Skip to content
2000
Volume 29, Issue 19
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Carbazoloquinones possess a unique structural characteristic commonly found in natural compounds. Precisely, these molecules have been integral to traditional medicine, addressing various health concerns such as malaria, cancer, and neuronal protection. This review centers on the occurrence, biological activity, and asymmetric synthesis of bioactive carbazole-3,4-quinone alkaloids, which demonstrate notable properties like neuronal cell protection and free radical scavenging. To date, this is the first exclusive review focusing on carbazole-3,4-quinones. We delve into the asymmetric and enantioselective synthetic methods used to synthesise three families of naturally occurring carbazole-3,4-quinone molecules: carbazoquinocins, (±)-carquinostatins, and (±)-lavanduquinocins. Despite the existence of efficient synthetic strategies for some of these compounds, there remain challenges and opportunities for developing new methods for carbazole-3,4-quinone natural products.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728359677250402131159
2025-04-16
2025-10-25
Loading full text...

Full text loading...

References

  1. KapilR.S. The Carbazole Alkaloids. The Alkaloids: Chemistry and Pharmacology ManskeR.H.F. Academic Press1971Vol. 1327330210.1016/S1876‑0813(08)60311‑5
    [Google Scholar]
  2. ChakrabortyD.P. Progress in the chemistry of organic natural products. HerzW. GriesebachH. KirbyG.W. Wien, AustriaSpringer1977299371
    [Google Scholar]
  3. HussonH-P. Simple Indole Alkaloids Including β-Carbolines and Carbazoles.The Alkaloids: Chemistry and Pharmacology BrossiA. Academic Press1985Vol. 2615110.1016/S0099‑9598(08)60192‑3
    [Google Scholar]
  4. KnölkerH.J. ReddyK.R. The Alkaloids: Chemistry and biology.The alkaloids. CordellG.A. AmsterdamAcademic Press20081430
    [Google Scholar]
  5. BhattacharyyaP. ChakrabortyD.P. Carbazole Alkaloids.Progress in the chemistry of organic natural products. HerzW. GrisebachH. KirbyG.W. SteglichW. TammC. WienSpringer1987159209
    [Google Scholar]
  6. ChakrabortyD.P. RoyS. Carbazole Alkaloids III.Progress in the chemistry of organic natural products. HerzW. GrisebachH. KirbyG.W. SteglichW. TammC. Wien, New YorkSpringer199171152
    [Google Scholar]
  7. ChakrabortyD.P. Chemistry and biology of carbazole alkaloids.The alkaloids. CordellG.A. New YorkAcademic Press1993Vol. 4425736410.1016/S0099‑9598(08)60146‑7
    [Google Scholar]
  8. ChakrabortyD.P. RoyS. Progress in the Chemistry of Organic Natural Products. HerzW. GrisebachH. KirbyG.W. SteglichW. TammC. Wien, AustriaSpringer-Verlag2003125206
    [Google Scholar]
  9. GraebeC. GlaserC. Ueber Carbazol.Liebigs Ann. Chem.187216334336010.1002/jlac.18721630305
    [Google Scholar]
  10. ChakrabortyD.P. BarmanB.K. BoseP.K. On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng.Tetrahedron196521268168510.1016/S0040‑4020(01)82240‑7
    [Google Scholar]
  11. DasK.C. ChakrabortyD.P. BoseP.K. Antifungal activity of some constituents ofMurraya koenigii spreng.Experientia196521634010.1007/BF021447035870511
    [Google Scholar]
  12. RamsewakR.S. NairM.G. StrasburgG.M. DeWittD.L. NitissJ.L. Biologically active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem.199947244444710.1021/jf980580810563914
    [Google Scholar]
  13. JoshiB.S. Some recent chemistry of Indian rutaceae.Heterocycles197531083785610.3987/R‑1975‑10‑0837
    [Google Scholar]
