Skip to content
2000
Volume 29, Issue 18
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Millions of people worldwide suffer from Alzheimer's disease (AD), a progressive neurological illness whose incidence is rising as the population ages. Since existing medicines are ineffective and mainly treat symptoms rather than delaying the course of the disease, recent research conducted in 2023 and 2024 highlights the urgent need for novel therapeutic methods. Because of its adaptable chemical structure, which enables it to interact with important enzymes and receptors involved in AD disease, the pyrazole moiety has garnered significant attention in Alzheimer's research. The ability of recent developments in the synthesis of pyrazole derivatives to inhibit the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are linked to cognitive impairment in AD, has shown promise. These novel compounds may be used as multi-target therapies for AD because several of them also have anti-inflammatory, anti-amyloid, and antioxidant properties. These pyrazole-based substances have demonstrated neuroprotective benefits in preclinical studies by lowering the generation of amyloid-beta plaque and shielding neurons from oxidative stress, two important processes in the development of AD. Pyrazole-based drugs may prove to be a useful addition to AD therapy choices as researchers work to improve these derivatives for increased bioavailability and fewer adverse effects. These advancements give patients hope and move the quest for disease-modifying medications closer to more potent treatments that target the intricate pathways underlying Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728360592250214110907
2025-03-11
2025-09-27
Loading full text...

Full text loading...

References

  1. LiuP.P. XieY. MengX.Y. KangJ.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease.Signal Transduct. Target. Ther.2019412910.1038/s41392‑019‑0063‑8 31637009
    [Google Scholar]
  2. WangH. ZhangH. Reconsideration of anticholinesterase therapeutic strategies against Alzheimer’s disease.ACS Chem. Neurosci.201910285286210.1021/acschemneuro.8b00391 30521323
    [Google Scholar]
  3. MastersC.L. BatemanR. BlennowK. RoweC.C. SperlingR.A. CummingsJ.L. Alzheimer’s disease.Nat. Rev. Dis. Primers2015111505610.1038/nrdp.2015.56 27188934
    [Google Scholar]
  4. dos Santos PicancoL.C. OzelaP.F. de Fatima de Brito BritoM. PinheiroA.A. PadilhaE.C. BragaF.S. de Paula da SilvaC.H.T. dos SantosC.B.R. RosaJ.M.C. da Silva Hage-MelimL.I. RosaJ. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment.Curr. Med. Chem.201825263141315910.2174/0929867323666161213101126 30191777
    [Google Scholar]
  5. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  6. CahillS. WHO’s global action plan on the public health response to dementia: Some challenges and opportunities.Aging Ment. Health202024219719910.1080/13607863.2018.1544213 30600688
    [Google Scholar]
  7. WangJ.T. XuG. RenR.J. WangY. TangR. HuangQ. LiJ.P. Al-NusaifM. LeW.D. WangG. The impacts of health insurance and resource on the burden of alzheimer’s disease and related dementias in the world population.Alzheimers Dement.202319396797910.1002/alz.12730 35820032
    [Google Scholar]
  8. RahmanM.R. IslamT. ZamanT. ShahjamanM. KarimM.R. HuqF. QuinnJ.M.W. HolsingerR.M.D. GovE. MoniM.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in alzheimer’s disease: Insights from a systems biomedicine perspective.Genomics202011221290129910.1016/j.ygeno.2019.07.018 31377428
    [Google Scholar]
  9. GlennerG.G. WongC.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.1984120388589010.1016/S0006‑291X(84)80190‑4 6375662
    [Google Scholar]
  10. MastersC.L. SimmsG. WeinmanN.A. MulthaupG. McDonaldB.L. BeyreutherK. Amyloid plaque core protein in alzheimer disease and down syndrome.Proc. Natl. Acad. Sci. USA198582124245424910.1073/pnas.82.12.4245 3159021
