Skip to content
2000
Volume 29, Issue 18
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The multifunctionalized chiral furan derivatives are important building blocks as many natural products and bioactive compounds contain these scaffolds. The chiral furan derivatives also act as potent intermediates in valuable synthetic transformations. Therefore, the development of facile methodologies for accessing the substituted chiral furans from easily available precursors is an intriguing topic in the field of organic chemistry. In this review, several efficient strategies for the synthesis of substituted chiral furans have been discussed. Amongst these, the functionalization of furan moieties, organocatalytic/enantioselective approaches, chemoenzymatic kinetic resolution, and utilizations of carbohydrates as chiral pool precursors are of great importance.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728357538250115091300
2025-02-27
2025-09-26
Loading full text...

Full text loading...

References

  1. HouX.L. YangZ. WongH.N.C. Five-membered ring systems: Furans and benzofurans.Progress in Heterocyclic ChemistryElsevier20031516720510.1016/S0959‑6380(03)80010‑7
    [Google Scholar]
  2. HeaneyH. AhnJ.S. KatritzkyA.R. Comprehensive Heterocyclic Chemistry II.OxfordElsevier1997297350
    [Google Scholar]
  3. TsudaY. SanoT. CordellG.A. The Alkaloids.BerlinSpringer1996
    [Google Scholar]
  4. KobayashiJ. WatanabeD. KawasakiN. TsudaM. Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon sponge.J. Org. Chem.199762269236923910.1021/jo9715377
    [Google Scholar]
  5. MissakianM.G. BurresonB.J. ScheuerP.J. Pukalide, a furanocembranolide from the soft coral Sinularia abrupta.Tetrahedron197531202513251510.1016/0040‑4020(75)80262‑6
    [Google Scholar]
  6. BowdenB.F. CollJ.C. WrightA.D. Studies of Australian soft corals. XLIV. New diterpenes from Sinularia polydactyla (Coelenterata, Anthozoa, Octocorallia).Aust. J. Chem.198942575776310.1071/CH9890757
    [Google Scholar]
  7. RodríguezB. de la TorreM.C. JimenoM.L. BrunoM. FazioC. PiozziF. SavonaG. PeralesA. Rearranged neo-clerodane diterpenoids from Teucrium brevifolium and their biogenetic pathway.Tetrahedron199551383784810.1016/0040‑4020(94)00955‑T
    [Google Scholar]
  8. KazlauskasR. MurphyP.T. WellsR.J. DalyJ.J. SchönholzerP. Two sesquiterpene furans with new carbocyclic ring systems and related thiol acetates from a species of the sponge genus.Tetrahedron Lett.197819494951495410.1016/S0040‑4039(01)85779‑8
    [Google Scholar]
  9. GuellaG. ManciniI. GuerrieroA. PietraF. New Furano‐sesquiterpenoids from Mediterranean Sponges.Helv. Chim. Acta19856851276128210.1002/hlca.19850680523
    [Google Scholar]
  10. HortonP. InmanW.D. CrewsP. Enantiomeric relationships and anthelmintic activity of dysinin derivatives from Dysidea marine sponges.J. Nat. Prod.199053114315110.1021/np50067a019
    [Google Scholar]
  11. AsakawaY. Chemical Constituents of Hepaticae.BerlinSpringer1982
    [Google Scholar]
  12. WongH.N.C. YuP. YickC.Y. The use of furans in natural product syntheses.Pure Appl. Chem.19997161041104410.1351/pac199971061041
    [Google Scholar]
  13. EfremovI. PaquetteL.A. First synthesis of a rearranged neo -Clerodane diterpenoid. Development of totally regioselective trisubstituted furan ring assembly and medium-ring alkylation tactics for efficient access to (−) Teubrevin G. J. Am. Chem. Soc.2000122389324932510.1021/ja002450x
