Skip to content
2000
Volume 29, Issue 19
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Aluminum is the most abundant metal in the Earth’s crust and is the principal constituent of many common minerals. Taking advantage of its higher abundance and lower costs and toxicity compared with more traditional transition metals, this main group metal has emerged as a green metal of high potential and utility in organic synthesis. While many racemic aluminum catalysts have been early applied as Lewis acids to promote various reactions, such as Friedel-Crafts acylations, Alder-ene reactions, and polymerizations, chiral aluminum counterparts have been developed only since the 1990s in asymmetric catalysis. Indeed, the possibility of tuning the Lewis acidity of aluminum by making use of appropriate chiral ligands allows to control the stereoselectivity in a wide diversity of catalytic enantioselective reactions. For example, various types of ligands have been chelated to aluminum, such as salens, BINOL, and VANOL derivatives, TADDOL-derived ligands, cinchona alkaloids, and -dioxides. In the last decade, a wide variety of highly enantioselective aluminum-catalyzed transformations have been developed, spanning from basic reactions, such as cyanations of carbonyl compounds, aldol reactions, reductions, cycloadditions, cyclizations, α-alkylations of aldehydes, Michael additions, acyloin rearrangements, copolymerization to more challenging and modern processes, such as domino and tandem reactions. The goal of this review is to collect the recent developments in enantioselective aluminum-catalyzed reactions of all types published since the beginning of 2015. It shows that asymmetric aluminum catalysis, which suits the growing demand for greener processes, offers a real opportunity to replace toxic and expensive metals soon.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728370767250309180907
2025-04-11
2025-09-02
Loading full text...

Full text loading...

References

  1. PellissierH. Recent developments in enantioselective scandium-catalyzed transformations.Chemistry2024619815210.3390/chemistry6010007
    [Google Scholar]
  2. AraiT. BougauchiM. SasaiH. ShibasakiM. Catalytic asymmetric synthesis of α-hydroxy phosphonates using the Al-Li-BINOL complex.J. Org. Chem.19966192926292710.1021/jo960180o11667145
    [Google Scholar]
  3. PellissierH. TADDOL-derived phosphorus ligands in asymmetric catalysis.Coord. Chem. Rev.202348221507910.1016/j.ccr.2023.215079
    [Google Scholar]
  4. XieM. FengX. RSC Green Chemistry SeriesCambridge2016165211
    [Google Scholar]
  5. WilkinsL.C. MelenR.L. Enantioselective main group catalysis: Modern catalysts for organic transformations.Coord. Chem. Rev.201632412313910.1016/j.ccr.2016.07.011
    [Google Scholar]
  6. GualandiA. CalogeroF. PotentiS. CozziP.G. Al(Salen) metal complexes in stereoselective catalysis.Molecules20192491716173910.3390/molecules2409171631052604
    [Google Scholar]
  7. LuanY.X. YeM. Ligand-ligated Ni-Al bimetallic catalysis for C-H and C-C bond activation.Chem. Commun. (Camb.)20225888122601227310.1039/D2CC04274F36269303
    [Google Scholar]
  8. (a MaruokaK. YamamotoH. Organoaluminums in organic synthesis.Tetrahedron1988445001503210.1016/S0040‑4020(01)86007‑5
    [Google Scholar]
  9. (b WangC. XiZ. Co-operative effect of Lewis acids with transition metals for organic synthesis.Chem. Soc. Rev.20073691395140610.1039/b608694m17660873
    [Google Scholar]
  10. (c UhlW. Hydroalumination and hydrogallation of alkynes: New insights into the course of well-known reactions.Coord. Chem. Rev.200825215-171540156310.1016/j.ccr.2008.01.026
