Skip to content
2000
Volume 29, Issue 19
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Naturally occurring coumarin compounds with the typical benzopyrone framework are found in remarkable concentrations in plants. Moreover, they have also been found in animals, microbes, and other sources. The versatility of the coumarin scaffold extends beyond medicinal chemistry, with applications in agrochemistry, cosmetics, and fragrances. However, this review focuses on the diverse biological activities of metal-complexed coumarin derivatives, including their roles as antimicrobial, anticancer, antioxidant, antidiabetic, anticholinesterase, and antipancreatic cholesterol esterase agents. Notably, the antimicrobial and anticancer properties of these complexes have received significant attention in current research, demonstrating the most promising and impactful results. Coumarin-containing metal complexes have been widely studied in recent years as a growing area of medicinal chemistry in pharmaceutical science. Hence, there is a wide range of potential research topics due to the modifying ability of various ligands, such as N-heterocyclic coumarins, being developed into a metal complex. This has been an innovative strategy in recent years. Therefore, this review article aims to have a concise account and a detailed highlight of the individually associated schematic strategies used in synthesis (carried out through conventional, synthetic, microwave-assisted, and green approaches), along with the characterization of the compounds pertaining with the significant biological activities, which are assessed by suitable evaluating methods.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728333339250301184159
2025-04-14
2025-10-06
Loading full text...

Full text loading...

References

  1. PereiraT.M. FrancoD.P. VitorioF. KummerleA.E. Coumarin compounds in medicinal chemistry: Some important examples from the last years.Curr. Top. Med. Chem.201818212414810.2174/1568026618666180329115523 29595110
    [Google Scholar]
  2. SahooC.R. SahooJ. MahapatraM. LenkaD. Kumar SahuP. DehuryB. PadhyR.N. PaidesettyS.K. Coumarin derivatives as promising antibacterial agent(s).Arab. J. Chem.202114210292210.1016/j.arabjc.2020.102922
    [Google Scholar]
  3. BorgesF. RoleiraF. MilhazesN. SantanaL. UriarteE. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity.Curr. Med. Chem.200512888791610.2174/0929867053507315 15853704
    [Google Scholar]
  4. RawatA. ReddyA.V.B. Recent advances on anticancer activity of coumarin derivatives.Eur. J. Med. Chem. Rep.20225510003810.1016/j.ejmcr.2022.100038
    [Google Scholar]
  5. HuY.Q. XuZ. ZhangS. WuX. DingJ.W. LvZ.S. FengL.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity.Eur. J. Med. Chem.201713612213010.1016/j.ejmech.2017.05.004 28494250
    [Google Scholar]
  6. StefanachiA. LeonettiF. PisaniL. CattoM. CarottiA. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds.Molecules201823225010.3390/molecules23020250 29382051
    [Google Scholar]
  7. GargS.S. GuptaJ. SharmaS. SahuD. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action.Eur. J. Pharm. Sci.202015210542410.1016/j.ejps.2020.105424 32534193
    [Google Scholar]
  8. Rodríguez-EnríquezF. ViñaD. UriarteE. LagunaR. MatosM.J. 7‐Amidocoumarins as multitarget agents against neurodegenerative diseases: Substitution pattern modulation.ChemMedChem202116117918610.1002/cmdc.202000454 32700464
    [Google Scholar]
  9. PanY. LiuT. WangX. SunJ. Research progress of coumarins and their derivatives in the treatment of diabetes.J. Enzyme Inhib. Med. Chem.202237161662810.1080/14756366.2021.2024526 35067136
    [Google Scholar]