  14. FurukawaH. ItoC. YogoM. WuT.S. Structures of murrayastine, murrayaline, and pyrayafoline; three new carbazole alkaloids from Murraya euchrestifolia. Chem. Pharm. Bull. (Tokyo)19863462672267510.1248/cpb.34.2672
    [Google Scholar]
  15. ChoiT.A. CzerwonkaR. ForkeR. JägerA. KnöllJ. KrahlM.P. KrauseT. ReddyK.R. FranzblauS.G. KnölkerH.J. Transition metals in organic synthesis - Part 83#: Synthesis and pharmacological potential of carbazoles.Med. Chem. Res.2008172-737438510.1007/s00044‑007‑9073‑0
    [Google Scholar]
  16. GallagherP.T. Science of synthesis (Houben-Weyl). ThomasE.J. StuttgartThieme2001693744
    [Google Scholar]
  17. KnölkerH-J. Organic synthesis via organometallics.Symposium on Organic Synthesis via Organometallics DötzK. H. HoffmannR. W. ViewegBraunschweig1991119127
    [Google Scholar]
  18. KnölkerH-J. Transition metal-mediated synthesis of carbazole derivatives.Advances in nitrogen heterocycles. MoodyC.J. Greenwich, CTJAI Press199517320410.1016/S1521‑4478(06)80017‑X
    [Google Scholar]
  19. KnölkerH-J. Iron-diene complexes.Transition metals for organic synthesis. BellerM. BolmC. WeinheimWiley-VCH1998Vol. 153454910.1002/9783527619399.ch3m
    [Google Scholar]
  20. RuangrungsiN. AriyaprayoonJ. LangeG.L. OrganM.G. Three new carbazole alkaloids isolated from Murraya siamensis.J. Nat. Prod.199053494695210.1021/np50070a025
    [Google Scholar]
  21. ChakrabortyA. ChowdhuryB.K. JashS.S. BiswasG.K. BhattacharyyaS.K. BhattacharyyaP. Carbazole alkaloids from Glycosmis pentaphylla. Phytochemistry19923172503250510.1016/0031‑9422(92)83310‑U
    [Google Scholar]
  22. ItoC. NakagawaM. WuT.S. FurukawaH. New carbazole alkaloids from Murraya euchrestifolia. Chem. Pharm. Bull. (Tokyo)199139102525252810.1248/cpb.39.2525
    [Google Scholar]
  23. YamasakiK. KanedaM. WatanabeK. UekiY. IshimaruK. NakamuraS. NomiR. YoshidaN. NakajimaT. New antibiotics, carbazomycins A and B. III. Taxonomy and biosynthesis.J. Antibiot. (Tokyo)198336555255810.7164/antibiotics.36.5526874571
    [Google Scholar]
  24. KnölkerH.J. Transition metal complexes in organic synthesis. Part 47.1 organic synthesis via tricarbonyl(η4-diene)iron complexes.Chem. Soc. Rev.199928315115710.1039/a705401g
    [Google Scholar]
  25. KnölkerH.J. ReddyK.R. Isolation and synthesis of biologically active carbazole alkaloids.Chem. Rev.2002102114303442810.1021/cr020059j12428991
    [Google Scholar]
  26. KnölkerH.J. Occurrence, biological activity, and convergent organometallic synthesis of carbazole alkaloids.Top. Curr. Chem.200524411514810.1007/b96890
    [Google Scholar]
  27. SchmidtA.W. ReddyK.R. KnölkerH.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids.Chem. Rev.201211263193332810.1021/cr200447s22480243
    [Google Scholar]
  28. NormanA.R. NorcottP. McErleanC.S.P. Overview of the synthesis of carbazoloquinone natural products.Tetrahedron Lett.201657364001400810.1016/j.tetlet.2016.07.092
    [Google Scholar]
  29. (a KnölkerH.J. SchlechtingenG. First total synthesis of carbazomycin C and D 1.J. Chem. Soc., Perkin Trans. 11997349-350434935010.1039/a608351j
    [Google Scholar]
  30. (b SahaC. ChowdhuryB.K. Carbazoloquinones from Murraya koenigii. Phytochemistry199848236336610.1016/S0031‑9422(97)01135‑7
    [Google Scholar]
  31. MatsuoK. IshidaS. Synthesis of murrayaquinone-A.Chem. Pharm. Bull. (Tokyo)19944261325132710.1248/cpb.42.13258069978
    [Google Scholar]
  32. GuptaS.P. PandeM.S. IngaleS.J. Phytochemical and pharmacological aspects of Murraya koenigii.Asian J. Chem.200517427832788
    [Google Scholar]
  33. FurukawaH. WuT-S. OhtaT. KuohC.S. Structure of murrayaquinone-B, a novel carbazole alkaloid from Murraya euchrestifolia Hayata.Heterocycles19832071267126910.3987/R‑1983‑07‑1267