    [Google Scholar]
  11. (d WoodwardS. DagorneS. Modern organoaluminum reagents: Preparation, structure, reactivity and use.HeidelbergSpringer201310.1007/978‑3‑642‑33672‑0
    [Google Scholar]
  12. PramanikM. GuerzoniM.G. RichardsE. MelenR.L. Recent advances in asymmetric catalysis using p‐Block nlms.Angew. Chem. Int. Ed.2024639e20231646110.1002/anie.20231646138038149
    [Google Scholar]
  13. (a PosnerG.H. Multicomponent one-pot annulations forming 3 to 6 bonds.Chem. Rev.198686583184410.1021/cr00075a007
    [Google Scholar]
  14. (b TietzeL.F. BeifussU. Sequential transformations in organic chemistry: A synthetic strategy with a future.Angew. Chem. Int. Ed. Engl.199332213116310.1002/anie.199301313
    [Google Scholar]
  15. (c TietzeL.F. Domino reactions in organic synthesis.Chem. Rev.199696111513610.1021/cr950027e11848746
    [Google Scholar]
  16. (d DalkoP.I. MoisanL. In the golden age of organocatalysis.Angew. Chem. Int. Ed.200443395138517510.1002/anie.20040065015455437
    [Google Scholar]
  17. (e RamónD.J. YusM. Asymmetric multicomponent reactions (AMCRs): The new frontier.Angew. Chem. Int. Ed.200544111602163410.1002/anie.20046054815719349
    [Google Scholar]
  18. (f ZhuJ. BienayméH. Multicomponent Reactions.WeinheimWiley-VCH200510.1002/3527605118
    [Google Scholar]
  19. (g TietzeL.F. BrascheG. GerickeK. Domino Reactions in Organic Synthesis.WeinheimWiley-VCH200610.1002/9783527609925
    [Google Scholar]
  20. (h PellissierH. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts.Tetrahedron200662102143217310.1016/j.tet.2005.10.041
    [Google Scholar]
  21. (i PellissierH. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries.Tetrahedron20066281619166510.1016/j.tet.2005.10.040
    [Google Scholar]
  22. (j EndersD. GrondalC. HüttlM.R.M. Asymmetric organocatalytic domino reactions.Angew. Chem. Int. Ed.200746101570158110.1002/anie.20060312917225236
    [Google Scholar]
  23. (k GuillenaG. RamónD.J. YusM. Organocatalytic enantioselective multicomponent reactions (OEMCRs).Tetrahedron Asymmetry200718669370010.1016/j.tetasy.2007.03.002
    [Google Scholar]
  24. (l TouréB.B. HallD.G. Natural product synthesis using multicomponent reaction strategies.Chem. Rev.200910994439448610.1021/cr800296p19480390
    [Google Scholar]
  25. (m OrruR.V.A. RuijterE. Synthesis of heterocycles via multicomponent reactions, topics in heterocyclic chemistry.BerlinSpringer2010
    [Google Scholar]
  26. (n PellissierH. Recent developments in asymmetric organocatalytic domino reactions.Adv. Synth. Catal.20123542-323729410.1002/adsc.201100714
    [Google Scholar]
  27. (o ClavierH. PellissierH. Recent developments in enantioselective metal‐catalyzed domino reactions.Adv. Synth. Catal.2012354183347340310.1002/adsc.201200254
    [Google Scholar]
  28. (p PellissierH. Stereocontrolled domino reactions.Chem. Rev.2013113144252410.1021/cr300271k23157479
    [Google Scholar]
  29. (q PellissierH. Asymmetric Domino Reactions.CambridgeRoyal Society of Chemistry201310.1039/9781849737104
    [Google Scholar]
  30. (r TietzeL.F. Domino Reactions - Concepts for Efficient Organic Synthesis.WeinheimWiley-VCH201410.1002/9783527671304
    [Google Scholar]
  31. (s ZhuJ. WangQ. WangM. Multicomponent Reactions in Organic Synthesis.WeinheimWiley201410.1002/9783527678174
    [Google Scholar]
  32. (t HerreraR.P. Marques-LopezE. Multicomponent Reactions: Concepts and Applications for Design and Synthesis.WeinheimWiley201510.1002/9781118863992
    [Google Scholar]