    [Google Scholar]
  11. GoedertM. SpillantiniM.G. CrowtherR.A. Tau proteins and neurofibrillary degeneration.Brain Pathol.19911427928610.1111/j.1750‑3639.1991.tb00671.x 1669718
    [Google Scholar]
  12. De LeonM.J. GeorgeA.E. GolombJ. TarshishC. ConvitA. KlugerA. De SantiS. Mc RaeT. FerrisS.H. ReisbergB. InceC. RusinekH. BobinskiM. QuinnB. MillerD.C. WisniewskiH.M. Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease.Neurobiol. Aging199718111110.1016/S0197‑4580(96)00213‑8 8983027
    [Google Scholar]
  13. ParkerT.D. CashD.M. LaneC.A.S. LuK. MaloneI.B. NicholasJ.M. JamesS.N. KeshavanA. Murray-SmithH. WongA. BuchananS.M. KeussS.E. SudreC.H. ModatM. ThomasD.L. CrutchS.J. RichardsM. FoxN.C. SchottJ.M. Hippocampal subfield volumes and pre-clinical Alzheimer’s disease in 408 cognitively normal adults born in 1946.PLoS One20191410e022403010.1371/journal.pone.0224030 31622410
    [Google Scholar]
  14. SelkoeD.J. The molecular pathology of alzheimer’s disease.Neuron19916448749810.1016/0896‑6273(91)90052‑2 1673054
    [Google Scholar]
  15. KangJ. LemaireH.G. UnterbeckA. SalbaumJ.M. MastersC.L. GrzeschikK.H. MulthaupG. BeyreutherK. Müller-HillB. The precursor of alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.Nature1987325610673373610.1038/325733a0 2881207
    [Google Scholar]
  16. GunawardenaS. YangG. GoldsteinL.S.B. Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo.Hum. Mol. Genet.201322193828384310.1093/hmg/ddt237 23710041
    [Google Scholar]
  17. KolataG. Down syndrome--alzheimer’s linked.Sci.198523047301152115310.1126/science.2933807 2933807
    [Google Scholar]
  18. HuangL.K. KuanY.C. LinH.W. HuC.J. Clinical trials of new drugs for alzheimer disease: A 2020-2023 update.J. Biomed. Sci.20233018310.1186/s12929‑023‑00976‑6 37784171
    [Google Scholar]
  19. KrasJ. SadowskiM. ZawadzińskaK. NagatskyR. WolińskiP. KulaK. ŁapczukA. Thermal [3+ 2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles.Sci. Radices.20232324726710.58332/scirad2023v2i3a03
    [Google Scholar]
  20. ZhilitskayaL.V. YaroshN.O. The synthesis of salts of five-membered heterocyclic compounds based on N-containing cations/anions (microreview).Chem. Heterocycl. Compd.2024605-623023210.1007/s10593‑024‑03324‑0
    [Google Scholar]
  21. LelyukhM. PaliyA. ZhukrovskaM. KalytovskaM. ChabanI. ShelepetenL. ChabanT. A review on synthetic approaches for obtaining and chemical modification of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole based heterocyclic compounds.Curr. Chem. Lett.202413473775210.5267/j.ccl.2024.3.007
    [Google Scholar]
  22. SadowskiM. KulaK. Unexpected course of reaction between (1E,3E)-1,4-Dinitro-1,3-butadiene and N-Methyl azomethine Ylide-A comprehensive experimental and quantum-chemical study.Mol.20242921506610.3390/molecules29215066 39519709
    [Google Scholar]
  23. SadowskiM. DreslerE. ZawadzińskaK. WróblewskaA. JasińskiR. Syn-Propanethial S-Oxide as an available natural building block for the preparation of nitro-functionalized, sulfur-containing five-membered heterocycles: An MEDT study.Mol.20242920489210.3390/molecules29204892 39459260
    [Google Scholar]
  24. ZawadzińskaK. GostyńskiB. Nitrosubstituted analogs of isoxazolines and isoxazolidines: A surprising estimation of their biological activity via molecular docking.Sci. Radices202321254610.58332/scirad2023v2i1a02
    [Google Scholar]
  25. ElattarK.M. FaddaA.A. Chemistry of antipyrine.Synth. Commun.201646191567159410.1080/00397911.2016.1211703
    [Google Scholar]
  26. Abu-ZaiedM.A. ElgemeieG.H. Novel synthesis of new pyrazole thioglycosides as pyrazomycin analogues.Nucleosides Nucleotides Nucleic Acids201938537438910.1080/15257770.2018.1554220 30689496
    [Google Scholar]
