of 2,4-diamino-1,3,5-triazine derivatives.New J. Chem.200428895295810.1039/B315956F
    [Google Scholar]
  102. Díaz-OrtizÁ. ElgueroJ. de la HozA. JiménezA. MorenoA. MorenoS. Sánchez-MigallónA. Microwave‐assisted synthesis and dynamic behaviour of N2, N4, N6‐tris(1H‐pyrazolyl)‐1,3,5‐triazine‐2,4,6‐triamines.QSAR Comb. Sci.200524564965910.1002/qsar.200420116
    [Google Scholar]
  103. Ruiz-CarreteroA. NoguezO. HerreraT. RamírezJ.R. Sánchez-MigallónA. de la HozA. Microwave-assisted selective synthesis of mono- and bistriazines with π-conjugated spacers and study of the optoelectronic properties.J. Org. Chem.201479114909491910.1021/jo500480r 24716624
    [Google Scholar]
  104. JansaP. HradilO. BaszczyňskiO. DračínskýM. KlepetářováB. HolýA. BalzariniJ. JanebaZ. An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids.Tetrahedron201268386587110.1016/j.tet.2011.11.040 32287424
    [Google Scholar]
  105. SujathaB. SubramanyamC. RaoK.P. Microwave mediated Michaelis-Arbuzov reaction to synthesize bioactive phenylphosphonate derivatives under solvent free condition.Asi. J. Org. Med. Chem.201941AJOMCP16210.14233/ajomc.2019.AJOMC‑P162
    [Google Scholar]
  106. RathodB. PawarS. PuriS. DiwanA. KumarK. Recent advancements and developments in the biological importance of 1,3,5‐triazines.ChemistrySelect2024912e20230365510.1002/slct.202303655
    [Google Scholar]
  107. KaurN. SharmaK. GrewalP. Synthesis of heterocycles from urea and its derivatives.Synth. Commun.20225219-201867189910.1080/00397911.2022.2117630
    [Google Scholar]
  108. RamírezJ.R. CaballeroR. GuerraJ. Ruiz-CarreteroA. Sánchez-MigallónA. de la HozA. Solvent-free microwave-assisted synthesis of 2,5-dimethoxyphenylaminotriazines.ACS Sustain. Chem.& Eng.20153123405341110.1021/acssuschemeng.5b01136
    [Google Scholar]
  109. AdhikariN. KashyapA. ShakyaA. GhoshS.K. BhattacharyyaD.R. BhatH.R. SinghU.P. Microwave assisted synthesis, docking and antimalarial evaluation of hybrid PABA‐substituted 1,3,5‐triazine derivatives.J. Heterocycl. Chem.20205762389239910.1002/jhet.3955
    [Google Scholar]
  110. SunL. BeraH. ChuiW.K. Synthesis of pyrazolo[1,5-a][1,3,5]triazine derivatives as inhibitors of thymidine phosphorylase.Eur. J. Med. Chem.20136511110.1016/j.ejmech.2013.03.063 23688695
    [Google Scholar]
  111. GahtoriP. GhoshS.K. SinghB. SinghU.P. BhatH.R. UppalA. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines.Saudi Pharm. J.2012201354310.1016/j.jsps.2011.05.003 23960775
    [Google Scholar]
  112. GahtoriP. GhoshS.K. ParidaP. PrakashA. GogoiK. BhatH.R. SinghU.P. Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: A novel and potential antifolate lead for Pf-DHFR-TS inhibition.Exp. Parasitol.2012130329229910.1016/j.exppara.2011.12.014 22233734
    [Google Scholar]
  113. SahuS. GhoshS.K. GhoshalA. KalitaJ. GahtoriP. BhattacharyyaD.R. Microwave assisted synthesis, antimalarial screening and structure–activity-relationship exploration of some phenylthiazolyl-triazine derivatives against dihydrofolate reductase.Med. Chem. Res.201625122916292310.1007/s00044‑016‑1714‑8
    [Google Scholar]