  33. (u SnyderS.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis.StuttgartThieme Verlag2016
    [Google Scholar]
  34. (v PellissierH. Recent developments in enantioselective metal‐catalyzed domino reactions.Adv. Synth. Catal.2016358142194225910.1002/adsc.201600462
    [Google Scholar]
  35. (w PellissierH. Recent developments in enantioselective metal-catalyzed domino reactions.Adv. Synth. Catal.201936181733175510.1002/adsc.201801371
    [Google Scholar]
  36. (x PellissierH. Asymmetric Metal Catalysis in Enantioselective Domino Reactions.WeinheimWiley201910.1002/9783527822539
    [Google Scholar]
  37. (y PellissierH. The use of domino reactions for the synthesis of chiral rings.Synthesis202052243837385410.1055/s‑0040‑1707905
    [Google Scholar]
  38. (za PellissierH. Recent developments in enantioselective domino reactions. Part A: Noble metal catalysts.Adv. Synth. Catal.2023365562068110.1002/adsc.202201284
    [Google Scholar]
  39. (zb PellissierH. Recent developments in enantioselective domino reactions. Part B: First row metal catalysts.Adv. Synth. Catal.2023365676881910.1002/adsc.202300002
    [Google Scholar]
  40. WangS.X. WangM.X. WangD.X. ZhuJ. Chiral salen-aluminum complex as a catalyst for enantioselective α-addition of isocyanides to aldehydes: Asymmetric synthesis of 2-(1-hydroxyalkyl)-5-aminooxazoles.Org. Lett.20079183615361810.1021/ol701465817685533
    [Google Scholar]
  41. WangS.X. WangM.X. WangD.X. ZhuJ. Catalytic enantioselective Passerini three-component reaction.Angew. Chem. Int. Ed.200847238839110.1002/anie.20070431518008290
    [Google Scholar]
  42. YueT. WangM.X. WangD.X. ZhuJ. Asymmetric synthesis of 5-(1-hydroxyalkyl)tetrazoles by catalytic enantioselective Passerini-type reactions.Angew. Chem. Int. Ed.200847499454945710.1002/anie.20080421318972483
    [Google Scholar]
  43. XieG. FengD. MaX. 9-Amino(9-deoxy)epi-cinchona alkaloid-tethered aluminium phosphonate architectures for heterogeneous cooperative catalysis: asymmetric aldol and double-Michael cascade reaction.Mol. Catal.2017434869510.1016/j.mcat.2017.03.003
    [Google Scholar]
  44. LiuQ.S. WangD.Y. YangZ.J. LuanY.X. YangJ.F. LiJ.F. PuY.G. YeM. Ni–Al bimetallic catalyzed enantioselective cycloaddition of cyclopropyl carboxamide with alkyne.J. Am. Chem. Soc.201713950181501815310.1021/jacs.7b0994729206448
    [Google Scholar]
  45. ZhangT. LuanY.X. ZhengS.J. PengQ. YeM. Chiral aluminum complex controls enantioselective nickel‐catalyzed synthesis of Indenes: C−CN bond activation.Angew. Chem. Int. Ed.202059197439744310.1002/anie.20200114232067290
    [Google Scholar]
  46. (a HoT-L. Tandem Organic Reactions.New YorkWiley1992
    [Google Scholar]
  47. (b BunceR.A. Recent advances in the use of tandem reactions for organic synthesis.Tetrahedron19955148131031315910.1016/0040‑4020(95)00649‑S
    [Google Scholar]
  48. (c PadwaA. WeingartenM.D. Cascade processes of metallo carbenoids.Chem. Rev.199696122327010.1021/cr950022h11848752
    [Google Scholar]
  49. (d DenmarkS.E. ThorarensenA. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes.Chem. Rev.199696113716610.1021/cr940277f11848747
    [Google Scholar]
  50. (e HulmeC. GoreV. “Multi-component reactions : Emerging chemistry in drug discovery” ‘from xylocain to crixivan’.Curr. Med. Chem.2003101518010.2174/092986703336860012570721
    [Google Scholar]
  51. (f TietzeL.F. RackelmannN. Domino reactions in the synthesis of heterocyclic natural products and analogs.Pure Appl. Chem.200476111967198310.1351/pac200476111967
    [Google Scholar]
  52. (g FoggD.E. dos SantosE.N. Tandem catalysis: A taxonomy and illustrative review.Coord. Chem. Rev.200424821-242365237910.1016/j.ccr.2004.05.012