    [Google Scholar]
  14. HasegawaF. NiidomeK. MigihashiC. MurataM. NegoroT. MatsumotoT. KatoK. FujiiA. Discovery of furan-2-carbohydrazides as orally active glucagon receptor antagonists.Bioorg. Med. Chem. Lett.201424174266427010.1016/j.bmcl.2014.07.025 25127101
    [Google Scholar]
  15. KumariN. MishraC.B. PrakashA. KumarN. MongreR. LuthraP.M. 8-(Furan-2-yl)-3-phenethylthiazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione as novel, selective and potent adenosine A2A receptor antagonist.Neurosci. Lett.201455820320710.1016/j.neulet.2013.10.035 24161891
    [Google Scholar]
  16. BirdC.W. CheesemanG.W.H. Comprehensive Organic Chemistry.New YorkPergamon1984
    [Google Scholar]
  17. KatritzkyA.R. Advanced Heterocyclic Chemistry.New YorkAcademic Press1982
    [Google Scholar]
  18. MulhollandD.A. LangloisA. RandrianarivelojosiaM. DeratE. NuzillardJ.M. The structural elucidation of a novel iridoid derivative fromTachiadenus longiflorus (Gentianaceae) using the LSD programme and quantum chemical computations.Phytochem. Anal.2006172879010.1002/pca.890 16634284
    [Google Scholar]
  19. KateA.S. AubryI. TremblayM.L. KerrR.G. Lipidyl pseudopteranes A-F: Isolation, biomimetic synthesis, and PTP1B inhibitory activity of a new class of pseudopteranoids from the Gorgonian Pseudopterogorgia acerosa.J. Nat. Prod.200871121977198210.1021/np800544b 19061360
    [Google Scholar]
  20. BarancelliD.A. MantovaniA.C. JesseC. NogueiraC.W. ZeniG. Synthesis of natural polyacetylenes bearing furan rings.J. Nat. Prod.200972585786010.1021/np9000637 19366257
    [Google Scholar]
  21. WangS. BaoL. ZhaoF. WangQ. LiS. RenJ. LiL. WenH. GuoL. LiuH. Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae.J. Agric. Food Chem.201361215122512910.1021/jf401612t 23650961
    [Google Scholar]
  22. GidronO. Diskin-PosnerY. BendikovM. α-Oligofurans.J. Am. Chem. Soc.201013272148215010.1021/ja9093346 20121137
    [Google Scholar]
  23. YiuA.T. BeaujugeP.M. LeeO.P. WooC.H. ToneyM.F. FréchetJ.M.J. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells.J. Am. Chem. Soc.201213442180218510.1021/ja2089662 22191680
    [Google Scholar]
  24. GidronO. DadvandA. SheyninY. BendikovM. PerepichkaD.F. Towards “green” electronic materials. α-Oligofurans as semiconductors.Chem. Commun.20114771976197810.1039/C0CC04699J 21165466
    [Google Scholar]
  25. BunzU.H.F. α‐Oligofurans: Molecules without a twist.Angew. Chem. Int. Ed.201049305037504010.1002/anie.201002458 20572240
    [Google Scholar]
  26. FallonT. WillisA.C. RaeA.D. Paddon-RowM.N. SherburnM.S. β-Oligofurans.Chem. Sci.2012362133213710.1039/c2sc20130e
    [Google Scholar]
  27. GidronO. BendikovM. α-Oligofurans: An emerging class of conjugated oligomers for organic electronics.Angew. Chem. Int. Ed.201453102546255510.1002/anie.201308216 24470351
    [Google Scholar]
  28. GulevichA.V. DudnikA.S. ChernyakN. GevorgyanV. Transition metal-mediated synthesis of monocyclic aromatic heterocycles.Chem. Rev.201311353084321310.1021/cr300333u 23305185
    [Google Scholar]
  29. MurphyE.B. WudlF. The world of smart healable polymers.Prog. Polym. Sci.2010351-2223251
    [Google Scholar]
