Skip to content
2000
Volume 29, Issue 19
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Terpenes and terpenoids, which are a large and diverse class of organic compounds, are widely distributed in many plants. In recent years, there has been a growing interest in the biosynthesis and biological activity of terpenes and terpenoids in order to fully exploit their efficacy in a wider range of applications, such as medicine, biology, flavors and fragrances, food, and cosmetics. This review aims to update and elucidate the classification, pharmacology, and production of terpenes and terpenoids, focusing on the bioactivities and biosynthetic mechanisms. Their classification methods, production routes, and potential application ranges are discussed in detail. Moreover, the research on terpenes and terpenoids since 2014 is also reviewed by identifying the trends and keywords through bibliometric analysis, classifying terpenes and terpenoids in recent studies according to their chemical structure, and summarizing their production methods and pharmacological properties. Generally, terpenes and terpenoids can be divided into five categories based on the number of isoprene units, but are highly diverse in structure. Terpenes and terpenoids exhibit various bioactivities, including anti-inflammatory, antibacterial, anticancer, and antioxidant effects, due to their structural diversity. The common production methods mainly include extraction and separation, chemical synthesis, and biosynthesis. Different approaches to biosynthesis have been proposed but have not been applied in large-scale production. With increasing medicinal potentials, the demand for terpenes and terpenoids will continue to increase, where biosynthesis will play a key role in improving their production.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728373242250319054222
2025-04-14
2025-10-25
Loading full text...

Full text loading...

References

  1. MasyitaA. SariM.R. AstutiD.A. YasirB. RumataR.N. EmranT.B. NainuF. Simal-GandaraJ. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.10021735498985
    [Google Scholar]
  2. MosqueraM.E.G. JiménezG. TaberneroV. Vinueza-VacaJ. García-EstradaC. KosalkováK. Sola-LandaA. MonjeB. AcostaC. AlonsoR. ValeraM.Á. Terpenes and terpenoids: Building blocks to produce biopolymers.Sustain. Chem.20212346749210.3390/suschem2030026
    [Google Scholar]
  3. SiddiquiT. KhanM.U. SharmaV. GuptaK. Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry.Phytomed. Plus20244210054910.1016/j.phyplu.2024.100549
    [Google Scholar]
  4. LiC. ZhaW. LiW. WangJ. YouA. Advances in the biosynthesis of terpenoids and their ecological functions in plant resistance.Int. J. Mol. Sci.202324141156110.3390/ijms24141156137511319
    [Google Scholar]
  5. RobertsS.C. Production and engineering of terpenoids in plant cell culture.Nat. Chem. Biol.20073738739510.1038/nchembio.2007.817576426
    [Google Scholar]
  6. SelwalN. RahayuF. HerwatiA. Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies.J. Chem. Inf. Model.20231410070210.1016/j.jafr.2023.100702
    [Google Scholar]
  7. ZengT. ChenY. JianY. ZhangF. WuR. Chemotaxonomic investigation of plant terpenoids with an established database (TeroMOL).New Phytol.2022235266267310.1111/nph.1813335377469
    [Google Scholar]
  8. KanwalA. BilalM. RasoolN. ZubairM. ShahS.A.A. ZakariaZ.A. Total synthesis of terpenes and their biological significance: A critical review.Pharmaceuticals20221511139210.3390/ph1511139236422521
    [Google Scholar]
  9. ZhangL. SongJ. KongL. YuanT. LiW. ZhangW. HouB. LuY. DuG. The strategies and techniques of drug discovery from natural products.Pharmacol. Ther.202021610768610.1016/j.pharmthera.2020.10768632961262
    [Google Scholar]
  10. WangQ. ZhaoX. JiangY. JinB. WangL. Functions of representative terpenoids and their biosynthesis mechanisms in medicinal plants.Biomolecules20231312172510.3390/biom1312172538136596
    [Google Scholar]
  11. BergmanM.E. DudarevaN. Plant specialized metabolism: Diversity of terpene synthases and their products.Curr. Opin. Plant Biol.20248110260710.1016/j.pbi.2024.10260739053147
    [Google Scholar]
  12. PanX. RudolfJ.D. DongL.B. Class II terpene cyclases: Structures, mechanisms, and engineering.Nat. Prod. Rep.202441340243310.1039/D3NP00033H38105714
    [Google Scholar]
  13. JaegerR.Cuny, E. Terpenoids with special pharmacological significance: A review.Nat. Prod. Commun.20161191373139030807045
    [Google Scholar]
  14. YangW. ChenX. LiY. GuoS. WangZ. YuX. Advances in pharmacological activities of terpenoids.Nat. Prod. Commun.20201531934578X2090355510.1177/1934578X20903555
    [Google Scholar]
  15. ChenR. WangM. KeaslingJ.D. HuT. YinX. Expanding the structural diversity of terpenes by synthetic biology approaches.Trends Biotechnol.202442669971310.1016/j.tibtech.2023.12.00638233232
    [Google Scholar]
  16. CostaJ.A.V. CassuriagaA.P.A. MoraesL. MoraisM.G. Biosynthesis and potential applications of terpenes produced from microalgae.Bioresour. Technol. Rep.20221910116610.1016/j.biteb.2022.101166