    [Google Scholar]
  53. (h WasilkeJ.C. ObreyS.J. BakerR.T. BazanG.C. Concurrent tandem catalysis.Chem. Rev.200510531001102010.1021/cr020018n15755083
    [Google Scholar]
  54. (i NicolaouK.C. EdmondsD.J. BulgerP.G. Cascade reactions in total synthesis.Angew. Chem. Int. Ed.200645437134718610.1002/anie.20060187217075967
    [Google Scholar]
  55. (j ChapmanC.J. FrostC.G. Tandem and domino catalytic strategies for enantioselective synthesis.Synthesis2007121
    [Google Scholar]
  56. (k PadwaA. BurS.K. The domino way to heterocycles.Tetrahedron200763255341537810.1016/j.tet.2007.03.15817940591
    [Google Scholar]
  57. (l D’SouzaD.M. MüllerT.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis.Chem. Soc. Rev.20073671095110810.1039/B608235C17576477
    [Google Scholar]
  58. (m AlbaA.N. CompanyoX. VicianoM. RiosR. Organocatalytic domino reactions.Curr. Org. Chem.200913141432147410.2174/138527209789055054
    [Google Scholar]
  59. (n PoulinJ. Grisé-BardC.M. BarriaultL. Pericyclic domino reactions: Concise approaches to natural carbocyclic frameworksChem. Soc. Rev20093830923101
    [Google Scholar]
  60. (o NicolaouK.C. ChenJ.S. The art of total synthesis through cascade reactions.Chem. Soc. Rev.200938112993300910.1039/b903290h19847336
    [Google Scholar]
  61. (p RuizM. López-AlvaradoP. GiorgiG. MenéndezJ.C. Domino reactions for the synthesis of bridged bicyclic frameworks: Fast access to bicyclo[n.3.1]alkanes.Chem. Soc. Rev.20114073445345410.1039/c1cs15018a21483949
    [Google Scholar]
  62. (q de GraaffC. RuijterE. OrruR.V.A. Recent developments in asymmetric multicomponent reactions.Chem. Soc. Rev.201241103969400910.1039/c2cs15361k22546840
    [Google Scholar]
  63. (r PellissierH. Recent developments in enantioselective multicatalysed tandem reactions.Tetrahedron201369357171721010.1016/j.tet.2013.06.020
    [Google Scholar]
  64. (s PellissierH. Enantioselective Multicatalysed Tandem Reactions.CambridgeRoyal Society of Chemistry201410.1039/9781782621355
    [Google Scholar]
  65. (t ArdkheanR. CaputoD.F.J. MorrowS.M. ShiH. XiongY. AndersonE.A. Cascade polycyclizations in natural product synthesis.Chem. Soc. Rev.20164561557156910.1039/C5CS00105F26791791
    [Google Scholar]
  66. (u PellissierH. Enantioselective nickel-catalyzed domino and tandem processes.Curr. Org. Chem.201620234265
    [Google Scholar]
  67. (v HayashiY. Pot economy and one-pot synthesis.Chem. Sci. (Camb.)20167286688010.1039/C5SC02913A28791118
    [Google Scholar]
  68. (w PellissierH. Recent developments in enantioselective multicatalyzed tandem reactions.Adv. Synth. Catal.2020362122289232510.1002/adsc.202000210
    [Google Scholar]
  69. ZengX.P. CaoZ.Y. WangX. ChenL. ZhouF. ZhuF. WangC.H. ZhouJ. Activation of Chiral (Salen)AlCl complex by phosphorane for highly enantioselective cyanosilylation of ketones and enones.J. Am. Chem. Soc.2016138141642510.1021/jacs.5b1147626651389
    [Google Scholar]
  70. StegbauerS. JandlC. BachT. Chiral Lewis acid catalysis in a visible light-triggered cycloaddition/rearrangement cascade.Chem. Sci. (Camb.)20221340118561186210.1039/D2SC03159K36320923
    [Google Scholar]
  71. (a RamónD.J. YusM. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath.Chem. Rev.200610662126220810.1021/cr040698p16771446
    [Google Scholar]
  72. (b YuY. DingK. ChenG. IshiharaK. Acid Catalysis in Modern Organic Synthesis. YamamotoH. WeinheimWiley-VCH2008721
    [Google Scholar]
  73. (c KhanN.H. KureshyR.I. AbdiS.H.R. AgrawalS. JasraR.V. Metal catalyzed asymmetric cyanation reactions.Coord. Chem. Rev.20082525-759362310.1016/j.ccr.2007.09.010