  30. LinH.C. LinW.Y. BaiH.T. ChenJ.H. JinB.Y. LuhT.Y. A bridging double bond as an electron acceptor for optical nonlinearity of furan-containing [N.2]cyclophenes.Angew. Chem. Int. Ed.200746689790010.1002/anie.200603557 17183500
    [Google Scholar]
  31. BrownR.C.D. Developments in furan syntheses.Angew. Chem. Int. Ed.200544685085210.1002/anie.200461668 15619251
    [Google Scholar]
  32. BurkeM.D. BergerE.M. SchreiberS.L. A synthesis strategy yielding skeletally diverse small molecules combinatorially.J. Am. Chem. Soc.200412643140951410410.1021/ja0457415 15506774
    [Google Scholar]
  33. KazanciogluE.A. KazanciogluM.Z. FistikciM. SecenH. AltundasR. Photooxygenation of azidoalkyl furans: Catalyst-free triazole and new endoperoxide rearrangement.Org. Lett.201315184790479310.1021/ol402163u 24001310
    [Google Scholar]
  34. RobertsonJ. ChovatiaP.T. FowlerT.G. WitheyJ.M. WoollastonD.J. Oxidative spirocyclisation routes towards the sawaranospirolides. Synthesis of ent-sawaranospirolides C and D.Org. Biomol. Chem.20108122623310.1039/B918091E 20024153
    [Google Scholar]
  35. CoralJ.A. GuoH. ShanM. O’DohertyG.A. A De Novo Asymmetric Approach To 8a-epi-Swainsonine.Heterocycles200979152152910.3987/COM‑08‑S(D)12
    [Google Scholar]
  36. O’CallaghanC.H. SykesR.B. GriffithsA. ThorntonJ.E. Cefuroxime, a new cephalosporin antibiotic: Activity in vitro.Antimicrob. Agents Chemother.19769351151910.1128/AAC.9.3.511 1259407
    [Google Scholar]
  37. VillaE. MagnoniM.S. MicheliD. CanonicaG.W. A review of the use of fluticasone furoate since its launch.Expert Opin. Pharmacother.201112132107211710.1517/14656566.2011.600688 21797803
    [Google Scholar]
  38. McHughL.A. SayanA.E. MejlvangJ. GriffithsT.R. SunY. MansonM.M. TulchinskyE. MellonJ.K. KriajevskaM. Lapatinib, a dual inhibitor of ErbB-1/-2 receptors, enhances effects of combination chemotherapy in bladder cancer cells.Int. J. Oncol.200934411551163 19287975
    [Google Scholar]
  39. BielskiR. GrynkiewiczG. Furan platform chemicals beyond fuels and plastics.Green Chem.202123197458748710.1039/D1GC02402G
    [Google Scholar]
  40. BaoX. RenJ. YangY. YeX. WangB. WangH. 2-Activated 1,3-enynes in enantioselective synthesis.Org. Biomol. Chem.202018407977798610.1039/D0OB01614D 32996970
    [Google Scholar]
  41. KirschS.F. Syntheses of polysubstituted furans: Recent developments.Org. Biomol. Chem.20064112076208010.1039/b602596j 16729118
    [Google Scholar]
  42. DeepthiA. BabuB.P. BalachandranA.L. Synthesis of furans-recent advances.Org. Prep. Proced. Int.201951540944210.1080/00304948.2019.1633228
    [Google Scholar]
  43. YangJ. WangC. XieX. LiH. LiE. LiY. Pd/Cu-catalyzed cascade Sonogashira coupling/cyclization reactions to highly substituted 3-formyl furans.Org. Biomol. Chem.2011951342134610.1039/c0ob00985g 21225082
    [Google Scholar]
  44. JakubecP. CockfieldD.M. DixonD.J. Total synthesis of (-)-nakadomarin A.J. Am. Chem. Soc.200913146166321663310.1021/ja908399s 19883080
    [Google Scholar]
  45. WrightA.D. de NysR. AngerhoferC.K. PezzutoJ.M. GurrathM. Biological activities and 3D QSAR studies of a series of Delisea pulchra (cf. fimbriata) derived natural products.J. Nat. Prod.20066981180118710.1021/np050510c 16933872
    [Google Scholar]
  46. PatilS.N. LiuF. Base-assisted regio- and diastereoselective conversion of functionalized furans to butenolides using singlet oxygen.Org. Lett.20079219519810.1021/ol062551l 17217263