  114. Cáceres-CastilloD. CarballoR.M. Tzec-InteriánJ.A. Mena-RejónG.J. Solvent-free synthesis of 2-amino-4-arylthiazoles under microwave irradiation.Tetrahedron Lett.201253303934393610.1016/j.tetlet.2012.05.093
    [Google Scholar]
  115. LimH.Y. TanY.S. YeoC.I. DolzhenkoA.V. A new one-pot microwave-assisted synthesis and structural analysis of 6, N2, N4-trisubstituted 1,3,5-triazine-2,4-diamines.J. Mol. Struct.2024114096510.1016/j.molstruc.2024.140965
    [Google Scholar]
  116. HashemH.E. AmrA.E.G.E. NossierE.S. AnwarM.M. AzmyE.M. New benzimidazole-1,2,4-triazole-, and 1,3,5-triazine-based derivatives as potential EGFRWT and EGFRT790M inhibitors: microwave-assisted synthesis, anticancer evaluation, and molecular docking study.ACS Omega202278715510.1021/acsomega.1c06836 35252706
    [Google Scholar]
  117. PandaS.S. ThomasE. PhamA.M. Microwave-assisted synthesis of tri-substituted 1,3,5-triazines from metformin using benzotriazole chemistry.Reactions20223451652410.3390/reactions3040034
    [Google Scholar]
  118. ElieJ. FruitC. BessonT. Microwave-assisted sequential one-pot synthesis of 8-substituted pyrazolo [1,5-a][1,3,5] triazines.Molecules20212612354010.3390/molecules26123540 34200623
    [Google Scholar]
  119. MorenoL.M. QuirogaJ. AboniaR. CrespoM.P. AranagaC. Martínez-MartínezL. SortinoM. BarretoM. BurbanoM.E. InsuastyB. Synthesis of novel triazine-based chalcones and 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines as potential leads in the search of anticancer, antibacterial and antifungal agents.Int. J. Mol. Sci.2024257362310.3390/ijms25073623 38612435
    [Google Scholar]
  120. ZhengL.Y. ZhuJ.F. Study on antimicrobial activity of chitosan with different molecular weights.Carbohydr. Polym.200354452753010.1016/j.carbpol.2003.07.009
    [Google Scholar]
  121. HoangG.L. Søholm HalskovK. EllmanJ.A. Synthesis of azolo[135]triazines via rhodium(III)-catalyzed annulation of N-azolo imines and dioxazolones.J. Org. Chem.201883169522952910.1021/acs.joc.8b01249 29947517
    [Google Scholar]
  122. XuX. ZhangM. JiangH. ZhengJ. LiY. A novel straightforward synthesis of 2,4-disubstituted-1,3,5-triazines via aerobic copper-catalyzed cyclization of amidines with DMF.Org. Lett.201416133540354310.1021/ol501493h 24933098
    [Google Scholar]
  123. PanL. LiZ. DingT. FangX. ZhangW. XuH. XuY. Base-mediated synthesis of unsymmetrical 1,3,5-triazin-2-amines via three-component reaction of imidates, guanidines, and amides or aldehydes.J. Org. Chem.20178219100431005010.1021/acs.joc.7b01510 28841321
    [Google Scholar]
  124. SharmaO. SrivastavaS. SharmaM. MalikR. 1,3,5-triazine derivatives as potential anticancer agents against lung and breast cancer cell lines: Synthesis, biological evaluation, and structure-based drug design studies.J. Mol. Struct.2024130813807810.1016/j.molstruc.2024.138078
    [Google Scholar]
  125. NgH.L. MaX. ChewE.H. ChuiW.K. Design, synthesis, and biological evaluation of coupled bioactive scaffolds as potential anticancer agents for dual targeting of dihydrofolate reductase and thioredoxin reductase.J. Med. Chem.20176051734174510.1021/acs.jmedchem.6b01253 28177228
    [Google Scholar]
  126. ZhuW. LiuY. ZhaoY. WangH. TanL. FanW. GongP. Synthesis and biological evaluation of novel 6-hydrazinyl-2,4-bismorpholino pyrimidine and 1,3,5-triazine derivatives as potential antitumor agents.Arch. Pharm. (Weinheim)20123451081282110.1002/ardp.201200074 22707438