    [Google Scholar]
  74. (d NorthM. UsanovD.L. YoungC. Lewis acid catalyzed asymmetric cyanohydrin synthesis.Chem. Rev.2008108125146522610.1021/cr800255k19067648
    [Google Scholar]
  75. (e WangW. LiuX. LinL. FengX. Recent progress in the chemically catalyzed enantioselective synthesis of cyanohydrins.Eur. J. Org. Chem.20102010254751476910.1002/ejoc.201000462
    [Google Scholar]
  76. (f NorthM. A bimetallic titanium catalyst for the enantioselective cyanation of aldehydes based on cooperative catalysis.Angew. Chem. Int. Ed.201049448079808110.1002/anie.20100301420809557
    [Google Scholar]
  77. (g PellissierH. Enantioselective titanium‐catalyzed cyanation reactions of carbonyl compounds.Adv. Synth. Catal.2015357585788210.1002/adsc.201400939
    [Google Scholar]
  78. SigmanM.S. JacobsenE.N. Enantioselective addition of hydrogen cyanide to imines catalyzed by a chiral (Salen)Al(III) complex.J. Am. Chem. Soc.1998120215315531610.1021/ja980299+
    [Google Scholar]
  79. GregoryR.J.H. Cyanohydrins in nature and the laboratory: Biology, preparations, and synthetic applications.Chem. Rev.199999123649368210.1021/cr990290611849033
    [Google Scholar]
  80. BrodbeckD. BroghammerF. MeisnerJ. KleppJ. GarnierD. FreyW. KästnerJ. PetersR. An Aluminum Fluoride complex with an appended ammonium salt as an exceptionally active cooperative catalyst for the asymmetric carboxycyanation of aldehydes.Angew. Chem. Int. Ed.201756144056406010.1002/anie.201612493
    [Google Scholar]
  81. BrodbeckD. Álvarez-BarciaS. MeisnerJ. BroghammerF. KleppJ. GarnierD. FreyW. KästnerJ. PetersR. Asymmetric carboxycyanation of aldehydes by cooperative AlF/Onium salt catalysts: From cyanoformate to KCN as Cyanide source.Chemistry20192561515152410.1002/chem.20180438830359465
    [Google Scholar]
  82. (a HoveydaA.H. DidiukM.T. Metal-catalyzed kinetic resolution processes.Curr. Org. Chem.19982548952610.2174/1385272802666220128233001
    [Google Scholar]
  83. (b CookG.R. Transition metal-mediated kinetic resolutionCurr. Org. Chem.2000486988510.2174/1385272810004080869
    [Google Scholar]
  84. (c KeithJ.M. LarrowJ.F. JacobsenE.N. Practical considerations in kinetic resolution reactions.Adv. Synth. Catal.2001343152610.1002/1615‑4169(20010129)343:1<5::AID‑ADSC5>3.0.CO;2‑I
    [Google Scholar]
  85. (d RobinsonD.E.J.E. BullS.D. Kinetic resolution strategies using non-enzymatic catalysts.Tetrahedron Asymmetry200314111407144610.1016/S0957‑4166(03)00209‑X
    [Google Scholar]
  86. (e JarvoE.R. MillerS.J. PfaltzA. YamamotoH. Comprehensive asymmetric catalysis, supplement. JacobsenE.N. BerlinSpringer2004189206
    [Google Scholar]
  87. (f BreuerM. DitrichK. HabicherT. HauerB. KeßelerM. StürmerR. ZelinskiT. Industrial methods for the production of optically active intermediates.Angew. Chem. Int. Ed.200443778882410.1002/anie.200300599
    [Google Scholar]
  88. (g VedejsE. JureM. Efficiency in nonenzymatic kinetic resolution.Angew. Chem. Int. Ed.200544263974400110.1002/anie.200460842
    [Google Scholar]
  89. (h FogassyE. NógrádiM. KozmaD. EgriG. PálovicsE. KissV. Optical resolution methods.Org. Biomol. Chem.20064163011303010.1039/B603058K16886066
    [Google Scholar]
  90. (i WurzR.P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis.Chem. Rev.2007107125570559510.1021/cr068370e18072804
    [Google Scholar]
  91. (j PellissierH. Catalytic non‐enzymatic kinetic resolution.Adv. Synth. Catal.2011353101613166610.1002/adsc.201100111
    [Google Scholar]
  92. (k PellissierH. Separation of enantiomers, synthetic methods. ToddM. WeinheimWiley-VCH2014