  10. TegginamathG. KambleR.R. KattimaniP.P. MargankopS.B. Synthesis of 3-Aryl-4-({2-[4-(6-Substituted-Coumarin-3-Yl)-1,3-Thiazol-2-Yl]Hydraz-inylidene}methyl/Ethyl)-sydnones using silica sulfuric acid and their antidiabetic, DNA cleavage activity.Arab. J. Chem.20169S306S31210.1016/j.arabjc.2011.04.006
    [Google Scholar]
  11. SashidharaK.V. KumarA. ChatterjeeM. RaoK.B. SinghS. VermaA.K. PalitG. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents.Bioorg. Med. Chem. Lett.20112171937194110.1016/j.bmcl.2011.02.040 21377878
    [Google Scholar]
  12. EscuderoG.E. LainoC.H. EcheverríaG.A. PiroO.E. MartiniN. RodríguezA.N. MedinaJ.J.M. TévezL.L.L. FerrerE.G. WilliamsP.A.M. Improving the antidepressant action and the bioavailability of sertraline by co-crystallization with coumarin 3-carboxylate. Structural determination.Chem. Biol. Interact.2016249465510.1016/j.cbi.2016.03.010 26952715
    [Google Scholar]
  13. ChahardoliA. MavaeiM. ShokoohiniaY. FattahiA. Galbanic acid, a sesquiterpene coumarin as a novel candidate for the biosynthesis of silver nanoparticles: In vitro hemocompatibility, antiproliferative, antibacterial, antioxidant, and anti-inflammatory properties.Adv. Powder Technol.202334110392810.1016/j.apt.2022.103928
    [Google Scholar]
  14. KoszelewskiD. KowalczykP. BrodzkaA. HrunykA. KramkowskiK. OstaszewskiR. Enzymatic synthesis of a novel coumarin aminophosphonates: Antibacterial effects and oxidative stress modulation on selected E. coli strains.Int. J. Mol. Sci.2023248760910.3390/ijms24087609 37108774
    [Google Scholar]
  15. ZengC. AvulaS.R. MengJ. ZhouC. Synthesis and biological evaluation of piperazine hybridized coumarin indolylcyanoenones with antibacterial potential.Molecules2023286251110.3390/molecules28062511 36985486
    [Google Scholar]
  16. PatilS.A. NesaragiA.R. Rodríguez-BerriosR.R. HamptonS.M. BugarinA. PatilS.A. Coumarin triazoles as potential antimicrobial agents.Antibiotics202312116010.3390/antibiotics12010160 36671361
    [Google Scholar]
  17. UpadhyayH.C. Coumarin-1,2,3-triazole hybrid molecules: An emerging scaffold for combating drug resistance.Curr. Top. Med. Chem.202121873775210.2174/1568026621666210303145759 33655863
    [Google Scholar]
  18. FarjallahA. ChiarelliL.R. ForbakM. DegiacomiG. DanelM. GoncalvesF. CarayonC. SeguinC. FumagalliM. ZáhorszkáM. VegaE. AbidS. GrzegorzewiczA. JacksonM. PeixotoA. KordulákováJ. PascaM.R. LherbetC. ChassaingS. A Coumarin-based analogue of thiacetazone as dual covalent inhibitor and potential fluorescent label of HadA in Mycobacterium tuberculosis.ACS Infect. Dis.20217355256510.1021/acsinfecdis.0c00325 33617235
    [Google Scholar]
  19. LončarM. Gašo-SokačD. MolnarM. Coumarin derivatives as antifungal agents - A review.Czech J. Food Sci.2023412799110.17221/178/2021‑CJFS
    [Google Scholar]
  20. WaheedS.A. MustafaY.F. Novel naphthalene-derived coumarin composites: Synthesis, antibacterial, and antifungal activity assessments.Eurasian Chem. Commun.20224870972410.22034/ecc.2022.335455.1396
    [Google Scholar]
  21. JiangS. YangG. ShiL. FanL. PanZ. WangC. ChangX. ZhouB. XuM. WuL. XuC. Design, catalyst-free synthesis of new novel α-trifluoromethylated tertiary alcohols bearing coumarins as potential antifungal agents.Molecules202228126010.3390/molecules28010260 36615454
    [Google Scholar]
  22. XuL. YuJ. JinL. PanL. Design, synthesis, and antifungal activity of 4-amino coumarin based derivatives.Molecules2022279273810.3390/molecules27092738 35566096
    [Google Scholar]
  23. MirS.A. MeherR.K. NayakB. Molecular modeling and simulations of some antiviral drugs, benzylisoquinoline alkaloid, and coumarin molecules to investigate the effects on Mpro main viral protease inhibition.Biochem. Biophys. Rep.20233410145910.1016/j.bbrep.2023.101459 36987522