    [Google Scholar]
  17. HanM. ZhaoL. ChengH. QiZ. Enhancing fractionation of terpenoids and terpenes in citrus essential oils by a biphasic extraction system.Chem. Eng. Sci.202429912047610.1016/j.ces.2024.120476
    [Google Scholar]
  18. TuZ. HaoZ. LiuQ. GuZ. ZhangW. YangC. Multi-omics analyses reveal microRNAs’ role in terpene biosynthesis regulation in slash pine.Ind. Crops Prod.202421611862510.1016/j.indcrop.2024.118625
    [Google Scholar]
  19. NinkuuV. ZhangL. YanJ. FuZ. YangT. ZengH. Biochemistry of terpenes and recent advances in plant protection.Int. J. Mol. Sci.20212211571010.3390/ijms2211571034071919
    [Google Scholar]
  20. CâmaraJ.S. PerestreloR. FerreiraR. BerenguerC.V. PereiraJ.A.M. CastilhoP.C. Plant-derived terpenoids: A plethora of bioactive compounds with several health functions and industrial applications-A comprehensive overview.Molecules20242916386110.3390/molecules29163861
    [Google Scholar]
  21. PhukanM.M. SangmaS.R. KalitaD. Alkaloids and terpenoids: Synthesis, classification, isolation and purification, reactions, and applications. Handbook of Biomolecules. VermaC. VermaD.K. Amsterdam, NetherlandsElsevier202317721310.1016/B978‑0‑323‑91684‑4.00017‑7
    [Google Scholar]
  22. ThollD. Biosynthesis and biological functions of terpenoids in plants.Adv. Biochem. Eng. Biotechnol.20151486310610.1007/10_2014_29525583224
    [Google Scholar]
  23. PicolloM.I. TolozaA.C. CuetoM.G. ZygadloJ. ZerbaE. Anticholinesterase and pediculicidal activities of monoterpenoids.Fitoterapia200879427127810.1016/j.fitote.2008.01.00518321657
    [Google Scholar]
  24. XiaY. LiM.Y. WadoodS.A. HongH.J. LiuY. LuoY.X. WangY.Y. LiuH.Y. GanR.Y. Identification of volatile and flavor metabolites in three varieties of broccoli sprouts.Food Chem. X20242410186210.1016/j.fochx.2024.10186239498256
    [Google Scholar]
  25. SerraS. Recent advances in the synthesis of carotenoid-derived flavours and fragrances.Molecules2015207128171284010.3390/molecules20071281726184154
    [Google Scholar]
  26. JiangH. WangX. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances.Biotechnol. Adv.20236510815110.1016/j.biotechadv.2023.10815137037288
    [Google Scholar]
  27. Abu-IzneidT. RaufA. ShariatiM.A. KhalilA.A. ImranM. RebezovM. UddinM.S. MahomoodallyM.F. RengasamyK.R.R. Sesquiterpenes and their derivatives-natural anticancer compounds: An update.Pharmacol. Res.202016110516510.1016/j.phrs.2020.10516532835868
    [Google Scholar]
  28. JiangL. WenY. PengY. ChenT. ChenJ. YangJ. GongT. ZhuP. Advances in biosynthesis of cadinane sesquiterpenes.Chin. J. Biotechnol.20213761952196710.13345/j.cjb.21016534227287
    [Google Scholar]
  29. HuZ. LiuX. TianM. MaY. JinB. GaoW. CuiG. GuoJ. HuangL. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants.Med. Res. Rev.20214162971299710.1002/med.2181633938025
    [Google Scholar]
  30. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑091625213191
    [Google Scholar]
  31. ChenC. PangY. ChenQ. LiC. LüB. Oxidosqualene cyclases in triterpenoids biosynthesis: A review.Chin. J. Biotechnol.202238244345910.13345/j.cjb.21016935234375
    [Google Scholar]
  32. ZhouM. ZhangR.H. WangM. XuG.B. LiaoS.G. Prodrugs of triterpenoids and their derivatives.Eur. J. Med. Chem.201713122223610.1016/j.ejmech.2017.03.00528329729
    [Google Scholar]
  33. FuX. ShiP. HeQ. ShenQ. TangY. PanQ. MaY. YanT. ChenM. HaoX. LiuP. LiL. WangY. SunX. TangK. AaPDR3, a PDR Transporter 3, is involved in sesquiterpene β-caryophyllene transport in Artemisia annua. Front. Plant Sci.2017872310.3389/fpls.2017.0072328533790
    [Google Scholar]
  34. WangY. TangP. TuW. GaoQ. WangC. TanL. ZhaoL. HanH. MaL. OtsukiK. XiaoW. WangW. LiuJ. LiY. ZhanZ. LiW. ZhouX. LiN. Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023.Chin. Chem. Lett.202536110995510.1016/j.cclet.2024.109955
    [Google Scholar]
  35. ArulselvanP. FardM.T. TanW.S. GothaiS. FakuraziS. NorhaizanM.E. KumarS.S. Role of antioxidants and natural products in inflammation.Oxid. Med. Cell. Longev.201620161527613010.1155/2016/527613027803762
    [Google Scholar]
  36. GeJ. LiuZ. ZhongZ. WangL. ZhuoX. LiJ. JiangX. YeX.Y. XieT. BaiR. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery.Bioorg. Chem.202212410581710.1016/j.bioorg.2022.10581735490583
    [Google Scholar]
  37. ChenC. PanZ. Cannabidiol and terpenes from hemp – ingredients for future foods and processing technologies.J. Fut. Foods20211211312710.1016/j.jfutfo.2022.01.001
    [Google Scholar]
  38. RufinoA.T. RibeiroM. SousaC. JudasF. SalgueiroL. CavaleiroC. MendesA.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis.Eur. J. Pharmacol.201575014115010.1016/j.ejphar.2015.01.01825622554
    [Google Scholar]
  39. LinY.Y. LinS.C. FengC.W. ChenP.C. SuY.D. LiC.M. YangS.N. JeanY.H. SungP.J. DuhC.Y. WenZ.H. Anti-inflammatory and analgesic effects of the marine-derived compound excavatolide b isolated from the culture-type formosan gorgonian briareum excavatum.Mar. Drugs20151352559257910.3390/md1305255925923315
    [Google Scholar]