    [Google Scholar]
  93. (l PetersenK.S. Chiral brønsted acid catalyzed kinetic resolutions.Asian J. Org. Chem.20165330832010.1002/ajoc.20160002127790394
    [Google Scholar]
  94. (m PellissierH. Recent developments in non-enzymatic catalytic oxidative kinetic resolution of secondary alcohols.Tetrahedron201874273459346810.1016/j.tet.2018.05.015
    [Google Scholar]
  95. (n PellissierH. Frontiers of green catalytic selective oxidations. BryliakovK.P. HeidelbergSpringer2019
    [Google Scholar]
  96. (a TokunagaM. LarrowJ.F. KakiuchiF. JacobsenE.N. Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis.Science1997277532893693810.1126/science.277.5328.9369252321
    [Google Scholar]
  97. (b SchneiderC. Synthesis of 1,2-difunctionalized fine chemicals through catalytic, enantioselective ring-opening reactions of epoxides.Synthesis20062006233919394410.1055/s‑2006‑950348
    [Google Scholar]
  98. (c PastorI. YusM. Asymmetric ring opening of epoxides.Curr. Org. Chem.20059112910.2174/1385272053369385
    [Google Scholar]
  99. NorthM. QuekS.C.Z. PridmoreN.E. WhitwoodA.C. WuX. Aluminum(salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling.ACS Catal.2015563398340210.1021/acscatal.5b00235
    [Google Scholar]
  100. ItohH. MaedaH. YamadaS. HoriY. MinoT. SakamotoM. BINOL-Al catalyzed kinetic resolution of citronellal analogues: Synthesis of a variety of fragrances.Tetrahedron Asymmetry20162714-1569870510.1016/j.tetasy.2016.06.007
    [Google Scholar]
  101. BroghammerF. BrodbeckD. JungeT. PetersR. Cooperative Lewis acid–onium salt catalysis as tool for the desymmetrization of meso-epoxides.Chem. Commun. (Camb.)20175361156115910.1039/C6CC09774J28054051
    [Google Scholar]
  102. (a LiJ. LiuY. RenW.M. LuX.B. Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: Efficient access to enantiopure polyesters.J. Am. Chem. Soc.201613836114931149610.1021/jacs.6b0752027562940
    [Google Scholar]
  103. (b RenB.H. TengY.Q. WangS.N. WangS. LiuY. RenW.M. LuX.B. Mechanistic basis for the high enantioselectivity and activity in the multichiral bimetallic complex-mediated enantioselective copolymerization of meso-epoxides.ACS Catal.20221219122681228010.1021/acscatal.2c03659
    [Google Scholar]
  104. LiY.N. LiuY. YangH.H. ZhangW.F. LuX.B. Intramolecular partners in asymmetric catalysis copolymerization: Highly enantioselective and controllable at enhanced temperatures and low loadings.Angew. Chem. Int. Ed.20226122e20220258510.1002/anie.20220258535229423
    [Google Scholar]
  105. LiY.N. YangH.H. LuX.B. Intramolecular synergistic catalysis for asymmetric alternating copolymerization of CO 2 and meso ‐epoxides.J. Polym. Sci.202260142078208510.1002/pol.20220151
    [Google Scholar]
  106. (a HeG.H. RenB.H. ChenS.Y. LiuY. LuX.B. Enantioselective, stereoconvergent resolution copolymerization of racemic cis ‐internal epoxides and anhydrides.Angew. Chem. Int. Ed.202160115994600210.1002/anie.202011259
    [Google Scholar]
  107. (b LiJ. RenB.H. ChenS.Y. HeG.H. LiuY. RenW.M. ZhouH. LuX.B. Development of highly enantioselective catalysts for asymmetric copolymerization of meso -epoxides and cyclic anhydrides: Subtle modification resulting in superior enantioselectivity.ACS Catal.2019931915192210.1021/acscatal.9b00113
    [Google Scholar]
  108. OnnekenC. MorackT. SoikaJ. SokolovaO. NiemeyerN. Mück-LichtenfeldC. DaniliucC.G. NeugebauerJ. GilmourR. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis.Nature2023621798075375910.1038/s41586‑023‑06407‑837612509
    [Google Scholar]