    [Google Scholar]
  24. SharapovA.D. FatykhovR.F. KhalymbadzhaI.A. ZyryanovG.V. ChupakhinO.N. TsurkanM.V. Plant coumarins with anti-HIV activity: Isolation and mechanisms of action.Int. J. Mol. Sci.2023243283910.3390/ijms24032839 36769163
    [Google Scholar]
  25. FobofouS.A.T. FrankeK. BrandtW. ManzinA. MadedduS. SerreliG. SannaG. WessjohannL.A. Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum.Nat. Prod. Res.202337121947195310.1080/14786419.2022.2110094 35959682
    [Google Scholar]
  26. MilenkovićD.A. DimićD.S. AvdovićE.H. MarkovićZ.S. Several coumarin derivatives and their Pd(II) complexes as potential inhibitors of the main protease of SARS-CoV-2, an in silico approach.RSC Adv.20201058350993510810.1039/D0RA07062A 35515669
    [Google Scholar]
  27. VérasJ.H. do ValeC.R. da Silva LimaD.C. dos AnjosM.M. BernardesA. de Moraes FilhoA.V. e SilvaC.R. de OliveiraG.R. PérezC.N. Chen-ChenL. Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster.Drug Chem. Toxicol.202245277578410.1080/01480545.2020.1776314 32529849
    [Google Scholar]
  28. Kecel-GunduzS. Budama-KilincY. BicakB. GokB. BelmenB. AydoganF. YolacanC. New coumarin derivative with potential antioxidant activity: Synthesis, DNA binding and in silico studies (Docking, MD, ADMET).Arab. J. Chem.202316210444010.1016/j.arabjc.2022.104440
    [Google Scholar]
  29. MasuriS. EraB. PintusF. CadoniE. CabidduM.G. FaisA. PivettaT. Hydroxylated coumarin-based thiosemicarbazones as dual antityrosinase and antioxidant agents.Int. J. Mol. Sci.2023242167810.3390/ijms24021678 36675192
    [Google Scholar]
  30. KimN.Y. VishwanathD. XiZ. NagarajaO. SwamynayakaA. Kumar HarishK. BasappaS. MadegowdaM. PandeyV. SethiG. LobieP.E. AhnK.S. BasappaB. Discovery of pyrimidine- and coumarin-linked hybrid molecules as inducers of JNK phosphorylation through ROS generation in breast cancer cells.Molecules2023288345010.3390/molecules28083450 37110684
    [Google Scholar]
  31. McCormickW.J. RiceC. McCruddenD. SkillenN. RobertsonP.K.J. Enhanced monitoring of photocatalytic reactive oxygen species: Using electrochemistry for rapid sensing of hydroxyl radicals formed during the degradation of coumarin.J. Phys. Chem. A2023127235039504710.1021/acs.jpca.3c00741 37257064
    [Google Scholar]
  32. TiwariR. MishraS. DanaboinaG. JadaunG.P.S. KalaivaniM. KalaiselvanV. DhobiM. RaghuvanshiR.S. Comprehensive chemo-profiling of coumarins enriched extract derived from Aegle marmelos (L.) Correa fruit pulp, as an anti-diabetic and anti-inflammatory agent.Saudi Pharm. J.202331910170810.1016/j.jsps.2023.101708 37564748
    [Google Scholar]
  33. LuoJ.F. YueL. WuT.T. ZhaoC.L. YeJ.H. HeK. ZouJ. Triterpenoid and coumarin isolated from Astilbe grandis with anti-inflammatory effects through inhibiting the NF-κB pathway in LPS-induced RAW264.7 cells.Molecules20232815573110.3390/molecules28155731 37570700
    [Google Scholar]
  34. MuchaP. SkoczyńskaA. MałeckaM. HikiszP. BudziszE. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes.Molecules20212616488610.3390/molecules26164886 34443474
    [Google Scholar]
  35. HaziriA. MazrekuI. RudhaniI. Anticoagulant activity of coumarin derivatives.Malays. Appl. Biol.202251210710910.55230/mabjournal.v51i2.2246
    [Google Scholar]
  36. BrouwerM.A. van den BerghP.J.P.C. AengevaerenW.R.M. VeenG. LuijtenH.E. HertzbergerD.P. van BovenA.J. VromansR.P.J.W. UijenG.J.H. VerheugtF.W.A. Aspirin plus coumarin versus aspirin alone in the prevention of reocclusion after fibrinolysis for acute myocardial infarction: Results of the antithrombotics in the prevention of reocclusion in coronary thrombolysis (APRICOT)-2 trial.Circulation2002106665966510.1161/01.CIR.0000024408.81821.32 12163424