  40. TsengW.R. AhmedA.F. HuangC.Y. TsaiY.Y. TaiC.J. OrfaliR.S. HwangT.L. WangY.H. DaiC.F. SheuJ.H. Bioactive capnosanes and cembranes from the soft coral Klyxum flaccidum. Mar. Drugs201917846110.3390/md1708046131394844
    [Google Scholar]
  41. Del Prado-AudeloM.L. CortésH. Caballero-FloránI.H. González-TorresM. Escutia-GuadarramaL. Bernal-ChávezS.A. Giraldo-GomezD.M. MagañaJ.J. Leyva-GómezG. Therapeutic applications of terpenes on inflammatory diseases.Front. Pharmacol.20211270419710.3389/fphar.2021.70419734483907
    [Google Scholar]
  42. WangL.H. ZhangZ.H. ZengX.A. GongD.M. WangM.S. Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: Membrane damage and genomic DNA binding.Anal. Bioanal. Chem.201740961615162510.1007/s00216‑016‑0102‑z27900434
    [Google Scholar]
  43. HuW. LiC. DaiJ. CuiH. LinL. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA).Ind. Crops Prod.2019130344110.1016/j.indcrop.2018.12.078
    [Google Scholar]
  44. SomolinosM. GarcíaD. CondónS. MackeyB. PagánR. Inactivation of Escherichia coli by citral.J. Appl. Microbiol.201010861928193910.1111/j.1365‑2672.2009.04597.x19891710
    [Google Scholar]
  45. Pereira da CruzR. Sampaio de FreitasT. do Socorro CostaM. Lucas dos SantosA.T. CampinaF.F. PereiraR.L.S. BezerraJ.W.A. Quintans-JúniorL.J. De Souza AraújoA.A. De Siqueira JúniorJ.P. IritiM. VaroniE.M. MenezesD.I.R.A. CoutinhoM.H.D. Morais-BragaM.F.B. Effect of α-bisabolol and its β-cyclodextrin complex as tetk and nora efflux pump inhibitors in Staphylococcus aureus strains.Antibiotics2020912810.3390/antibiotics901002831947642
    [Google Scholar]
  46. MitićZ.S. JovanovićB. JovanovićS.Č. Mihajilov-KrstevT. Stojanović-RadićZ.Z. CvetkovićV.J. MitrovićT.L. MarinP.D. ZlatkovićB.K. StojanovićG.S. Comparative study of the essential oils of four Pinus species: Chemical composition, antimicrobial and insect larvicidal activity.Ind. Crops Prod.2018111556210.1016/j.indcrop.2017.10.004
    [Google Scholar]
  47. ChatowL. NudelA. EyalN. LupoT. RamirezS. ZelingerE. NesherI. BoxerR. Terpenes and cannabidiol against human corona and influenza viruses–Anti-inflammatory and antiviral in vitro evaluation.Biotechnol. Rep.202441e0082910.1016/j.btre.2024.e0082938318445
    [Google Scholar]
  48. SahaM. BandyopadhyayP.K. In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16.Microb. Pathog.202014110397710.1016/j.micpath.2020.10397731953226
    [Google Scholar]
  49. KushalanS. YathishaU.G. AloysiosK.S. HegdeS. Phytochemical and anti-oxidant evaluation of in vitro and in vivo propagated plants of Curculigo orchioides.In Vitro Cell. Dev. Biol. Plant202258338239110.1007/s11627‑021‑10246‑5
    [Google Scholar]
  50. Ang-LingC. Ya-NanY. Xiang-QianK. Research progress on antitumor effect and mechanisms of three terpenoids.Chin. Med.202318164
    [Google Scholar]
  51. XuY.F. LianD.W. ChenY.Q. CaiY.F. ZhengY.F. FanP.L. RenW.K. FuL.J. LiY.C. XieJ.H. CaoH.Y. TanB. SuZ.R. HuangP. In vitro and in vivo antibacterial activities of patchouli alcohol, a naturally occurring tricyclic sesquiterpene, against Helicobacter pylori infection.Antimicrob. Agents Chemother.2017616e00122-1710.1128/AAC.00122‑1728320722
    [Google Scholar]
  52. CuiT. LiB.Y. LiuF. XiongL. Research progress on sesquiterpenoids of Curcumae rhizoma and their pharmacological effects.Biomolecules202414438710.3390/biom1404038738672405
    [Google Scholar]
  53. Juárez-VelázquezT. González-GarridoJ.A. Sánchez-LombardoI. Jiménez-PérezN.C. Olivares-CorichiI.M. García-SánchezJ.R. Hernández-AbreuO. Untargeted metabolic analysis of Epaltes mexicana by LC-QTOF-MS: Terpenes with activity against human cancer cell lines.Fitoterapia202417910619410.1016/j.fitote.2024.10619439216676
    [Google Scholar]
  54. ChenT.C. FonsecaD.C.O. LevinD. SchönthalA.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers.Pharmaceutics20211312216710.3390/pharmaceutics1312216734959448
    [Google Scholar]
  55. FischerJ.S.G. LiaoL. CarvalhoP.C. BarbosaV.C. DomontG.B. CarvalhoM.G.C. YatesJ.R.III Dynamic proteomic overview of glioblastoma cells (A172) exposed to perillyl alcohol.J. Proteomics20107351018102710.1016/j.jprot.2010.01.00320083244
    [Google Scholar]
  56. YeruvaL. PierreK.J. ElegbedeA. WangR.C. CarperS.W. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells.Cancer Lett.2007257221622610.1016/j.canlet.2007.07.02017888568
    [Google Scholar]
  57. KokkinisS. PaudelK.R. RubisD.G. YeungS. SinghM. SinghS.K. GuptaG. PanthN. OliverB. DuaK. Liposomal encapsulated curcumin attenuates lung cancer proliferation, migration, and induces apoptosis.Heliyon20241019e3840910.1016/j.heliyon.2024.e3840939416833
    [Google Scholar]
  58. LeeC.H. LiuY.C. ChenC.J. Development of a high-throughput kinase activity platform using nanoLC-MS/MS with DIA approach for studying the anti-cancer mechanism of Taxol in ovarian cancer.Anal. Chim. Acta2024131834294410.1016/j.aca.2024.34294439067923
    [Google Scholar]
  59. BoissenotT. BordatA. LarratB. VarnaM. ChacunH. PaciA. PoinsignonV. FattalE. TsapisN. Ultrasound-induced mild hyperthermia improves the anticancer efficacy of both Taxol® and paclitaxel-loaded nanocapsules.J. Control. Release201726421922710.1016/j.jconrel.2017.08.04128867377