  27. SoininenH. WestC. RobbinsJ. NiculescuL. Long-term efficacy and safety of celecoxib in alzheimer’s disease.Dement. Geriatr. Cogn. Disord.200723182110.1159/000096588 17068392
    [Google Scholar]
  28. LimJ.W. KimS.K. ChoiS.Y. KimD.H. GadheC.G. LeeH.N. KimH.J. KimJ. ChoS.J. HwangH. SeongJ. JeongK.S. LeeJ.Y. LimS.M. LeeJ.W. PaeA.N. Identification of crizotinib derivatives as potent SHIP2 inhibitors for the treatment of alzheimer’s disease.Eur. J. Med. Chem.201815740542210.1016/j.ejmech.2018.07.071 30103190
    [Google Scholar]
  29. OnoaG.B. MorenoV. Study of the modifications caused by cisplatin, transplatin, and Pd(II) and Pt(II) mepirizole derivatives on pBR322 DNA by atomic force microscopy.Int. J. Pharm.20022451-2556510.1016/S0378‑5173(02)00332‑0 12270242
    [Google Scholar]
  30. FizaziK. ShoreN. TammelaT.L. UlysA. VjatersE. PolyakovS. JievaltasM. LuzM. AlekseevB. KussI. KappelerC. SnapirA. SarapohjaT. SmithM.R. Darolutamide in nonmetastatic, castration-resistant prostate cancer.N. Engl. J. Med.2019380131235124610.1056/NEJMoa1815671 30763142
    [Google Scholar]
  31. ChenY. TortoriciM.A. GarrettM. HeeB. KlamerusK.J. PithavalaY.K. Clinical pharmacology of axitinib.Clin. Pharmacokinet.201352971372510.1007/s40262‑013‑0068‑3 23677771
    [Google Scholar]
  32. HongD.S. BauerT.M. LeeJ.J. DowlatiA. BroseM.S. FaragoA.F. TaylorM. ShawA.T. MontezS. Meric-BernstamF. SmithS. TuchB.B. EbataK. CruickshankS. CoxM.C. BurrisH.A.III DoebeleR.C. Larotrectinib in adult patients with solid tumours: A multi-centre, open-label, phase I dose-escalation study.Ann. Oncol.201930232533110.1093/annonc/mdy539 30624546
    [Google Scholar]
  33. DalvieD. XiangC. KangP. ZhouS. Interspecies variation in the metabolism of zoniporide by aldehyde oxidase.Xenobiotica201343539940810.3109/00498254.2012.727499 23046389
    [Google Scholar]
  34. SchirrisT.J.J. RitschelT. RenkemaG.H. WillemsP.H.G.M. SmeitinkJ.A.M. RusselF.G.M. Mitochondrial ADP/ATP exchange inhibition: A novel off-target mechanism underlying ibipinabant-induced myotoxicity.Sci. Rep.2015511453310.1038/srep14533
    [Google Scholar]
  35. YoshinoH. Edaravone for the treatment of amyotrophic lateral sclerosis.Expert Rev. Neurother.201919318519310.1080/14737175.2019.1581610 30810406
    [Google Scholar]
  36. LhoD. ShinH. ParkJ. Simultaneous determination of morazone and phenmetrazine in rat plasma and urine using an on-column injection technique with fused-silica capillary column gas chromatography.J. Anal. Toxicol.199014211311510.1093/jat/14.2.113 1969972
    [Google Scholar]
  37. HarrasM.F. SabourR. AlkamaliO.M. Discovery of new non-acidic lonazolac analogues with COX-2 selectivity as potent anti-inflammatory agents.MedChemComm201910101775178810.1039/C9MD00228F 31803395
    [Google Scholar]
  38. ChanK.H. HsuM.C. TsengC.Y. ChuW.L. Famprofazone use can be misinterpreted as methamphetamine abuse.J. Anal. Toxicol.201034634735310.1093/jat/34.6.347 20663288
    [Google Scholar]
  39. LutzM. Metamizole (dipyrone) and the liver: A review of the literature.J. Clin. Pharmacol.201959111433144210.1002/jcph.1512 31433499
    [Google Scholar]
  40. YangD. WangR. JinG. ZhangB. ZhangL. LuY. DuG. Structural and computational insights into cocrystal interactions: A case on cocrystals of antipyrine and aminophenazone.Cryst. Growth Des.201919116175618310.1021/acs.cgd.9b00591
    [Google Scholar]
  41. TsutomuK. ToshitakaN. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole[difenamizole] on a conditioned avoidance response.Neuropharmacology1978174-524925610.1016/0028‑3908(78)90108‑9 652137
    [Google Scholar]
  42. BaizmanE.R. EzrinA.M. FerrariR.A. LuttingerD. Pharmacologic profile of fezolamine fumarate: A nontricyclic antidepressant in animal models.J. Pharmacol. Exp. Ther.198724314054 3668867
    [Google Scholar]