    [Google Scholar]
  37. GaoL. WangF. ChenY. LiF. HanB. LiuD. The antithrombotic activity of natural and synthetic coumarins.Fitoterapia202115410494710.1016/j.fitote.2021.104947 34352355
    [Google Scholar]
  38. SerhanM. SprowlsM. JackemeyerD. LongM. PerezI.D. MaretW. TaoN. ForzaniE. Total Iron measurement in human serum with a smartphone.AIChE Annu. Meet. Conf. Proc.2019110
    [Google Scholar]
  39. JeongG.S. KangM.G. LeeJ.Y. LeeS.R. ParkD. ChoM. KimH. Inhibition of butyrylcholinesterase and human monoamine oxidase-b by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis.Molecules20202517389610.3390/molecules25173896 32859055
    [Google Scholar]
  40. MatosM.J. UriarteE. SeoaneN. PicosA. Gil-LongoJ. Campos-ToimilM. Synthesis and vasorelaxant activity of nitrate−coumarin derivatives.ChemMedChem20221721e20220047610.1002/cmdc.202200476 36109344
    [Google Scholar]
  41. Wróblewska-ŁuczkaP. GóralczykA. ŁuszczkiJ.J. Daphnetin, a coumarin with anticancer potential against human melanoma: In vitro study of its effective combination with selected cytostatic drugs.Cells20231212159310.3390/cells12121593 37371063
    [Google Scholar]
  42. ChenL. LvQ. CaiJ. LiangJ. LiangZ. LinJ. XiaoY. ChenR. ZhangZ. HongY. JiH. Design, synthesis and anticancer activity studies of 3-(coumarin-3-yl)-acrolein derivatives: Evidenced by integrating network pharmacology and vitro assay.Front. Pharmacol.202314114112110.3389/fphar.2023.1141121 37033621
    [Google Scholar]
  43. KurtB.Z. CelebiG. CivelekD.O. AngeliA. AkdemirA. SonmezF. SupuranC.T. Tail-approach-based design and synthesis of coumarin-monoterpenes as carbonic anhydrase inhibitors and anticancer agents.ACS Omega2023865787580710.1021/acsomega.2c07459 36816648
    [Google Scholar]
  44. JinY. HeS. WuF. LuoC. MaJ. HuY. Novel Coumarin-furo[2,3-d]pyrimidinone hybrid derivatives as anticancer agents: Synthesis, biological evaluation and molecular docking.Eur. J. Pharm. Sci.202318810652010.1016/j.ejps.2023.106520 37423580
    [Google Scholar]
  45. KargesJ. StokesR.W. CohenS.M. Metal complexes for therapeutic applications.Trends Chem.20213752353410.1016/j.trechm.2021.03.006 35966501
    [Google Scholar]
  46. BalewskiŁ. SzultaS. JalińskaA. KornickaA. A mini-review: Recent advances in coumarin-metal complexes with biological properties.Front Chem.2021978177910.3389/fchem.2021.781779 34926402
    [Google Scholar]
  47. ÇelikE. ÖzdemirM. KöksoyB. Taşkın-TokT. TaslimiP. SadeghianN. YalçınB. New coumarin−thiosemicarbazone based Zn(II), Ni(II) and Co(II) metal complexes: Investigation of cholinesterase, $α$‐Amylase, and $α$‐Glucosidase enzyme activities, and molecular docking studies.ChemistrySelect2023
    [Google Scholar]
  48. Solvent-free synthesisAvailable from: https://library.fiveable.me/key-terms/sustainable-business-innovation-and-growth/solvent-free-synthesis 2024
  49. ZiaraniG.M. MohajerF. MoradiR. Green reactions under solvent-free conditions.Materials Horizons: From Nature to Nanomaterials202132638310.1007/978‑981‑33‑6897‑2_5
    [Google Scholar]
  50. BorahB. DwivediK.D. KumarB. ChowhanL.R. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles.Arab. J. Chem.202215310365410.1016/j.arabjc.2021.103654
    [Google Scholar]
  51. SheldonR.A. The greening of solvents: Towards sustainable organic synthesis.Curr. Opin. Green Sustain. Chem.201918131910.1016/j.cogsc.2018.11.006
    [Google Scholar]
  52. GaoF. ChangH. LiJ. WangR. GuY. Replacing polar aprotic solvents with water in organic synthesis.Curr. Opin. Green Sustain. Chem.20234010077410.1016/j.cogsc.2023.100774
    [Google Scholar]
  53. Biocatalysis - (Genomics)Available from: https://library.fiveable.me/key-terms/genomics/biocatalysis 2024