    [Google Scholar]
  60. Gutiérrez-del-RíoI. López-IbáñezS. Magadán-CorpasP. Fernández-CallejaL. Pérez-ValeroÁ. Tuñón-GrandaM. MiguélezE.M. VillarC.J. LombóF. Terpenoids and polyphenols as natural antioxidant agents in food preservation.Antioxidants2021108126410.3390/antiox1008126434439512
    [Google Scholar]
  61. GangapriyaP. ArulrajM.S. AmalrajS. MuruganR. AyyanarM. Phytochemical composition, enzyme inhibitory potential, antioxidant and antibacterial activities of Pisonia grandis R.Br. (lettuce tree) leaves.J. Food Meas. Charact.20221642864287410.1007/s11694‑022‑01361‑x
    [Google Scholar]
  62. PatilS.P. KumbharS.T. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves.Biochem. Biophys. Rep.201710768110.1016/j.bbrep.2017.03.00229114571
    [Google Scholar]
  63. SiddiquiS.A. PahmeyerM.J. AssadpourE. JafariS.M. Extraction and purification of d-limonene from orange peel wastes: Recent advances.Ind. Crops Prod.202217711448410.1016/j.indcrop.2021.114484
    [Google Scholar]
  64. ZhouY.X. ZhangR.Q. RahmanK. CaoZ.X. ZhangH. PengC. Diverse pharmacological activities and potential medicinal benefits of geniposide.Evid. Based Complement. Alternat. Med.2019201911510.1155/2019/492568231118959
    [Google Scholar]
  65. ZhouY.X. GongX.H. ZhangH. PengC. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects.Biomed. Pharmacother.202013011050510.1016/j.biopha.2020.11050532682112
    [Google Scholar]
  66. SalehiB. Sharifi-RadJ. QuispeC. LlaiqueH. VillalobosM. SmeriglioA. TrombettaD. EzzatS.M. SalemM.A. ZayedA. CastilloS.C.M. YazdiS.E. SenS. AcharyaK. SharopovF. MartinsN. Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects.Trends Food Sci. Technol.20199160962410.1016/j.tifs.2019.08.003
    [Google Scholar]
  67. TongN.N. ZhouX.Y. PengL.P. LiuZ.A. ShuQ.Y. A comprehensive study of three species of Paeonia stem and leaf phytochemicals, and their antioxidant activities.J. Ethnopharmacol.202127311398510.1016/j.jep.2021.11398533667571
    [Google Scholar]
  68. PudełekM. CatapanoJ. KochanowskiP. MrowiecK. Janik-OlchawaN. CzyżJ. RyszawyD. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro.Fitoterapia201913417218110.1016/j.fitote.2019.02.02030825580
    [Google Scholar]
  69. ZhaoH. RenS. YangH. TangS. GuoC. LiuM. TaoQ. MingT. XuH. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application.Biomed. Pharmacother.202215411355910.1016/j.biopha.2022.11355935994817
    [Google Scholar]
  70. SinghB. SinghJ.P. KaurA. YadavM.P. Insights into the chemical composition and bioactivities of citrus peel essential oils.Food Res. Int.202114311023110.1016/j.foodres.2021.11023133992345
    [Google Scholar]
  71. LiuZ.H. XuQ.Y. WangY. GaoH.X. MinY.H. JiangX.W. YuW.H. Catalpol from Rehmannia glutinosa targets Nrf2/NF-κB signaling pathway to improve renal anemia and fibrosis.Am. J. Chin. Med.20245251451148510.1142/S0192415X2450057539075978
    [Google Scholar]
  72. RahimiA. RazmkhahK. MehrniaM. MohamadniaA. SahebjameeH. SalehiS. AslE.A. TahmasebiH. ShandizS.A.S. DavouodbeglouF. GhasemiS. ArdalanN. KordkandiZ.G. Molecular docking and binding study of harpagoside and harpagide as novel anti-inflammatory and anti-analgesic compound from Harpagophytum procumbens based on their interactions with COX-2 enzyme.Asian Pac. J. Trop. Dis.20166322723110.1016/S2222‑1808(15)61019‑2
    [Google Scholar]
  73. XuC. JiangZ.B. ShaoL. ZhaoZ.M. FanX.X. SuiX. YuL.L. WangX.R. ZhangR.N. WangW.J. XieY.J. ZhangY.Z. NieX.W. XieC. HuangJ.M. WangJ. WangJ. LeungE.L.H. WuQ.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer.Pharmacol. Res.202319110673910.1016/j.phrs.2023.10673936948327
    [Google Scholar]
  74. UddinJ. AhmedH. AsiriY.A. KamalG.M. MusharrafS.G. Ginger essential oil: Chemical composition, extraction, characterization, pharmacological activities, and applications. Essential oils NayikG.A. AnsariM.J. Academic Press202334537610.1016/B978‑0‑323‑91740‑7.00014‑1
    [Google Scholar]
  75. YeoS.K. AliA.Y. HaywardO.A. TurnhamD. JacksonT. BowenI.D. ClarksonR. β‐Bisabolene, a sesquiterpene from the essential oil extract of opoponax ( Commiphora guidottii ), exhibits cytotoxicity in breast cancer cell lines.Phytother. Res.201630341842510.1002/ptr.554326666387
    [Google Scholar]
  76. NamJ.H. NamD.Y. LeeD.U. Valencene from the rhizomes of Cyperus rotundus inhibits skin photoaging-related ion channels and UV-induced melanogenesis in b16f10 melanoma cells.J. Nat. Prod.20167941091109610.1021/acs.jnatprod.5b0112726967731
    [Google Scholar]
  77. CuiZ.Y. WangG. ZhangJ. SongJ. JiangY.C. DouJ.Y. LianL.H. NanJ.X. WuY.L. Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway.Phytother. Res.202135105680569310.1002/ptr.721434250656
    [Google Scholar]
  78. BaillyC. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties.Eur. J. Pharmacol.202189117373510.1016/j.ejphar.2020.17373533220271
    [Google Scholar]
  79. ZhangD. SunW. ShiY. WuL. ZhangT. XiangL. Red and blue light promote the accumulation of artemisinin in Artemisia annua L.Molecules2018236132910.3390/molecules2306132929857558