    [Google Scholar]
  34. FurukawaH. WuT. OhtaT. KuohC. Chemical constituents of Murraya euchrestifolia hayata. Structures of novel carbazolequinones and other new carbazole alkaloids.Chem. Pharm. Bull. (Tokyo)198533104132413810.1248/cpb.33.4132
    [Google Scholar]
  35. FurukawaH. YogoM. ItoC. WuT. KuohC. New carbazolequinones having dimethylpyran ring system, from Murraya euchrestifolia. Chem. Pharm. Bull. (Tokyo)19853331320132210.1248/cpb.33.1320
    [Google Scholar]
  36. ChakrabortyB. ChakrabortyS. SahaC. Antibacterial activity of murrayaquinone A and 6-methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione.Int. J. Micro.20141810.1155/2014/540208
    [Google Scholar]
  37. (b ChakrabortyS. ChakrabortyB. SahaA. SahaC. GhoshT.K. BhattacharyyaI. Evaluation of antimicrobial activity of synthesized fluorocarbazole derivatives based on SAR.Indian J. Chem.201756B07701708
    [Google Scholar]
  38. FurukawaH. Carbazolequinone alkaloids.J. Indian Chem. Soc.199471303308
    [Google Scholar]
  39. ClemoG.R. FeltonD.G.I. 151. The chemistry of the carbazoles. 1 : 2 : 3 : 4-tetrahydro-4-ketocarbazoles.J. Chem. Soc.195170070310.1039/jr9510000700
    [Google Scholar]
  40. Shin-yaK. TanakaM. FurihataK. HayakawaY. SetoH. Structure of carquinostatin a, a new neuronal cell protecting substance produced by Streptomyces exfoliatus. Tetrahedron Lett.199334314943494410.1016/S0040‑4039(00)74052‑4
    [Google Scholar]
  41. TanakaM. Shin-YaK. FurihataK. SetoH. Isolation and structural elucidation of antioxidative substances, carbazoquinocins A to F.J. Antibiot. (Tokyo)199548432632810.7164/antibiotics.48.3267775271
    [Google Scholar]
  42. Shin-YaK. ShimizuS. KunigamiT. FurihataK. FurihataK. SetoH. A new neuronal cell protecting substance, lavanduquinocin, produced by Streptomyces viridochromogenes. J. Antibiot. (Tokyo)199548757457810.7164/antibiotics.48.5747649853
    [Google Scholar]
  43. SetoH. HayakawaY. Carbazole derivative CS-79B.Kokai Tokkyo Koho Patent 06327781994.1994
    [Google Scholar]
  44. Shin-yaK. KunigamiT. KimJ.S. FurihataK. HayakawaY. SetoH. Carquinostatin B, a new neuronal cell-protecting substance produced by Streptomyces exfoliatus.Biosci. Biotechnol. Biochem.199761101768176910.1271/bbb.61.17689362126
    [Google Scholar]
  45. GrammelH. WolfH. GillesE.D. HuthF. LaatschH. Carbazole antibiotics synthesis in a Streptomyces tendae bald mutant, created by acriflavine treatment.Z. Naturforsch. C J. Biosci.1998535-632533010.1515/znc‑1998‑5‑6059679324
    [Google Scholar]
  46. MurphyT.H. SchnaarR.L. CoyleJ.T. SastreA. Glutamate cytotoxicity in a neuronal cell line is blocked by membrane depolarization.Brain Res.1988460115516010.1016/0006‑8993(88)91216‑42905921
    [Google Scholar]
  47. SakanoK.I. NakamuraS. New antibiotics, carbazomycins A and B. II. Structural elucidation.J. Antibiot. (Tokyo)198033996196610.7164/antibiotics.33.9617440417
    [Google Scholar]
  48. KatoS. KawaiH. KawasakiT. TodaY. UrataT. HayakawaY. Studies on free radical scavenging substances from microorganisms. I. Carazostatin, a new free radical scavenger produced by Streptomyces chromofuscus DC 118.J. Antibiot. (Tokyo)198942121879188110.7164/antibiotics.42.18792621170
    [Google Scholar]
  49. KatoS. ShindoK. KataokaY. YamagishiY. MochizukiJ. Studies on free radical scavenging substances from microorganisms. II. Neocarazostatins A, B and C, novel free radical scavengers.J. Antibiot. (Tokyo)199144890390710.7164/antibiotics.44.9031917704
    [Google Scholar]