  54. IbanezJ.G. Electrochemistry encyclopedia -- environmental electrochemistryAvailable from: https://knowledge.electrochem.org/encycl/art-e02-environm.htm 2024
  55. RaoR.N. JenaS. MukherjeeM. MaitiB. ChandaK. Green synthesis of biologically active heterocycles of medicinal importance: A review.Environ. Chem. Lett.20211943315335810.1007/s10311‑021‑01232‑9
    [Google Scholar]
  56. Abdel-AziemA. Green synthesis of novel coumarin derivatives via grinding approach and their antimicrobial evaluation.Green Chem. Lett. Rev.2024171235331910.1080/17518253.2024.2353319
    [Google Scholar]
  57. FuriaE. LetteraV. NapoliA. AielloD. Insights on stability constants and structures of complexes between coumarin derivatives and Pb(II) in aqueous media.Molecules2024299191110.3390/molecules29091911 38731402
    [Google Scholar]
  58. RanuB.C. JanaR. Ionic liquid as catalyst and reaction medium – A simple, efficient and green procedure for knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task‐specific basic ionic liquid.Eur. J. Org. Chem.20062006163767377010.1002/ejoc.200600335
    [Google Scholar]
  59. DoukaM.D. SigalaI.M. NikolakakiE. ProusisK.C. Hadjipavlou-LitinaD.J. LitinasK.E. Cu‐catalyzed synthesis of coumarin‐1,2,3‐triazole hybrids connected with quinoline or pyridine framework**.ChemistrySelect2024922e20240195710.1002/slct.202401957
    [Google Scholar]
  60. KayeP.T. MusaM.A. Application of baylis–hillman methodology in the synthesis of coumarin derivatives.Synth. Commun.200333101755177010.1081/SCC‑120018937
    [Google Scholar]
  61. LončarićM. Gašo-SokačD. JokićS. MolnarM. Recent advances in the synthesis of coumarin derivatives from different starting materials.Biomolecules202010115110.3390/biom10010151 31963362
    [Google Scholar]
  62. PortaR. BenagliaM. PuglisiA. Flow chemistry: Recent developments in the synthesis of pharmaceutical products.Org. Process Res. Dev.201620122510.1021/acs.oprd.5b00325
    [Google Scholar]
  63. LiS.C. CaiL.X. ZhouL.P. GuoF. SunQ.F. Supramolecular synthesis of coumarin derivatives catalyzed by a coordination-assembled cage in aqueous solution.Sci. China Chem.201962671371810.1007/s11426‑018‑9427‑4
    [Google Scholar]
  64. KoleyM. HanJ. SoloshonokV.A. MojumderS. JavahershenasR. MakaremA. Latest developments in coumarin-based anticancer agents: Mechanism of action and structure–activity relationship studies.RSC Med. Chem.2024151105410.1039/D3MD00511A 38283214
    [Google Scholar]
  65. TodorovL.T. KostovaI.P. Coumarin-transition metal complexes with biological activity: Current trends and perspectives.Front Chem.202412134277210.3389/fchem.2024.1342772 38410816
    [Google Scholar]
  66. AbdelazizE. El-DeebN.M. ZayedM.F. HasaneinA.M. El SayedI.E.T. ElmongyE.I. KamounE.A. Synthesis and in-vitro anti-proliferative with antimicrobial activity of new coumarin containing heterocycles hybrids.Sci. Rep.20231312279110.1038/s41598‑023‑50170‑9 38123695
    [Google Scholar]
  67. SunithaN. RajC.I.S. KumariB.S. Synthesis, spectroscopic investigation, fluorescence, anticancer, antioxidant and DNA cleavage studies of coumarin hydrazone metal complexes.Results Chem.2022410058810.1016/j.rechem.2022.100588
    [Google Scholar]
  68. SunithaN. RajC.I.S. KumariB.S. Synthesis, spectral studies, biological evaluation and molecular docking studies of metal complexes from coumarin derivative.J. Mol. Struct.2023128513544310.1016/j.molstruc.2023.135443
    [Google Scholar]
  69. AvdovićE.H. AntonijevićM. SimijonovićD. RocaS. TopićD.V. GrozdanićN. StanojkovićT. RadojevićI. VojinovićR. MarkovićZ. Synthesis and cytotoxicity evaluation of novel coumarin–Palladium(II) complexes against human cancer cell lines.Pharmaceuticals20221614910.3390/ph16010049 36678546