    [Google Scholar]
  80. Orellana-PaucarA.M. Turmeric essential oil constituents as potential drug candidates: A comprehensive overview of their individual bioactivities.Molecules20242917421010.3390/molecules2917421039275058
    [Google Scholar]
  81. ChenJ.J. YanQ.L. BaiM. LiuQ. SongS.J. YaoG.D. Deoxyelephantopin, a germacrane‐type sesquiterpene lactone from Elephantopus scaber, induces mitochondrial apoptosis of hepatocarcinoma cells by targeting Hsp90 α in vitro and in vivo.Phytother. Res.202337270271610.1002/ptr.765436420857
    [Google Scholar]
  82. BhardwajM. SaliV.K. ManiS. VasanthiH.R. Neophytadiene from Turbinaria ornata suppresses lps-induced inflammatory response in RAW 264.7 macrophages and sprague dawley rats.Inflammation202043393795010.1007/s10753‑020‑01179‑z31981060
    [Google Scholar]
  83. LiuX. XuJ. ZhouJ. ShenQ. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance.Genes Dis.20218444846210.1016/j.gendis.2020.06.01034179309
    [Google Scholar]
  84. AhmedS. Nur-e-AlamM. ParveenI. ThreadgillM.D. OrtonJ.B. HafizurR.M. KhanI. Al-OqailM. Al-RehailyA.J. Compounds related to saudin and three new series of diterpenoids from Clutia lanceolata.J. Nat. Prod.20238651129114910.1021/acs.jnatprod.2c0076137128771
    [Google Scholar]
  85. KimE. KangY.G. KimY.J. LeeT.R. YooB.C. JoM. KimJ.H. KimJ.H. KimD. ChoJ.Y. Dehydroabietic acid suppresses inflammatory response via suppression of Src-, Syk-, and TAK1-mediated pathways.Int. J. Mol. Sci.2019207159310.3390/ijms2007159330934981
    [Google Scholar]
  86. GutbrodP. YangW. GrujicicG.V. PeiskerH. GutbrodK. DuL.F. DörmannP. Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal.J. Biol. Chem.202129610053010.1016/j.jbc.2021.10053033713704
    [Google Scholar]
  87. EldesoukiS. QadriR. HelwaA.R. BarqawiH. BustanjiY. Abu-GharbiehE. El-HuneidiW. Recent updates on the functional impact of kahweol and cafestol on cancer.Molecules20222721733210.3390/molecules2721733236364160
    [Google Scholar]
  88. SelyutinaO.Y. PolyakovN.E. Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: A modern insight on the ancient drug.Int. J. Pharm.201955927127910.1016/j.ijpharm.2019.01.04730690130
    [Google Scholar]
  89. BandopadhyayS. MandalS. GhoraiM. JhaN.K. KumarM. Radha GhoshA. ProćkówJ. Pérez de la LastraJ.M. DeyA. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review.J. Cell. Mol. Med.202327559360810.1111/jcmm.1763536756687
    [Google Scholar]
  90. ZouM.F. FanR.Z. YinA.P. HuR. HuangD. LiW. YinS. PuR. TangG-H. Discovery of 29-O-acyl-toosendanin-based derivatives as potent anti-cancer agents.Arab. J. Chem.2022151110428310.1016/j.arabjc.2022.104283
    [Google Scholar]
  91. JiaR. MengD. GengW. Advances in the anti-tumor mechanisms of saikosaponin D.Pharmacol. Rep.202476478079210.1007/s43440‑024‑00569‑638965200
    [Google Scholar]
  92. SunX. ShenB. YuH. WuW. ShengR. FangY. GuoR. Therapeutic potential of demethylzeylasteral, a triterpenoid of the genus Tripterygium wilfordii.Fitoterapia202216310533310.1016/j.fitote.2022.10533336244595
    [Google Scholar]
  93. NaginiS. NivethaR. PalrasuM. MishraR. Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal.J. Med. Chem.20216473560357710.1021/acs.jmedchem.0c0223933739088
    [Google Scholar]
  94. ZhouY. GuJ. LiJ. ZhangH. WangM. LiY. WangT. WangJ. ShiR. Obacunone, a promising phytochemical triterpenoid: Research progress on its pharmacological activity and mechanism.Molecules2024298179110.3390/molecules2908179138675611
    [Google Scholar]
  95. NizerC.W.S. FerrazA.C. MoraesT.F.S Netzahualcoyonol from Salacia multiflora Lam.) DC. (Celastraceae) roots as a bioactive compound against gram-positive pathogens.Nat. Prod. Res.2022362259045909 https://pubmed.ncbi.nlm.nih.gov/34994265
    [Google Scholar]
  96. BoncanD.A.T. TsangS.S.K. LiC. LeeI.H.T. LamH.M. ChanT.F. HuiJ.H.L. Terpenes and terpenoids in plants: Interactions with environment and insects.Int. J. Mol. Sci.20202119738210.3390/ijms2119738233036280
    [Google Scholar]
  97. ZiJ. MafuS. PetersR.J. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism.Annu. Rev. Plant Biol.201465125928610.1146/annurev‑arplant‑050213‑03570524471837
    [Google Scholar]
  98. DongF. FuX. WatanabeN. SuX. YangZ. Recent advances in the emission and functions of plant vegetative volatiles.Molecules201621212410.3390/molecules2102012426805805
    [Google Scholar]
  99. PicherskyE. GershenzonJ. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense.Curr. Opin. Plant Biol.20025323724310.1016/S1369‑5266(02)00251‑011960742
    [Google Scholar]
  100. DegenhardtJ. GershenzonJ. Demonstration and characterization of ( E )-nerolidol synthase from maize: A herbivore-inducible terpene synthase participating in (3 E )-4,8-dimethyl-1,3,7-nonatriene biosynthesis.Planta2000210581582210.1007/s00425005068410805454
    [Google Scholar]
  101. AljboryZ. ChenM.S. Indirect plant defense against insect herbivores: A review.Insect Sci.201825122310.1111/1744‑7917.1243628035791
    [Google Scholar]