  50. HibinoS. ChoshiT. FujimotoH. SuginoE. Synthesis of new tetracyclic oxazolocarbazoles as functionalized precursors to antioxidative agents, antiostatins and carbazoquinocins.Heterocycles19964391847185410.3987/COM‑96‑7532
    [Google Scholar]
  51. HalliwellB. GutteridgeJ.M.C. Role of free radicals and catalytic metal ions in human disease: An overview.Method in enzymology. PackerL. GlazerA.N. AmsterdamElsevier1990Vol. 18618510.1016/0076‑6879(90)86093‑B
    [Google Scholar]
  52. (b HammondB. KontosH.A. HessM.L. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage.Can. J. Physiol. Pharmacol.199063317310.1139/y85‑034
    [Google Scholar]
  53. CeruttiP.A. Prooxidant states and tumor promotion.Science1985227468537538110.1126/science.29814332981433
    [Google Scholar]
  54. ShinK. OgasawaraK. Enantiotopical synthesis of carbazoquinocins A and D, The potent lipid peroxidation inhibitors from Streptomyces violaceus 2448-SVT2.Synlett19961996992292410.1055/s‑1996‑5618
    [Google Scholar]
  55. TakanoS. SekiguchiY. SetohM. YoshimitsuT. InomataK. TakahashiM. OgasawaraK. Reviews on the enantiocontrolled syntheses using chiral O-benzylglycidol.Heterocycles1990311715171910.3987/COM‑90‑5522
    [Google Scholar]
  56. (a BrownC.A. YamashitaA. Saline hydrides and superbases in organic reactions. IX. Acetylene zipper. Exceptionally facile contrathermodynamic multipositional isomeriazation of alkynes with potassium 3-aminopropylamide.J. Am. Chem. Soc.197597489189210.1021/ja00837a034
    [Google Scholar]
  57. (b MidlandM.M. LeeP.E. Asymmetric synthesis of hydroxycarboxylic acids.J. Org. Chem.198146193933393410.1021/jo00332a043
    [Google Scholar]
  58. BatesE.B. JonesE.R.H. WhitingM.C. Researches on acetylenic compounds. Part XLII. Reductions with lithium aluminium hydride.J. Chem. Soc.19541854186010.1039/jr9540001854
    [Google Scholar]
  59. JohnsonW.S. WerthemannL. BartlettW.R. BrocksomT.J. LiT.T. FaulknerD.J. PetersenM.R. Simple stereoselective version of the Claisen rearrangement leading to trans-trisubstituted olefinic bonds. Synthesis of squalene.J. Am. Chem. Soc.197092374174310.1021/ja00706a074
    [Google Scholar]
  60. NakagawaI. AkiK. HataT. Synthesis of 5′-alkylthio-5′-deoxynucleosides from nucleosides in a one-pot reaction.J. Chem. Soc., Perkin Trans. 119831315131810.1039/P19830001315
    [Google Scholar]
  61. HayashiH. NakanishiK. BrandonC. MarmurJ. Structure and synthesis of dihydroxypentyluracil from bacteriophage SP-15 deoxyribonucleic acid.J. Am. Chem. Soc.197395268749875710.1021/ja00807a0414783412
    [Google Scholar]
  62. (a PerozziE.F. MichalakR.S. FigulyG.D. StevensonW.H. DessD. RossM.R. MartinJ.C. Directed dilithiation of hexafluorocumyl alcohol - formation of a reagent for the facile introduction of a stabilizing bidentate ligand in compounds of hypervalent sulfur (10-S-4), phosphorus (10-P-5), silicon (10-Si-5), and iodine (10-I-3).J. Org. Chem.19814661049105310.1021/jo00319a001
    [Google Scholar]
  63. (b DessD.B. MartinJ.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species.J. Am. Chem. Soc.1991113197277728710.1021/ja00019a027
    [Google Scholar]
  64. CampsF. CollJ. MesseguerA. PericàsM.A. Improved oxidation procedure with aromatic peroxyacids.Tetrahedron Lett.198122393895389610.1016/S0040‑4039(01)91338‑3
    [Google Scholar]
  65. KnölkerH.J. FröhnerW. Transition metal complexes in organic synthesis, part 37.1 convergent iron-mediated total synthesis of the potent lipid peroxidation inhibitor carbazoquinocin C.Tetrahedron Lett.19973891535153810.1016/S0040‑4039(97)00114‑7
    [Google Scholar]