  109. LiX. ZhangL. XiaoY.H. GuoQ.P. DaC.S. LiH. LiuX. MaX. MaY. Direct asymmetric aldol reaction of acetophenones with aromatic aldehydes catalyzed by chiral Al/Zn heterobimetallic compounds.Russ. J. Gen. Chem.20168681922193010.1134/S1070363216080247
    [Google Scholar]
  110. LebedevY. PolishchukI. MaityB. Dinis Veloso GuerreiroM. CavalloL. RuepingM. Asymmetric hydroboration of heteroaryl ketones by aluminum catalysis.J. Am. Chem. Soc.201914149194151942310.1021/jacs.9b1036431701746
    [Google Scholar]
  111. ZhengL. YinX. MohammadlouA. SullivanR.P. GuanY. StaplesR. WulffW.D. Asymmetric catalytic meerwein–ponndorf–verley reduction of ketones with Aluminum(III)-VANOL catalysts.ACS Catal.202010137188719410.1021/acscatal.0c01734
    [Google Scholar]
  112. TitzeM. HeitkämperJ. JungeT. KästnerJ. PetersR. Highly active cooperative lewis acid—ammonium salt catalyst for the enantioselective hydroboration of ketones.Angew. Chem. Int. Ed.202160105544555310.1002/anie.20201279633210781
    [Google Scholar]
  113. ItohH. MaedaH. YamadaS. HoriY. MinoT. SakamotoM. BINOL-Al catalysed asymmetric cyclization and amplification: Preparation of optically active menthol analogs.Org. Biomol. Chem.201513205817582510.1039/C5OB00433K25913595
    [Google Scholar]
  114. WangY.X. QiS.L. LuanY.X. HanX.W. WangS. ChenH. YeM. Enantioselective Ni–Al bimetallic catalyzed exo -selective C–H cyclization of imidazoles with alkenes.J. Am. Chem. Soc.2018140165360536410.1021/jacs.8b0254729641189
    [Google Scholar]
  115. LiJ.F. XuW.W. WangR.H. LiY. YinG. YeM. Construction 7-membered ring via Ni–Al bimetal-enabled C–H cyclization for synthesis of tricyclic imidazoles.Nat. Commun.20211213070307910.1038/s41467‑021‑23371‑x34031420
    [Google Scholar]
  116. MyersJ.K. JacobsenE.N. Asymmetric synthesis of β-Amino acid derivatives via catalytic conjugate addition of hydrazoic acid to unsaturated imides.J. Am. Chem. Soc.1999121388959896010.1021/ja991621z
    [Google Scholar]
  117. Avidan-ShlomovichS. GhoshH. SzpilmanA.M. Synthetic and mechanistic study of the catalytic enantioselective preparation of primary β-Amino ketones from enones and a fluorinated gabriel reagent.ACS Catal.20155133634210.1021/cs501744e
    [Google Scholar]
  118. AdateP.A. MatsunagaT. ShinH. HaradaT. Chiral aluminum catalyzed enantioselective vinylation of aldehydes.Adv. Synth. Catal.20163583688369310.1002/adsc.201600594
    [Google Scholar]
  119. GualandiA. MarchiniM. MengozziL. KidanuH.T. FrancA. CeroniP. CozziP.G. Aluminum(III) salen complexes as active photoredox catalysts.Eur. J. Org. Chem.20202020101486149010.1002/ejoc.201901086
    [Google Scholar]
  120. DaiL. LiX. ZengZ. DongS. ZhouY. LiuX. FengX. Catalytic asymmetric acyloin rearrangements of α-Ketols, α-Hydroxy aldehydes, and α-Iminols by N, N ′-Dioxide–metal complexes.Org. Lett.202022135041504510.1021/acs.orglett.0c0162632610927
    [Google Scholar]
  121. HomerJ.A. De SilvestroI. MathesonE.J. StuartJ.T. LawrenceA.L. Enantioselective para -Claisen rearrangement for the synthesis of Illicium -derived prenylated phenylpropanoids.Org. Lett.20212393248325210.1021/acs.orglett.1c0062033856817
    [Google Scholar]
  122. DissanayakeD. ForsythC. VidovićD. Synthesis, characterisation and reactivity studies of chiral β-diketiminate-like supported aluminium Lewis acid complexes towards difficult Diels Alder cycloadditions.Dalton Trans.202352134063407610.1039/D3DT00206C36880570
    [Google Scholar]
/content/journals/coc/10.2174/0113852728370767250309180907
Loading
/content/journals/coc/10.2174/0113852728370767250309180907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test