  102. WeiJ. YangY. PengY. WangS. ZhangJ. LiuX. LiuJ. WenB. LiM. Biosynthesis and the transcriptional regulation of terpenoids in tea plants (Camellia sinensis).Int. J. Mol. Sci.2023248693710.3390/ijms2408693737108101
    [Google Scholar]
  103. ZengL. LiaoY. LiJ. ZhouY. TangJ. DongF. YangZ. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea ( Camellia sinensis ) plants.Plant Sci.2017264293610.1016/j.plantsci.2017.08.00528969800
    [Google Scholar]
  104. KöllnerT.G. HeldM. LenkC. HiltpoldI. TurlingsT.C.J. GershenzonJ. DegenhardtJ. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties.Plant Cell200820248249410.1105/tpc.107.05167218296628
    [Google Scholar]
  105. ZhangL. SuQ.F. WangL.S. LvM-W. HouY-X. LiS-S. Linalool: A ubiquitous floral volatile mediating the communication between plants and insects.J. Syst. Evol.202361353854910.1111/jse.12930
    [Google Scholar]
  106. WangR. YangY. JingY. SegarS.T. ZhangY. WangG. ChenJ. LiuQ.F. ChenS. ChenY. CruaudA. DingY.Y. DunnD.W. GaoQ. GilmartinP.M. JiangK. KjellbergF. LiH.Q. LiY.Y. LiuJ.Q. LiuM. MachadoC.A. MingR. RasplusJ.Y. TongX. WenP. YangH.M. YangJ.J. YinY. ZhangX.T. ZhangY.Y. YuH. YueZ. ComptonS.G. ChenX.Y. Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association.Nat. Ecol. Evol.20215797498610.1038/s41559‑021‑01469‑134002050
    [Google Scholar]
  107. ZebecZ. WilkesJ. JervisA.J. ScruttonN.S. TakanoE. BreitlingR. Towards synthesis of monoterpenes and derivatives using synthetic biology.Curr. Opin. Chem. Biol.201634374310.1016/j.cbpa.2016.06.00227315341
    [Google Scholar]
  108. TrostB.M. MinC. Total synthesis of terpenes via palladium-catalysed cyclization strategy.Nat. Chem.202012656857310.1038/s41557‑020‑0439‑y32231261
    [Google Scholar]
  109. YuanK. LiF. PengL. ZhaoX. SongH. Separation of 1,8-Cineole and terpenes by Liquid-liquid extraction with green alkanediols.J. Mol. Liq.202235011851610.1016/j.molliq.2022.118516
    [Google Scholar]
  110. SumaiyaS. SiddiquiA. ChaudharyS.S. AslamM. AhmadS. AnsariM.A. Isolation and characterization of bioactive components from hydroalcoholic extract of Cymbopogon jwarancusa (Jones) Schult. to evaluate its hepatoprotective activity.J. Ethnopharmacol.2024319Pt 111718510.1016/j.jep.2023.11718537714225
    [Google Scholar]
  111. DasP. GhoshP. MainkarP.S. MadhavacharyR. ChandrasekharS. Total synthesis of an immunosuppressive C 25 macrocyclic terpenoid produced by terpene synthase ( LcTPS 2).J. Org. Chem.20248920151451515010.1021/acs.joc.4c0191539358673
    [Google Scholar]
  112. GuoM. LvH. ChenH. DongS. ZhangJ. LiuW. HeL. MaY. YuH. ChenS. LuoH. Strategies on biosynthesis and production of bioactive compounds in medicinal plants.Chin. Herb. Med.2023161132610.1016/j.chmed.2023.01.00738375043
    [Google Scholar]
  113. MengF. EllisT. The second decade of synthetic biology: 2010–2020.Nat. Commun.2020111517410.1038/s41467‑020‑19092‑233057059
    [Google Scholar]
  114. CravensA. PayneJ. SmolkeC.D. Synthetic biology strategies for microbial biosynthesis of plant natural products.Nat. Commun.2019101214210.1038/s41467‑019‑09848‑w31086174
    [Google Scholar]
  115. BergmanM.E. KortbeekR.W.J. GutensohnM. DudarevaN. Plant terpenoid biosynthetic network and its multiple layers of regulation.Prog. Lipid Res.20249510128710.1016/j.plipres.2024.10128738906423
    [Google Scholar]
  116. MullenP.J. YuR. LongoJ. ArcherM.C. PennL.Z. The interplay between cell signalling and the mevalonate pathway in cancer.Nat. Rev. Cancer2016161171873110.1038/nrc.2016.7627562463
    [Google Scholar]
  117. ZengL. DeheshK. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria.BMC Genomics202122113710.1186/s12864‑021‑07448‑x33637041
    [Google Scholar]
  118. SchmidK.M. Lipid metabolism in plants. Biochemistry of Lipids, Lipoproteins and Membranes.7th Ed RidgwayN.D. McleodR.S. Amsterdam, NetherlandsElsevier202112115910.1016/B978‑0‑12‑824048‑9.00011‑0
    [Google Scholar]
  119. LiaoP. HemmerlinA. BachT.J. ChyeM.L. The potential of the mevalonate pathway for enhanced isoprenoid production.Biotechnol. Adv.201634569771310.1016/j.biotechadv.2016.03.00526995109
    [Google Scholar]
  120. LipkoA. PączkowskiC. Perez-FonsL. FraserP.D. KaniaM. Hoffman-SommerM. DanikiewiczW. RohmerM. PoznanskiJ. SwiezewskaE. Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis.Biochem. J.2023480849552010.1042/BCJ2022057837022297
    [Google Scholar]
  121. VögeliB. EngilbergeS. GirardE. RiobéF. MauryO. ErbT.J. ShimaS. WagnerT. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site.Proc. Natl. Acad. Sci. USA2018115133380338510.1073/pnas.171864911529531083
    [Google Scholar]
  122. AdamsS.H. AlhoC.S. AsinsG. HegardtF.G. MarreroP.F. Gene expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in a poorly ketogenic mammal: Effect of starvation during the neonatal period of the piglet.Biochem. J.19973241657310.1042/bj32400659164842
    [Google Scholar]
  123. RohmerM. KnaniM. SimoninP. SutterB. SahmH. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate.Biochem. J.1993295251752410.1042/bj29505178240251
    [Google Scholar]