    [Google Scholar]
  47. HusainA. KhanM.S.Y. HasanS.M. AlamM.M. 2-Arylidene-4-(4-phenoxy-phenyl)but-3-en-4-olides: Synthesis, reactions and biological activity.Eur. J. Med. Chem.200540121394140410.1016/j.ejmech.2005.03.012 15878219
    [Google Scholar]
  48. BaileyP.S. WaggonerJ.V. NowlinG. RushtonG.L. Evidence For the Isomerization of 2,3-Dibenzoyl-2-propen-1-ol to 2,3-Dibenzoylpropanal 1,2.J. Am. Chem. Soc.19547682249225110.1021/ja01637a067
    [Google Scholar]
  49. HiroyaK. OgasawaraK. An expeditious route to 3-Formylfuran.Synlett19951995217517610.1055/s‑1995‑4915
    [Google Scholar]
  50. MoranW.J. RodríguezA. Metal-catalyzed furan synthesis. A review.Org. Prep. Proced. Int.201244210313010.1080/00304948.2012.657558
    [Google Scholar]
  51. MohapatraS. PandaJ. MohapatraS. NayakS. Synthesis of polysubstituted furans: An update since 2019.J. Org. Chem.2023129e202300304
    [Google Scholar]
  52. ZhangW. XuW. ZhangF. LiY. Recent progress in synthesis of polysubstituted furans.Youji Huaxue2019395127710.6023/cjoc201811023
    [Google Scholar]
  53. PandeyS. ShuklaR.K. VollaC.M.R. Access to polysubstituted furan derivatives via cascade oxy-palladation and hydrocarbofunctionalization of unactivated alkenes.Org. Lett.202325254694469910.1021/acs.orglett.3c01571 37338460
    [Google Scholar]
  54. ZhangJ. XuW. WangD. YuanY. BaiY. WangM. GaoG. SunT. Divergent reactivity of acrylamides and β-chloroenones under base-controlled palladium catalysis: Construction of spirooxindoles and furan-containing 3,3-disubstituted oxindoles.Org. Chem. Front.202411234835710.1039/D3QO01776A
    [Google Scholar]
  55. ChoH.J. KimJ.H. Accessing functionalized furans from reacting enynones and enynals through furyl metal carbenes.Asian J. Org. Chem.2024134e20230061610.1002/ajoc.202300616
    [Google Scholar]
  56. LiF. YuanY. LyuD. YiY. ZhangJ. SunT. GaoG. Palladium-catalyzed domino heck/cross-coupling cyclization reaction: Diastereoselective synthesis of furan-containing indolines.J. Org. Chem.202489117552756010.1021/acs.joc.4c00196 38805672
    [Google Scholar]
  57. WuM. WangY. ZhouJ. WangT. GaoH. ZhouZ. YiW. Synthesis of polysubstituted furan frameworks via [3 + 2] annulation of N -Enoxyimides with chelated alkynes initiated by Rh(III)-catalyzed C-H activation.Org. Lett.202325142394239910.1021/acs.orglett.3c00377 37010209
    [Google Scholar]
  58. KatariaP. SahooS.S. KonthamR. Bi(III)-catalyzed synthesis of substituted furans from hydroxy-oxetanyl Ketones: Application to unified total synthesis of Shikonofurans J, D, E, and C.J. Org. Chem.202388117328734610.1021/acs.joc.3c00549 37165845
    [Google Scholar]
  59. BabcockE.G. RahmanM.S. TaylorJ.E. Brønsted acid-catalysed desilylative heterocyclisation to form substituted furans.Org. Biomol. Chem.202221116316810.1039/D2OB01828D 36472096
    [Google Scholar]
  60. WangK. XuY. WangJ. Palladium‐catalyzed cyclizative borylation of allenyl ketones through carbene boryl migratory insertion: Access to densely substituted furyl boronates.Chemistry20232913e20220369710.1002/chem.202203697 36448967
    [Google Scholar]
  61. ZhangP. TiW. GaoT. ZhuJ. LinA. GaoS. LiX. YaoH. Three-component approach to modular synthesis of tetra-substituted furans and pyrroles.Org. Chem. Front.20241192554256010.1039/D3QO02096G