    [Google Scholar]
  70. AvdovićE.H. PetrovićI.P. StevanovićM.J. SasoL. MarkovićJ.M.D. FilipovićN.D. ŽivićM. AntićT.N.C. ŽižićM.V. TodorovićN.V. VukićM. TrifunovićS.R. MarkovićZ.S. Synthesis and biological screening of new 4-hydroxycoumarin derivatives and their Palladium(II) complexes.Oxid. Medi. Cell. Longevity20212021884956810.1155/2021/8849568
    [Google Scholar]
  71. StepanenkoI. BabakM.V. SpenglerG. HammerstadM. Popovic-BijelicA. ShovaS. BüchelG.E. DarvasiovaD. RaptaP. ArionV.B. Coumarin-based triapine derivatives and their copper(II) complexes: Synthesis, cytotoxicity and mR2 RNR inhibition activity.Biomolecules202111686210.3390/biom11060862 34207929
    [Google Scholar]
  72. ŞahinÖ. ÖzdemirÜ.Ö. SeferoğluN. AdemŞ. SeferoğluZ. Synthesis, characterization, molecular docking and in vitro screening of new metal complexes with coumarin Schiff base as anticholine esterase and antipancreatic cholesterol esterase agents.J. Biomol. Struct. Dyn.202240104460447410.1080/07391102.2020.1858163 33480334
    [Google Scholar]
  73. AldabaldetrecuM. ParraM. SotoS. ArceP. TelloM. GuerreroJ. ModakB. New Copper(I) complex with a coumarin as ligand with antibacterial activity against Flavobacterium psychrophilum.Molecules20202514318310.3390/molecules25143183 32668579
    [Google Scholar]
  74. PatilP. BetageriV.S. KinnalS.M. LathaM.S. Synthesis, characterisation and biological investigation of some third-row elements with halo-substituted coumarin schiff base with N and O as donors.IOP Conf. Ser. Mater. Sci. Eng.202010.1088/1757‑899X/925/1/012052
    [Google Scholar]
  75. LiuC. LiuX. GeX. WangQ. ZhangL. ShangW. ZhangY. YuanX.A. TianL. LiuZ. YouJ. Fluorescent iridium(III) coumarin-salicylaldehyde Schiff base compounds as lysosome-targeted antitumor agents.Dalton Trans.202049185988599810.1039/D0DT00627K 32314774
    [Google Scholar]
  76. Nuñez-DallosN. CuadradoC. HurtadoJ. NaglesE. García-BeltranO. In situ-mercury film electrode for simultaneous determination of lead and cadmium using nafion coated new coumarin Schiff base as chelating-adsorbent.Int. J. Electrochem. Sci.201611129855986710.20964/2016.12.02
    [Google Scholar]
  77. MestizoP.D. NarváezD.M. Pinzón-UlloaJ.A. Di BelloD.T. Franco-UlloaS. MacíasM.A. GrootH. MiscioneG.P. SuescunL. HurtadoJ.J. Novel complexes with ONNO tetradentate coumarin schiff-base donor ligands: x-ray structures, DFT calculations, molecular dynamics and potential anticarcinogenic activity.Biometals202134111914010.1007/s10534‑020‑00268‑8 33185808
    [Google Scholar]
  78. ElsayedS.A. El-GharabawyH.M. ButlerI.S. AtlamF.M. Novel metal complexes of 3‐acetylcoumarin‐2‐hydrazinobenzothiazole Schiff base: Design, structural characterizations, DNA binding, DFT calculations, molecular docking and biological studies.Appl. Organomet. Chem.2020346e564310.1002/aoc.5643
    [Google Scholar]
  79. QinQ.P. WangZ.F. HuangX.L. TanM.X. ZouB.Q. LiangH. Strong in vitro and vivo cytotoxicity of novel organoplatinum(II) complexes with quinoline-coumarin derivatives.Eur. J. Med. Chem.201918411175110.1016/j.ejmech.2019.111751 31593828
    [Google Scholar]
  80. IbrahimD.M. JumalJ. Al-AdiwishW.M. Anti-cancer screening of some transition metal ion complexes with coumarin derivatives.J. Trans. Metal Chem.201921510.32371/jtmc/236074
    [Google Scholar]
  81. UmadeviM. MuthurajV. VanajothiR. Synthesis of coumarin derivatives and its Ru(II) complexes encompassing pyrazole ring as a potent antidiabetic agents – A biochemical perspective.Inorg. Chim. Acta2019492485910.1016/j.ica.2019.04.029
    [Google Scholar]