  66. KnölkerH.J. BaumG. PannekJ.B. Transition metal-diene complexes in organic synthesis, part 27. synthesis and reactivity of 4a,9a-dihydro-9H-carbazoles.Tetrahedron199652217345736210.1016/0040‑4020(96)00256‑6
    [Google Scholar]
  67. (a ShvoY. HazumE. A simple method for the disengagement of organic ligands from iron complexes.J. Chem. Soc. Chem. Commun.19749933633710.1039/c39740000336
    [Google Scholar]
  68. (b KnölkerH-J. Trimethylamine N-oxide–a useful oxidizing reagent.J. Prakt. Chem.1996338119019210.1002/prac.19963380138
    [Google Scholar]
  69. ChoshiT. SadaT. FujimotoH. NagayamaC. SuginoE. HibinoS. Total syntheses of carazostatin, hyellazole, and carbazoquinocins B-F.J. Org. Chem.19976282535254310.1021/jo962038t11671594
    [Google Scholar]
  70. ChoshiT. YamadaS. SuginoE. KuwadaT. HibinoS. Total synthesis of grossularines-1 and -2.J. Org. Chem.199560185899590410.1021/jo00123a028
    [Google Scholar]
  71. HibinoS. YashiokaH. ChoshiT. SuginoE. New synthetic route to imidazo[4,5-c] pyridines by the thermal electrocyclic reaction of 1-azahexatriene systems.Heterocycles199541116117410.3987/COM‑94‑6924
    [Google Scholar]
  72. BartonD.H.R. BrewsterA.G. LeyS.V. ReadC.M. RosenfeldM.N. Oxidation of phenols, pyrocatechols, and hydroquinones to ortho-quinones using benzeneseleninic anhydride.J. Chem. Soc., Perkin Trans. 119811473147610.1039/p19810001473
    [Google Scholar]
  73. KnölkerH.J. ReddyK.R. WagnerA. Indoloquinones, part 5. Palladium-catalyzed total synthesis of the potent lipid peroxidation inhibitor carbazoquinocin C.Tetrahedron Lett.199839458267827010.1016/S0040‑4039(98)01888‑7
    [Google Scholar]
  74. AkermarkB. EbersonL. JonssonE. PetterssonE. Palladium-promoted cyclization of diphenyl ether, diphenylamine, and related compounds.J. Org. Chem.19754091365136710.1021/jo00897a048
    [Google Scholar]
  75. YogoM. ItoC. FurukawaH. Synthesis of some carbazolequinone alkaloids and their analogues. Facile palladium-assisted intramolecular ring closure of arylamino-1,4-benzoquinones to carbazole-1,4-quinones.Chem. Pharm. Bull.199139232833410.1248/cpb.39.328
    [Google Scholar]
  76. KnölkerH.J. ReddyK.R. Indoloquinones, Part 6. First palladium-mediated oxidative cyclization of arylamino-1,2-benzoquinones to carbazole-3,4-quinones - application to the total synthesis of carbazoquinocin C and (±)-carquinostatin A.Synlett19991999559659810.1055/s‑1999‑2661
    [Google Scholar]
  77. AygünA. PindurU. A new and effective method to carbazoquinocin c and related carbazole-3,4-quinones as biological antioxidants: Key reactions of 2-vinylindoles with oxalyl chloride.Synlett20002000121757176010.1055/s‑2000‑8682
    [Google Scholar]
  78. SaulnierM.G. GribbleG.W. Generation and reactions of 3-lithio-1-(phenylsulfonyl)indole.J. Org. Chem.198247575776110.1021/jo00344a001
    [Google Scholar]
  79. SundbergR.J. RussellH.F. Syntheses with N-protected 2-lithioindoles.J. Org. Chem.197338193324333010.1021/jo00959a018
    [Google Scholar]
  80. AkgünE. TunaliM. ErdönmezG. A novel synthesis of 2‐vinylindoles and their utilization in the diels‐alder reaction for the formation of new [ c ] annellated carbazole derivatives.J. Heterocycl. Chem.19892661869187310.1002/jhet.5570260663
    [Google Scholar]
  81. RawatM. WulffW.D. Total synthesis of carbazoquinocin C: Application of the o-benzannulation of Fischer carbene complexes to carbazole-3,4-quinone alkaloids.Org. Lett.20046332933210.1021/ol036044514748585
    [Google Scholar]
  82. McGuireM.A. HegedusL.S. Synthesis of. β.-lactams by the photolytic reaction of chromium carbene complexes with imines.J. Am. Chem. Soc.1982104205538554010.1021/ja00384a068