    [Google Scholar]
  127. PatilV. Noonikara-PoyilA. JoshiS.D. PatilS.A. PatilS.A. LewisA.M. BugarinA. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents.J. Mol. Struct.2020122012868710.1016/j.molstruc.2020.128687
    [Google Scholar]
  128. BorgohainP. ShakyaA. GhoshS.K. GogoiN. PatgiriS.J. BhowmickI.P. BhattacharyyaD.R. SinghU.P. BhatH.R. Design, in silico study, synthesis and evaluation of hybrid pyrazole substituted 1,3,5-triazine derivatives for antimalarial activity.Exp. Parasitol.202426110876710.1016/j.exppara.2024.108767 38679125
    [Google Scholar]
  129. ChoudhuryA.A.K. VinayagamS. AdhikariN. SahaA. GhoshS.K. BhatH.R. PatgiriS.J. Hybrid PABA ‐glutamic acid conjugated 1,3,5‐triazine derivatives: Design, synthesis, and antimalarial activity screening targeting Plasmodium falciparum dihydro folate reductase enzyme.Chem. Biol. Drug Des.202310261336135210.1111/cbdd.14317 37783571
    [Google Scholar]
  130. AdhikariN. ChoudhuryA.A.K. ShakyaA. GhoshS.K. PatgiriS.J. SinghU.P. BhatH.R. Design and development of novel N‐(4‐aminobenzoyl)‐ l‐glutamic acid conjugated 1,3,5‐triazine derivatives as Pf ‐DHFR inhibitor: An in silico and in vitro study.J. Biochem. Mol. Toxicol.2023374e2329010.1002/jbt.23290 36541419
    [Google Scholar]
  131. BaiL. WeiC. ZhangJ. SongR. Design, synthesis, and anti-PVY biological activity of 1,3,5-triazine derivatives containing piperazine structure.Int. J. Mol. Sci.2023249828010.3390/ijms24098280 37175986
    [Google Scholar]
  132. AliW. WięcekM. ŁażewskaD. KurczabR. Jastrzębska-WięsekM. SatałaG. Kucwaj-BryszK. LubelskaA. Głuch-LutwinM. MordylB. SiwekA. NasimM.J. PartykaA. SudołS. LataczG. WesołowskaA. Kieć-KononowiczK. HandzlikJ. Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6.Eur. J. Med. Chem.201917874075110.1016/j.ejmech.2019.06.022 31229876
    [Google Scholar]
  133. AvupatiV.R. YejellaR.P. ParalaV.R. KillariK.N. PapasaniV.M.R. CheepurupalliP. GavalapuV.R. BoddedaB. Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine–Schiff base conjugates as potential antimycobacterial agents.Bioorg. Med. Chem. Lett.201323215968597010.1016/j.bmcl.2013.08.063 24044875
    [Google Scholar]
  134. ElshemyH.A.H. AbdelallE.K.A. AzouzA.A. MoawadA. AliW.A.M. SafwatN.M. Synthesis, anti-inflammatory, cyclooxygenases inhibitions assays and histopathological study of poly-substituted 1,3,5-triazines: Confirmation of regiospecific pyrazole cyclization by HMBC.Eur. J. Med. Chem.2017127102110.1016/j.ejmech.2016.12.030 28038322
    [Google Scholar]
  135. AsadiP. AlvaniM. HajhashemiV. RostamiM. KhodarahmiG. Design, synthesis, biological evaluation, and molecular docking study on triazine based derivatives as anti-inflammatory agents.J. Mol. Struct.2021124313076010.1016/j.molstruc.2021.130760
    [Google Scholar]
/content/journals/coc/10.2174/0113852728372285250324080704
Loading
/content/journals/coc/10.2174/0113852728372285250324080704
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amines; cyanamide; guanidine; Microwave; nitriles; thiourea; triazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test