  43. GrodinE.N. BujarskiS. TownsB. BurnetteE. NietoS. LimA. LinJ. MiottoK. GillisA. IrwinM.R. EvansC. RayL.A. Ibudilast, a neuroimmune modulator, reduces heavy drinking and alcohol cue-elicited neural activation: A randomized trial.Transl. Psychiatry202111135510.1038/s41398‑021‑01478‑5 34120149
    [Google Scholar]
  44. AggarwalR. SinghG. KaushikP. KaushikD. PaliwalD. KumarA. Molecular docking design and one-pot expeditious synthesis of novel 2,5-diarylpyrazolo[1,5-a]pyrimidin-7-amines as anti-inflammatory agents.Eur. J. Med. Chem.201510132633310.1016/j.ejmech.2015.06.011 26160113
    [Google Scholar]
  45. AggarwalS. PaliwalD. KaushikD. GuptaG.K. KumarA. Synthesis, antimalarial evaluation and SAR study of some 1, 3, 5-trisubstituted pyrazoline derivatives.Lett. Org. Chem.2019161080781710.2174/1570178616666190212145754
    [Google Scholar]
  46. MortadaS. KarrouchiK. HamzaE.H. OulmidiA. BhatM.A. MamadH. AalilouY. RadiS. AnsarM. MasrarA. FaouziM.E.A. Synthesis, structural characterizations, in vitro biological evaluation and computational investigations of pyrazole derivatives as potential antidiabetic and antioxidant agents.Sci. Rep.2024141131210.1038/s41598‑024‑51290‑6 38225280
    [Google Scholar]
  47. ZhangY. WuC. ZhangN. FanR. YeY. XuJ. Recent advances in the development of pyrazole derivatives as anticancer agents.Int. J. Mol. Sci.202324161272410.3390/ijms241612724 37628906
    [Google Scholar]
  48. VermaR. VermaS.K. RakeshK.P. GirishY.R. AshrafizadehM. KumarK.S.S. RangappaK.S. Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation.Eur. J. Med. Chem.202121211313410.1016/j.ejmech.2020.113134 33395624
    [Google Scholar]
  49. AggarwalS. PaliwalD. KaushikD. GuptaG.K. KumarA. Pyrazole Schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study.Comb. Chem. High Throughput Screen.201821319420310.2174/1386207321666180213092911 29436997
    [Google Scholar]
  50. TitiA. TouzaniR. MoliterniA. HaddaT.B. MessaliM. BenabbesR. BerredjemM. BouzinaA. Al-ZaqriN. TalebM. ZarroukA. WaradI. Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles.J. Mol. Struct.2022126413315610.1016/j.molstruc.2022.133156
    [Google Scholar]
  51. XuZ. GaoC. RenQ.C. SongX.F. FengL.S. LvZ.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents.Eur. J. Med. Chem.201713942944010.1016/j.ejmech.2017.07.059 28818767
    [Google Scholar]
  52. KaratiD. MahadikK.R. KumarD. Pyrazole scaffolds: Centrality in anti-inflammatory and antiviral drug design.Med. Chem.202218101060107210.2174/1573406418666220410181827 35410619
    [Google Scholar]
  53. GaoM. QuK. ZhangW. WangX. Pharmacological activity of pyrazole derivatives as an anticonvulsant for benefit against epilepsy.Neuroimmunomodulation2021282909810.1159/000513297 33774633
    [Google Scholar]
  54. KumarH. BansalK.K. GoyalA. Synthetic methods and antimicrobial perspective of pyrazole derivatives: An insight.Antiinfect. Agents202018320722310.2174/2211352517666191022103831
    [Google Scholar]
  55. LeT.G. KunduA. GhoshalA. NguyenN.H. PrestonS. JiaoY. RuanB. XueL. HuangF. KeiserJ. HofmannA. ChangB.C.H. Garcia-BustosJ. WellsT.N.C. PalmerM.J. JabbarA. GasserR.B. BaellJ.B. Novel 1-methyl-1 h-pyrazole-5-carboxamide derivatives with potent anthelmintic activity.J. Med. Chem.20196273367338010.1021/acs.jmedchem.8b01790 30875218
    [Google Scholar]
  56. YouH. SuX. SuG. Novel thiazole-pyrazolone hybrids as potent ACE inhibitors and their cardioprotective effect on isoproterenol‐induced myocardial infarction.Arch. Pharm.202035312200014010.1002/ardp.202000140 32841430
    [Google Scholar]
  57. NozariM. AddisonA.W. ReevesG.D.T. ZellerM. JasinskiJ.P. KaurM. GilbertJ.G. HamiltonC.R. PopovitchJ.M. WolfL.M. CristL.E. BastidaN. New pyrazole‐and benzimidazole‐derived ligand systems.J. Heterocycl. Chem.20185561291130710.1002/jhet.3155
    [Google Scholar]
  58. BetckeI. GötzingerA.C. KornetM.M. MüllerT.J.J. Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps.Beilstein J. Org. Chem.20242012024207710.3762/bjoc.20.178 39161713