  82. MacLeanL. KarczD. JenkinsH. McCleanS. DevereuxM. HoweO. PereiraM.D. MayN.V. EnyedyÉ.A. CreavenB.S. Copper(II) complexes of coumarin-derived Schiff base ligands: Pro- or antioxidant activity in MCF-7 cells?J. Inorg. Biochem.201919719711070210.1016/j.jinorgbio.2019.110702 31103891
    [Google Scholar]
  83. KnittlE.T. Abou-HusseinA.A. LinertW. Syntheses, characterization, and biological activity of novel mono- and binuclear transition metal complexes with a hydrazone Schiff base derived from a coumarin derivative and oxalyldihydrazine.Monatsh. Chem.2018149243144310.1007/s00706‑017‑2075‑9 29497214
    [Google Scholar]
  84. JawoorS.S. PatilS.A. KumbarM. RamawadgiP.B. Green synthesis of nano sized transition metal complexes containing heterocyclic Schiff base: Structural and morphology characterization and bioactivity study.J. Mol. Struct.2018116437838510.1016/j.molstruc.2018.03.084
    [Google Scholar]
  85. ŞahinÖ. ÖzdemirÜ.Ö. SeferoğluN. GencZ.K. KayaK. AydınerB. TekinS. SeferoğluZ. New platinum (II) and palladium (II) complexes of coumarin-thiazole Schiff base with a fluorescent chemosensor properties: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro anticancer activity on various human carcinoma cell lines and computational studies.J. Photochem. Photobiol. B201817817842843910.1016/j.jphotobiol.2017.11.030 29216566
    [Google Scholar]
  86. JawoorS.S. PatilS.A. ToragalmathS.S. Synthesis and characterization of heteroleptic Schiff base transition metal complexes: A study of anticancer, antimicrobial, DNA cleavage and anti-TB activity.J. Coord. Chem.201871227128310.1080/00958972.2017.1421951
    [Google Scholar]
  87. SahooJ. PaidesettyS.K. Antimicrobial activity of novel synthesized coumarin based transitional metal complexes.J. Taibah Univ. Med. Sci.201712211512410.1016/j.jtumed.2016.10.004 31435225
    [Google Scholar]
  88. UsmanM. ZakiM. KhanR.A. AlsalmeA. AhmadM. TabassumS. Coumarin centered copper(II) complex with appended-imidazole as cancer chemotherapeutic agents against lung cancer: Molecular insight via DFT-based vibrational analysis.RSC Adv.2017757360563607110.1039/C7RA05874H
    [Google Scholar]
  89. SharmaV. AroraE.K. CardozaS. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex.Chem. Pap.201670111493150210.1515/chempap‑2016‑0083
    [Google Scholar]
  90. PivettaT. VallettaE. FerinoG. IsaiaF. PaniA. VascellariS. CastellanoC. DemartinF. CabidduM.G. CadoniE. Novel coumarins and related copper complexes with biological activity: DNA binding, molecular docking and in vitro antiproliferative activity.J. Inorg. Biochem.201717710110910.1016/j.jinorgbio.2017.09.013 28946026
    [Google Scholar]
  91. AvdovićE.H. StojkovićD.L.J. JevtićV.V. KosićM. RistićB. Harhaji-TrajkovićL. VukićM. VukovićN. MarkovićZ.S. PotočňákI. TrifunovićS.R. Synthesis, characterization and cytotoxicity of a new palladium(II) complex with a coumarin-derived ligand 3-(1-(3-Hydroxy-propylamino)ethylidene)chroman-2,4-dione. crystal structure of the 3-(1-(3-Hydroxypropylamino)Ethylidene)-Chroman-2,4-dione.Inorganica Chim. Acta201746618819610.1016/j.ica.2017.06.015
    [Google Scholar]
  92. PrabhakaraC.T. PatilS.A. ToragalmathS.S. KinnalS.M. BadamiP.S. Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms.J. Photochem. Photobiol. B201615711410.1016/j.jphotobiol.2016.02.004 26874303
    [Google Scholar]
  93. KlepkaM.T. Drzewiecka-AntonikA. WolskaA. RejmakP. OstrowskaK. HejchmanE. KruszewskaH. CzajkowskaA. Młynarczuk-BiałyI. FerencW. Synthesis, structural studies and biological activity of new Cu(II) complexes with acetyl derivatives of 7-hydroxy-4-methylcoumarin.J. Inorg. Biochem.20151459410010.1016/j.jinorgbio.2015.01.006 25660488
    [Google Scholar]
  94. Abou-HusseinA.A. LinertW. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514122323210.1016/j.saa.2015.01.063 25681806