    [Google Scholar]
  62. ChenM. WangJ. KanY. JiaX. HuangB. LiT. ZhaoX. Electrocatalytic [3 + 2] annulation for the synthesis of polysubstituted furans.Org. Lett.202325244540454510.1021/acs.orglett.3c01582 37306286
    [Google Scholar]
  63. WuC. ZhangX. LiuW. WangC. JiangQ. ChenF. LiuQ. CaoF. ZhengG. ZhangA. ChenK. Biocatalytic synthesis of two furan-based amino compounds 2-acetyl-4-aminofuran and 3-acetylamino-5-(α-aminoethyl)-furan from chitin resources.ACS Sustain. Chem.& Eng.20241230111451115410.1021/acssuschemeng.4c01435
    [Google Scholar]
  64. HuY.F. HanW. ChenY.K. MaM. ShenZ.L. ChuX.Q. Multi-functionalization of β-trifluoromethyl enones enabled 2,3-dihydrofuran synthesis.Org. Chem. Front.202411185144515010.1039/D4QO00962B
    [Google Scholar]
  65. WangK.K. LiY.L. LiY.F. YaoW.W. LiL.X. HeX.L. ChenR. Substrate-controlled [4+1] and [3+2] annulations of ninhydrin-derived Morita-Baylis-Hillman carbonates to access polysubstituted furans and cyclopentenes.Chem. Commun.202460273717372010.1039/D3CC06276G 38481359
    [Google Scholar]
  66. Thanh Nhan VuT. Ngoc TrinhT. Trang PhamT. Tu HaM. Hung MacD. RetailleauP. Binh NguyenT. I 2 ‐Promoted oxidative annulation of deoxybenzoin‐chalcone adduct: Temperature‐controlled access to tetrasubstituted 2,3‐ trans ‐dihydrofurans and furans.Adv. Synth. Catal.2024366122691269510.1002/adsc.202400304
    [Google Scholar]
  67. YeungK-S. YangZ. PengX-S. HouX-L. Five-membered ring systems: Furans and benzofurans.Progress in Heterocyclic ChemistryElsevier20112018121610.1016/S0959‑6380(11)22007‑5
    [Google Scholar]
  68. KeZ. Chit TsuiG.C. PengX-S. YeungY-Y. Five-membered ring systems.Progress in Heterocyclic ChemistryElsevier20172923927510.1016/B978‑0‑08‑102310‑5.00007‑2
    [Google Scholar]
  69. KwiecieńH. WodnickaA. Five-membered ring systems: Furans and benzofurans.Progress in Heterocyclic ChemistryElsevier20203128132310.1016/B978‑0‑12‑819962‑6.00007‑5
    [Google Scholar]
  70. TanyeliC. DemirA.S. ArkinA.H. AkhmedovI.M. PLE catalyzed enantiomeric separation of (±)-2- furylcarbinols.Enantiomer199726433439
    [Google Scholar]
  71. UraguchiD. SorimachiK. TeradaM. Organocatalytic asymmetric aza-Friedel-Crafts alkylation of furan.J. Am. Chem. Soc.200412638118041180510.1021/ja046185h 15382910
    [Google Scholar]
  72. MajerJ. KwiatkowskiP. JurczakJ. Highly enantioselective synthesis of 2-furanyl-hydroxyacetates from furans via the Friedel-Crafts reaction.Org. Lett.200810142955295810.1021/ol800927w 18572948
    [Google Scholar]
  73. AlbrechtŁ. RansborgL.K. GschwendB. JørgensenK.A. An organocatalytic approach to 2-hydroxyalkyl- and 2-aminoalkyl furanes.J. Am. Chem. Soc.201013250178861789310.1021/ja108247t 21128688
    [Google Scholar]
  74. RauniyarV. WangZ.J. BurksH.E. TosteF.D. Enantioselective synthesis of highly substituted furans by a copper(II)-catalyzed cycloisomerization-indole addition reaction.J. Am. Chem. Soc.2011133228486848910.1021/ja202959n 21561153
    [Google Scholar]
  75. HaraP. TurcuM.C. SundellR. ToşaM. PaizsC. IrimieF.D. KanervaL.T. Lipase-catalyzed asymmetric acylation in the chemoenzymatic synthesis of furan-based alcohols.Tetrahedron Asymmetry2013242-314215010.1016/j.tetasy.2012.11.016
    [Google Scholar]