  124. AllamandA. PiechowiakT. LièvremontD. RohmerM. Grosdemange-BilliardC. The multifaceted MEP pathway: Towards new therapeutic perspectives.Molecules2023283140310.3390/molecules2803140336771066
    [Google Scholar]
  125. EvansS.E. XuY. BergmanM.E. FordS.A. LiuY. SharkeyT.D. PhillipsM.A. Rubisco supplies pyruvate for the 2-C-methyl-d-erythritol-4-phosphate pathway.Nat. Plants202410101453146310.1038/s41477‑024‑01791‑z39367254
    [Google Scholar]
  126. HerzS. WungsintaweekulJ. SchuhrC.A. HechtS. LüttgenH. SagnerS. FellermeierM. EisenreichW. ZenkM.H. BacherA. RohdichF. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl- d -erythritol 2-phosphate to 2C-methyl- d -erythritol 2,4-cyclodiphosphate.Proc. Natl. Acad. Sci. USA20009762486249010.1073/pnas.04055469710694574
    [Google Scholar]
  127. ChenM. YeL. YuH. Advances in metabolic engineering of Saccharomyces cerevisiae for terpenoids biosynthesis.Chin. J. Biotechnol.20213762085210410.13345/j.cjb.20075034227296
    [Google Scholar]
  128. ZhangF. WangY. LiC. Microbial synthesis of monoterpenoids: A review.Chin. J. Biotechnol.202238242744210.1016/j.chmed.2023.01.00735234374
    [Google Scholar]
  129. WeiG. ChenY. WangJ. FengL. Molecular cloning and characterization of farnesyl diphosphate synthase from Rosa rugosa Thunb associated with salinity stress.PeerJ202412e1692910.7717/peerj.16929
    [Google Scholar]
  130. EzquerroM. LiC. Pérez-PérezJ. Burbano-ErazoE. BarjaM.V. WangY. DongL. LisónP. López-GresaM.P. BouwmeesterH.J. Rodríguez-ConcepciónM. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress‐triggered production of diterpenes in leaves and strigolactones in roots.New Phytol.202323962292230610.1111/nph.1910937381102
    [Google Scholar]
  131. SinghS. ChhatwalH. PandeyA. Deciphering the complexity of terpenoid biosynthesis and its multi-level regulatory mechanism in plants.J. Plant Growth Regul.202443103320333610.1007/s00344‑024‑11347‑2
    [Google Scholar]
  132. LuX. BaiJ. TianZ. LiC. AhmedN. LiuX. ChengJ. LuL. CaiJ. JiangH. WangW. Cyclization mechanism of monoterpenes catalyzed by monoterpene synthases in dipterocarpaceae.Synth. Syst. Biotechnol.202491111810.1016/j.synbio.2023.11.00938173809
    [Google Scholar]
  133. ZhongJ. ChenY. ShiH. ZhouT. WangC. GuoZ. LiangY. ZhangQ. SunM. Identification and functional analysis of terpene synthases revealing the secrets of aroma formation in Chrysanthemum aromaticum.Int. J. Biol. Macromol.2024279Pt 313537710.1016/j.ijbiomac.2024.13537739244131
    [Google Scholar]
  134. HuangJ.Q. FangX. Amorpha-4,11-diene synthase: A key enzyme in artemisinin biosynthesis and engineering.aBIOTECH20212327628810.1007/s42994‑021‑00058‑x36303880
    [Google Scholar]
  135. DemirayM. TangX. WirthT. FaraldosJ.A. AllemannR.K. An efficient chemoenzymatic synthesis of dihydroartemisinic aldehyde.Angew. Chem. Int. Ed.201756154347435010.1002/anie.20160955728294491
    [Google Scholar]
  136. CuiG. HuangL. TangX. ZhaoJ. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray.Mol. Biol. Rep.20113842471247810.1007/s11033‑010‑0383‑921082262
    [Google Scholar]
  137. ZhouY.J. GaoW. RongQ. JinG. ChuH. LiuW. YangW. ZhuZ. LiG. ZhuG. HuangL. ZhaoZ.K. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production.J. Am. Chem. Soc.201213463234324110.1021/ja211448622280121
    [Google Scholar]
  138. GuoJ. ZhouY.J. HillwigM.L. ShenY. YangL. WangY. ZhangX. LiuW. PetersR.J. ChenX. ZhaoZ.K. HuangL. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts.Proc. Natl. Acad. Sci. USA201311029121081211310.1073/pnas.121806111023812755
    [Google Scholar]
  139. FloresA. SorollaS. CasasC. CuadrosR. BacarditA. Development of a headspace-solid phase micro extraction method for the analysis of volatile and semi-volatile organic compounds from polyurethane resins for leather finishing.J. Am. Leather Chem. Assoc.2021116829029710.34314/jalca.v116i8.4362
    [Google Scholar]
  140. GüzelB. CanlıO. HocaoğluM.S. Method development and validation for accurate and sensitive determination of terpenes in bio-based (citrus) oils by single quadrupole gas chromatography-mass spectrometry (GC/MS).Microchem. J.202319110890310.1016/j.microc.2023.108903
    [Google Scholar]
  141. NguyenL.A.M. PhamT.H. GaneshalingamM. ThomasR. A multimodal analytical approach is important in accurately assessing terpene composition in edible essential oils.Food Chem.202445413979210.1016/j.foodchem.2024.13979238810452
    [Google Scholar]
  142. ChenX. DingY. GuanH. ZhouC. HeX. ShaoY. WangY. WangN. LiB. LvG. ChenS. The pharmacological effects and potential applications of limonene from citrus plants: A review.Nat. Prod. Commun.20241951934578X24125422910.1177/1934578X241254229
    [Google Scholar]
  143. MajeeC. AtriyaA. MazumderR. ChoudharyA.N. Salahuddin MazumderA. DahiyaA. PriyaN. Insight into the various approaches for the enhancement of bioavailability and pharmacological potency of terpenoids: A review.Curr. Pharm. Biotechnol.202324101228124410.2174/138920102466622113016311636453488
    [Google Scholar]