    [Google Scholar]
  83. MerlicC.A. YouY. McInnesD.M. ZechmanA.L. MillerM.M. DengQ. Benzannulation reactions of Fischer carbene complexes for the synthesis of indolocarbazoles.Tetrahedron200157245199521210.1016/S0040‑4020(01)00360‑X
    [Google Scholar]
  84. KnölkerH.J. FröhnerW. Transition metal complexes in organic synthesis, part 39. First total synthesis of the potent neuronal cell protecting substance (±)-carquinostatin A via iron- and nickel-mediated coupling reactions.Synlett1997199791108111010.1055/s‑1997‑1527
    [Google Scholar]
  85. WilkeG. BogdanovićB. HardtP. HeimbachP. KeimW. KrönerM. OberkirchW. TanakaK. SteinrückeE. WalterD. ZimmermannH. Allyl‐transition metal systems.Angew. Chem. Int. Ed. Engl.19665215116410.1002/anie.196601511
    [Google Scholar]
  86. CoreyE.J. SemmelhackM.F. Organonickel compounds as reagents for selective carbon-carbon bond formation between unlike groups.J. Am. Chem. Soc.196789112755275710.1021/ja00987a0566043808
    [Google Scholar]
  87. InoueS. YamaguchiR. SaitoK. SatoK. The synthesis of coenzyme Q.Bull. Chem. Soc. Jpn.197447123098310110.1246/bcsj.47.3098
    [Google Scholar]
  88. BillingtonD.C. π-Allylnickel halides as selective reagents in organic synthesis.Chem. Soc. Rev.19851419312010.1039/CS9851400093
    [Google Scholar]
  89. WanagG. VeinbergsA. Kondensation primärer aminoverbindungen mit phthalsäureanhydrid in eisessig.Ber. Dtsch. Chem. Ges. B194275121558156910.1002/cber.19420751221
    [Google Scholar]
  90. KnölkerH.J. BaumE. ReddyK.R. Transition metal complexes in organic synthesis. Part 58: First enantioselective total synthesis of the potent neuronal cell protecting substance carquinostatin A from (R)-propene oxide.Tetrahedron Lett.20004181171117410.1016/S0040‑4039(99)02257‑1
    [Google Scholar]
  91. (a TokunagaM. LarrowJ.F. KakiuchiF. JacobsenE.N. Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis.Science1997277532893693810.1126/science.277.5328.9369252321
    [Google Scholar]
  92. (b SchausS.E. BrånaltJ. JacobsenE.N. Total synthesis of muconin by efficient assembly of chiral building blocks.J. Org. Chem.199863154876487710.1021/jo9810765
    [Google Scholar]
  93. TomatsuA. TakemuraS. HashimotoK. NakataM. Synthesis of quinones from hydroquinone dimethyl ethers. Oxidative demethylation with cobalt(III) fluoride.Synlett1999199991474147610.1055/s‑1999‑2875
    [Google Scholar]
  94. CzerwonkaR. ReddyK.R. BaumE. KnölkerH.J. First enantioselective total synthesis of neocarazostatin B, determination of its absolute configuration and transformation into carquinostatin A.Chem. Commun. (Camb.)2006711-713771171310.1039/b515674b16465315
    [Google Scholar]
  95. (a HanessianS. LavalleeP. The preparation and synthetic utility of tert-butyldiphenylsilyl ethers.Can. J. Chem.197553192975297710.1139/v75‑419
    [Google Scholar]
  96. (b HanessianS. LavalleeP. A stereospecifie, total synthesis of thromboxane B 2.Can. J. Chem.197755356256510.1139/v77‑079
    [Google Scholar]
  97. DaleJ.A. MosherH.S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and. α.-methoxy-.α.-trifluoromethylphenylacetate (MTPA) esters.J. Am. Chem. Soc.197395251251910.1021/ja00783a034
    [Google Scholar]
  98. ChoshiT. UchidaY. KubotaY. NobuhiroJ. TakeshitaM. HatanoT. HibinoS. Lipase-catalyzed asymmetric synthesis of desprenyl-carquinostatin A and descycloavandulyl-lavanduquinocin.Chem. Pharm. Bull. (Tokyo)20075571060106410.1248/cpb.55.106017603201
    [Google Scholar]