  76. LiJ.L. YueC.Z. ChenP.Q. XiaoY.C. ChenY.C. Remote enantioselective Friedel-Crafts alkylations of furans through HOMO activation.Angew. Chem. Int. Ed.201453215449545210.1002/anie.201403082 24756964
    [Google Scholar]
  77. KatoriA. SashiharaY. IwamotoA. KojimaS. YamamotoY. Highly diastereoselective synthesis of chiral furans with a quaternary carbon substituent at the 2-position using 8-phenylmenthol as the chiral auxiliary.Chem. Lett.201443676676810.1246/cl.140052
    [Google Scholar]
  78. VerrierC. MelchiorreP. Diastereodivergent organocatalysis for the asymmetric synthesis of chiral annulated furans.Chem. Sci.2015674242424610.1039/C5SC01052G 29218190
    [Google Scholar]
  79. KondohA. OtaY. KomuroT. EgawaF. KanomataK. TeradaM. Chiral Brønsted acid-catalyzed enantioselective Friedel-Crafts reaction of 2-methoxyfuran with aliphatic ketimines generated in situ.Chem. Sci.2016721057106210.1039/C5SC03175C 29862000
    [Google Scholar]
  80. HatanoM. OkamotoH. KawakamiT. TohK. NakatsujiH. SakakuraA. IshiharaK. Enantioselective aza-Friedel-Crafts reaction of furan with α-ketimino esters induced by a conjugated double hydrogen bond network of chiral bis(phosphoric acid) catalysts.Chem. Sci.20189306361636710.1039/C8SC02290A 30288231
    [Google Scholar]
  81. PoulsenP.H. LiY. LauridsenV.H. JørgensenD.K.B. PalazzoT.A. MeazzaM. JørgensenK.A. Organocatalytic formation of chiral trisubstituted allenes and chiral furan derivatives.Angew. Chem. Int. Ed.20185733106611066510.1002/anie.201806238 29917329
    [Google Scholar]
  82. SohailM. TanakaF. Dynamic kinetic asymmetric transformation of racemic diastereomers: Diastereo‐ and enantioconvergent michael-henry reactions to afford spirooxindoles bearing furan‐fused rings.Angew. Chem. Int. Ed.20216039212562126010.1002/anie.202108734 34236757
    [Google Scholar]
  83. ChoY.S. KimS.T. RyuD.H. Enantioselective friedel-crafts alkylation of furans with o -Quinone methide using a chiral oxazaborolidinium ion catalyst.Org. Lett.20222481732173610.1021/acs.orglett.2c00404 35195002
    [Google Scholar]
  84. ChenZ.Y. HuP. WangX.R. XuK.L. WangY.H. TianY.P. ZhouY. LiuX.L. Design and synthesis of rigid‐featured tertiary amine‐derived C 2 ‐Symmetric chiral furan‐ N, N′ ‐dioxide ligands.Eur. J. Org. Chem.20232642e20230076410.1002/ejoc.202300764
    [Google Scholar]
  85. WangJ.Y. GaoC.H. MaC. WuX.Y. NiS.F. TanW. ShiF. Design and catalytic asymmetric synthesis of furan‐indole compounds bearing both axial and central chirality.Angew. Chem. Int. Ed.2024638e20231645410.1002/anie.202316454 38155472
    [Google Scholar]
  86. GonzalezF. LesageS. PerlinA.S. Catalysis by mercuric ion of reactions of glycals with water.Carbohydr. Res.197542226727410.1016/S0008‑6215(00)84269‑X
    [Google Scholar]
  87. HayashiM. KawabataH. YamadaK. Metal-catalyzed transformation of D-glucal to optically active furan diol.Chem. Commun.19991196596610.1039/a902510c
    [Google Scholar]
  88. BabuS.B. BalasubramanianK.K. A facile synthesis of a chiral furan diol from glycals catalyzed by indium trichloride.J. Org. Chem.200065134198419910.1021/jo000074t 10866643
    [Google Scholar]
  89. AgarwalA. RaniS. VankarY.D. Protic acid (HClO4 supported on silica gel)-mediated synthesis of 2,3-unsaturated-O-glucosides and a chiral furan diol from 2,3-glycals.J. Org. Chem.200469186137614010.1021/jo049415j 15373503
    [Google Scholar]