    [Google Scholar]
  95. PrabhakaraC.T. PatilS.A. KulkarniA.D. NaikV.H. ManjunathaM. KinnalS.M. BadamiP.S. Synthesis, spectral, thermal, fluorescence, antimicrobial, anthelmintic and DNA cleavage studies of mononuclear metal chelates of bi-dentate 2H-chromene-2-one Schiff base.J. Photochem. Photobiol. B201514832233210.1016/j.jphotobiol.2015.03.033 26002539
    [Google Scholar]
  96. PatelJ. DholariyaH. PatelK. BhattJ. PatelK. Cu(II) and Ni(II) complexes of coumarin derivatives with fourth generation flouroquinolone: synthesis, characterization, microbicidal and antioxidant assay.Med. Chem. Res.20142383714372410.1007/s00044‑014‑0943‑y
    [Google Scholar]
  97. Mahendra raj, K.; Mruthyunjayaswamy, B.H.M. Synthesis, spectroscopic characterization, electrochemistry and biological activity evaluation of some metal (II) complexes with ONO donor ligands containing indole and coumarin moieties.J. Saudi Chem. Soc.201721S202S21810.1016/j.jscs.2014.01.001
    [Google Scholar]
  98. PatelK.S. PatelJ.C. DholariyaH.R. PatelK.D. Synthesis, thermal, and biological studies of newly synthesized Cu(II) complexes with ciprofloxacin based on bromo-coumarins derivatives.Synth. React. Inorg. Met.-Org. Nano-Met. Chem.20134381049105810.1080/15533174.2012.754763
    [Google Scholar]
  99. MadhaviB. SharmaG.V.R. Synthesis and characterization of biologically active oxadiazole derivatives.Res. J. Chem. Environ.2022261213413810.25303/2612rjce1340138
    [Google Scholar]
  100. SumiM. NevadithaN.T. Sindhu KumariB. Nano zinc Oxide-Ruthenium (III) complex of novel coumarin derivative: Synthesis, characterization, DNA Cleavage, anticancer and bioimaging activities.Bioorg. Chem.202313610655510.1016/j.bioorg.2023.106555 37126900
    [Google Scholar]
  101. ShresthaR.M. MahiyaK. ShresthaA. MohantyS.R. YadavS.K. YadavP.N. Synthesis, characterization, and anticancer potency of coumarin-derived thiosemicarbazones and their Copper(II) complexes.Inorg. Chem. Commun.202416111214210.1016/j.inoche.2024.112142
    [Google Scholar]
  102. ShresthaR.M. MahiyaK. ShresthaA. MohantyS.R. YadavS.K. YadavP.N. Synthesis, characterization, anticancer, pharmacokinetics and molecular docking investigation of N (3)-alkyl incorporated-3-acetyl-4-hydroxycoumarin thiosemicarbazones and their copper(II) complexes.J. Mol. Struct.2024129913694510.1016/j.molstruc.2023.136945
    [Google Scholar]
  103. AbdouA. MostafaH.M. Abdel-MawgoudA.M.M. New Fe(III) and Ni(II) azocoumarin based complexes: synthesis, characterization, DFT, antimicrobial, anti-inflammatory activity, and molecular docking analysis.Russ. J. Gen. Chem.202393113006301910.1134/S1070363223110312
    [Google Scholar]
  104. SarhanM.O. Abd El-KarimS.S. AnwarM.M. GoudaR.H. ZagharyW.A. KhedrM.A. Discovery of new coumarin-based lead with potential anticancer, CDK4 inhibition and selective radiotheranostic effect: Synthesis, 2D & 3D QSAR, molecular dynamics, in vitro cytotoxicity, radioiodination, and biodistribution studies.Molecules2021268227310.3390/molecules26082273 33919867
    [Google Scholar]
  105. BhattaraiN. KumbharA.A. PokharelY.R. YadavP.N. Anticancer potential of coumarin and its derivatives.Mini Rev. Med. Chem.202121192996302910.2174/18755607MTE1uMjAm4 33820507
    [Google Scholar]
  106. RohmanN. ArdiansahB. WukirsariT. JudehZ. Recent trends in the synthesis and bioactivity of coumarin, coumarin–chalcone, and coumarin–triazole molecular hybrids.Molecules2024295102610.3390/molecules29051026 38474540
    [Google Scholar]
/content/journals/coc/10.2174/0113852728333339250301184159
Loading
/content/journals/coc/10.2174/0113852728333339250301184159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test