  99. HiedaY. ChoshiT. UchidaY. FujiokaH. FujiiS. HibinoS. Total synthesis of (±)-carquinostatin a, and asymmetric total synthesis of (R)-(-)-carquinostatin a and (s)-(+)-carquinostatin a.Chem. Pharm. Bull. (Tokyo)201260121522153010.1248/cpb.c12‑0065023207633
    [Google Scholar]
  100. Oh-eT. MiyauraN. SuzukiA. Palladium-catalyzed cross-coupling reaction of aryl or vinylic triflates with organoboron compounds.Synlett19901990422122310.1055/s‑1990‑21043
    [Google Scholar]
  101. MiyauraN. IshiyamaT. SasakiH. IshikawaM. SatoM. SuzukiA. Palladium-catalyzed inter- and intramolecular cross-coupling reactions of B-alkyl-9-borabicyclo[3.3.1]nonane derivatives with 1-halo-1-alkenes or haloarenes. Syntheses of functionalized alkenes, arenes, and cycloalkenes via a hydroboration-coupling sequence.J. Am. Chem. Soc.1989111131432110.1021/ja00183a048
    [Google Scholar]
  102. TsujiJ. NagashimaH. NemotoH. A general synthetic method for the preparation of methyl ketones from terminal olefins: 2-decanone.Org. Synth.19846291310.15227/orgsyn.062.0009
    [Google Scholar]
  103. (a HaradaN. WatanabeM. KuwaharaS. SugioA. KasaiY. IchikawaA. 2-Methoxy-2-(1-naphthyl)propionic acid, a powerful chiral auxiliary for enantioresolution of alcohols and determination of their absolute configurations by the 1H NMR anisotropy method.Tetrahedron Asymmetry20001161249125310.1016/S0957‑4166(00)00053‑7
    [Google Scholar]
  104. (b TajiH. KasaiY. SugioA. KuwaharaS. WatanabeM. HaradaN. IchikawaA. Practical enantioresolution of alcohols with 2‐methoxy‐2‐(1‐naphthyl)propionic acid and determination of their absolute configurations by the 1 H NMR anisotropy method.Chirality2002141818410.1002/chir.1003811748805
    [Google Scholar]
  105. KnölkerH.J. FröhnerW. Transition metal complexes in organic synthesis, part 42. First total synthesis of the potent neuronal cell protecting substance (±)-lavanduquinocin via iron- and nickel-mediated coupling reactions.Tetrahedron Lett.199839172537254010.1016/S0040‑4039(98)00340‑2
    [Google Scholar]
  106. FröhnerW. ReddyK.R. KnölkerH.J. Transition metals in organic synthesis, Part 98. Transition metal mediated total synthesis of the potent neuronal cell protecting alkaloid (±)-lavanduquinocin.ARKIVOC20122012333034210.3998/ark.5550190.0013.323
    [Google Scholar]
  107. FuruhataA. HiranoM. FujimotoI. MatsuiM. Synthesis of some carboxylic acid analogs cleaved between the C-2 and C-3 bond of tetramethylcyclopropanecarboxylic acid,and insecticidal activities of their esters.Agric. Biol. Chem.19875161633164010.1271/bbb1961.51.1633
    [Google Scholar]
  108. KuhnW. SchinzH. About lavandulylic acid and its conversion products.Helv. Chim. Acta19523562008201510.1002/hlca.19520350630
    [Google Scholar]
  109. FerreroC. SchinzH. Sesquiterpenes and azulenes. 120th communication. On a new type of sesquiterpene compounds.Helv. Chim. Acta19563972109211810.1002/hlca.19560390723
    [Google Scholar]
  110. KnölkerH-J. BaumE. ReddyK.R. Transition metal complexes in organic synthesis, part 59.(1) First enantioselective total synthesis of lavanduquinocin, a potent neuronal cell protecting substance from Streptomyces viridochromogenes. Chirality2000125-652652810.1002/(SICI)1520‑636X(2000)12:5/6<526::AID‑CHIR40>3.0.CO;2‑F10824182
    [Google Scholar]
/content/journals/coc/10.2174/0113852728359677250402131159
Loading
/content/journals/coc/10.2174/0113852728359677250402131159
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Carbazole; carbazole-3,4-quinone; malaria; natural product; neuronal cell; quinone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test