  144. NayilaI. SharifS. LodhiM.S. UllahR. AlotaibiA. MaqboolT. Targeting the WWP1 gene with incensole acetate nanoemulsion: A novel therapeutic strategy for breast cancer.S. Afr. J. Bot.202417241542910.1016/j.sajb.2024.07.026
    [Google Scholar]
  145. GaoY. WangY. LiJ. ShangS. SongZ. Improved application of natural forest product terpene for discovery of potential botanical fungicide.Ind. Crops Prod.201812610311210.1016/j.indcrop.2018.10.008
    [Google Scholar]
  146. LiuJ. LinM. HanP. Biosynthesis progress of high-energy-density liquid fuels derived from terpenes.Microorganisms202412470610.3390/microorganisms12040706
    [Google Scholar]
  147. MonicaD.F. KleijA.W. From terpenes to sustainable and functional polymers.Polym. Chem.202011325109512710.1039/D0PY00817F
    [Google Scholar]
  148. YuS. LiJ. GuoL. DiC. QinX. LiZ. Integrated liquid chromatography-mass spectrometry and nuclear magnetic resonance spectra for the comprehensive characterization of various components in the Shuxuening injection.J. Chromatogr. A2019159912513510.1016/j.chroma.2019.04.00831036363
    [Google Scholar]
  149. LiM. LiX. ZhouJ. SunY. DuJ. WangZ. LuoY. ZhangY. ChenQ. WangY. LinY. ZhangY. HeW. WangX. TangH. Genome-wide identification and analysis of terpene synthase (TPS) genes in celery reveals their regulatory roles in terpenoid biosynthesis.Front. Plant Sci.202213101078010.3389/fpls.2022.101078036247575
    [Google Scholar]
  150. FulvioF. PieracciY. AscrizziR. BassolinoL. FlaminiG. ParisR. Insights into terpenes profiling and transcriptional analyses during flowering of different Cannabis sativa L. chemotypes.Phytochemistry202522911429410.1016/j.phytochem.2024.11429439374748
    [Google Scholar]
  151. WeiJ. LiY. CRISPR-based gene editing technology and its application in microbial engineering.Eng. Microbiol.20233410010110.1016/j.engmic.2023.10010139628916
    [Google Scholar]
  152. LiZ. GanY. GouC. YeQ. WuY. WuY. YangT. FanB. JiA. ShenQ. DuanL. Efficient biosynthesis of β-caryophyllene in Saccharomyces cerevisiae by β-caryophyllene synthase from Artemisia argyi. Synth. Syst. Biotechnol.202510115816410.1016/j.synbio.2024.09.00539498451
    [Google Scholar]
  153. ZhaoQ. LiY. GuL. LiS. HeD. DongS. ZhangQ. LuoJ. ZhangY. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in the flower of Paeonia lactiflora.Postharvest Biol. Technol.202521911323110.1016/j.postharvbio.2024.113231
    [Google Scholar]
  154. BabuD.D. PaniS.A. JoshiS.D. NaikP. JayaprakashG.K. Al-GhorbaniM. RodriguesB. MomidiB.K. Computational and experimental insights into pharmacological potential: Synthesis, in vitro evaluation, and molecular docking analysis of bioactive urea and thiourea derivatives.Microb. Pathog.202420020010720910.1016/j.micpath.2024.10720939653284
    [Google Scholar]
  155. JainA.K. VaidyaA. RavichandranV. KashawS.K. AgrawalR.K. Recent developments and biological activities of thiazolidinone derivatives: A review.Bioorg. Med. Chem.201220113378339510.1016/j.bmc.2012.03.069
    [Google Scholar]
  156. KumarB.M. HariprasadV. JoshiS.D. Bis(azolyl)pyridine‐2,6‐dicarboxamide derivatives: Synthesis, bioassay analysis and molecular docking.Stud. Chem. Sel.202312e20220492710.1002/slct.202204927
    [Google Scholar]
  157. LazarjaniP.M. TorresS. HookerT. FowlieC. YoungO. SeyfoddinA. Methods for quantification of cannabinoids: A narrative review.J. Cannabis Res.2020213510.1186/s42238‑020‑00040‑233526084
    [Google Scholar]
  158. LimY.M. SwamyV. RamakrishnanN. ChanE.S. KesumaH.P. Volatile organic compounds (VOCs) in wastewater: Recent advances in detection and quantification.Microchem. J.202319510953710.1016/j.microc.2023.109537
    [Google Scholar]
  159. CammaranoA. VarrialeV. MichelinoF. CaputoM. Discovering technological opportunities of cutting-edge technologies: A methodology based on literature analysis and artificial neural network.Technol. Forecast. Soc. Change202420920912381110.1016/j.techfore.2024.123811
    [Google Scholar]
  160. AminfarZ. RabieiB. TohidfarM. MirjaliliM.H. Identification of key genes involved in the biosynthesis of triterpenic acids in the mint family.Sci. Rep.2019911582610.1038/s41598‑019‑52090‑z31676750
    [Google Scholar]
  161. ZhaoN. SongY. XieX. ZhuZ. DuanC. NongC. WangH. BaoR. Synthetic biology-inspired cell engineering in diagnosis, treatment and drug development.Signal Transduct. Target. Ther.20238111210.1038/s41392‑023‑01375‑x36906608
    [Google Scholar]
  162. MiaoY-H. WangX. ZhaoX-M. Co-assembly strategies of natural plant compounds for mproving their bioavailability.FMH202529420022
    [Google Scholar]
  163. SamusevichR. HebraT. BushuievR. Highly accurate discovery of terpene synthases powered by machine learning reveals functional terpene cyclization in Archaea.biorxiv202419
    [Google Scholar]
  164. LiX. Production of sesquiterpenoids α-neoclovene and β-caryophyllene by engineered Saccharomyces cerevisiae. ACS Synth. Biol.202125792803
    [Google Scholar]
/content/journals/coc/10.2174/0113852728373242250319054222
Loading
/content/journals/coc/10.2174/0113852728373242250319054222
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test