  90. HouX.L. CheungH.Y. HonT.Y. KwanP.L. LoT.H. TongS.Y. WongH.N.C. Regioselective syntheses of substituted furans.Tetrahedron199854101955202010.1016/S0040‑4020(97)10303‑9
    [Google Scholar]
  91. EndersD. JandeleitB. Iron-mediated complete chirality transfer in allylic substitutions. Efficient synthesis of (-)-(S)-myoporone.Synthesis19941994121327133010.1055/s‑1994‑25689
    [Google Scholar]
  92. BotoA. HernándezD. HernándezR. Short and efficient synthesis of chiral furyl carbinols from carbohydrates.Org. Lett.2007991721172410.1021/ol070412d 17397175
    [Google Scholar]
  93. BartoliG. Fernández-BolañosJ.G. Di AntonioG. FogliaG. GiuliS. GunnellaR. MancinelliM. MarcantoniE. PaolettiM. SiO2-supported CeCl3.7H2O-NaI Lewis acid promoter: Investigation into the Garcia Gonzalez reaction in solvent-free conditions.J. Org. Chem.200772166029603610.1021/jo070384c 17629331
    [Google Scholar]
  94. SaquibM. HusainI. KumarB. ShawA.K. Facile synthesis of enantiomerically pure 2- and 2,3-disubstituted furans catalysed by mixed Lewis acids: an easy route to 3-iodofurans and 3-(hydroxymethyl)furans.Chemistry200915246041604910.1002/chem.200900007 19418522
    [Google Scholar]
  95. CordonnierR. Van NhienA.N. SorianoE. Marco-ContellesJ. PostelD. Experimental and computational investigation of the unexpected formation of β-substituted polyoxygenated furans from conveniently functionalized carbohydrates.Tetrahedron201066373674210.1016/j.tet.2009.11.051
    [Google Scholar]
  96. ThirupathiB. ReddyP.P. MohapatraD.K. A carbohydrate-based total syntheses of (+)-pyrenolide D and (-)-4-epi-pyrenolide D.J. Org. Chem.201176239835984010.1021/jo201570h 22017288
    [Google Scholar]
  97. ButkevichA.N. MeerpoelL. StansfieldI. AngibaudP. CorbuA. CossyJ. Tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization between vinyl ether boronates and vinyl halides: a concise approach to polysubstituted furans.Org. Lett.201315153840384310.1021/ol4014574 23855589
    [Google Scholar]
  98. MalK. SharmaA. DasI. Gold(III) chloride catalyzed synthesis of chiral substituted 3-formyl furans from carbohydrates: application in the synthesis of 1,5-dicarbonyl derivatives and furo[3,2-c]pyridine.Chemistry20142037119321194510.1002/chem.201402286 25077819
    [Google Scholar]
  99. MalK. KaurA. DasI. Chiral substituted 3‐formylfurans from carbohydrates: An expedient route via N‐Bromosuccinimide (NBS)‐Mediated electrophilic cyclization.Asian J. Org. Chem.20154101132114310.1002/ajoc.201500272
    [Google Scholar]
  100. MalK. DasI. Base induced chiral substituted furans and Imidazoles from Carbohydrate-Derived 2-Haloenones.J. Org. Chem.201681393294510.1021/acs.joc.5b02500 26745207
    [Google Scholar]
  101. LambuM.R. JudehZ.M.A. Efficient, one-step, cascade synthesis of densely functionalized furans from unprotected carbohydrates in basic aqueous media.Green Chem.201921482182910.1039/C8GC03509A
    [Google Scholar]
  102. RonaghiN. FialhoD.M. JonesC.W. FranceS. Conversion of unprotected aldose sugars to polyhydroxyalkyl and C-glycosyl furans via zirconium catalysis.J. Org. Chem.20208523153371534610.1021/acs.joc.0c02176 33226804
    [Google Scholar]
/content/journals/coc/10.2174/0113852728357538250115091300
Loading
/content/journals/coc/10.2174/0113852728357538250115091300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test