    [Google Scholar]
  59. SchmittD.C. TaylorA.P. FlickA.C. KyneR.E.Jr Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis.Org. Lett.20151761405140810.1021/acs.orglett.5b00266 25719568
    [Google Scholar]
  60. ChenH. WuL-L. GeY-C. HeT. ZhangL. FuX.L. FuH-Y. LiR.X. An efficient one-pot synthesis of 3, 5-disubstituted 1H-pyrazoles.Synthesis201244101577158310.1055/s‑0031‑1290772
    [Google Scholar]
  61. PandaN. JenaA.K. Fe-catalyzed one-pot synthesis of 1,3-di- and 1,3,5-trisubstituted pyrazoles from hydrazones and vicinal diols.J. Org. Chem.201277209401940610.1021/jo301770k 22998610
    [Google Scholar]
  62. KulaK. ŁapczukA. SadowskiM. KrasJ. ZawadzińskaK. DemchukO.M. GauravG.K. WróblewskaA. JasińskiR. On the question of the formation of nitro-functionalized 2, 4-pyrazole analogs on the basis of nitrylimine molecular systems and 3, 3, 3-trichloro-1-nitroprop-1-ene.Mol.20222723840910.3390/molecules27238409 36500503
    [Google Scholar]
  63. AhamadS. PatidarR.K. KumarA. KantR. MohananK. Three‐component synthesis of 3,4‐disubstituted pyrazoles using diazosulfone as a diazomethane surrogate.ChemistrySelect2017236119951199810.1002/slct.201702384
    [Google Scholar]
  64. WenJ.J. TangH.T. XiongK. DingZ.C. ZhanZ.P. Synthesis of polysubstituted pyrazoles by a platinum-catalyzed sigmatropic rearrangement/cyclization cascade.Org. Lett.201416225940594310.1021/ol502968c 25383747
    [Google Scholar]
  65. CostaR.F. TuronesL.C. CavalcanteK.V.N. Rosa JúniorI.A. XavierC.H. RossetoL.P. NapolitanoH.B. CastroP.F.S. NetoM.L.F. GalvãoG.M. MenegattiR. PedrinoG.R. CostaE.A. MartinsJ.L.R. FajemiroyeJ.O. Heterocyclic compounds: Pharmacology of pyrazole analogs from rational structural considerations.Front. Pharmacol.20211266672510.3389/fphar.2021.666725 34040529
    [Google Scholar]
  66. KumarN. GuptaP. BansalS. Progress and development of carbazole scaffold based as potential anti-alzheimer agents using MTDL approach.Lett. Drug Des. Discov.202219121049106710.2174/1570180819666220314144219
    [Google Scholar]
  67. TigrerosA. PortillaJ. Recent progress in chemosensors based on pyrazole derivatives.RSC Advances20201033196931971210.1039/D0RA02394A 35515469
    [Google Scholar]
  68. TuronesL.C. MartinsA.N. MoreiraL.K.S. FajemiroyeJ.O. CostaE.A. Development of pyrazole derivatives in the management of inflammation.Fundam. Clin. Pharmacol.202135221723410.1111/fcp.12629 33171533
    [Google Scholar]
  69. PriyaD. GopinathP. DhivyaL.S. VijaybabuA. HarithaM. PalaniappanS. KathiravanM.K. Structural insights into pyrazoles as agents against anti‐inflammatory and related disorders.ChemistrySelect202275e20210442910.1002/slct.202104429
    [Google Scholar]
  70. MyersM. RichmondR.C. OakeshottJ.G. On the origins of esterases.Mol. Biol. Evol.198852113119 3163407
    [Google Scholar]
  71. JangiS.R.H. AkhondM. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters.Process Biochem.202212013815510.1016/j.procbio.2022.06.004
    [Google Scholar]
  72. HarelM. SchalkI. Ehret-SabatierL. BouetF. GoeldnerM. HirthC. AxelsenP.H. SilmanI. SussmanJ.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase.Proc. Natl. Acad. Sci. USA199390199031903510.1073/pnas.90.19.9031 8415649
    [Google Scholar]
  73. SussmanJ.L. HarelM. FrolowF. OefnerC. GoldmanA. TokerL. SilmanI. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein.Sci.1991253502287287910.1126/science.1678899 1678899
    [Google Scholar]
  74. NicoletY. LockridgeO. MassonP. Fontecilla-CampsJ.C. NachonF. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products.J. Biol. Chem.200327842411414114710.1074/jbc.M210241200 12869558
    [Google Scholar]
  75. AbdelwahabH.E. IbrahimH.Z. OmarA.Z. Design, synthesis, DFT, molecular docking, and biological evalution of pyrazole derivatives as potent acetyl cholinestrease inhibitors.J. Mol. Struct.2023127113413710.1016/j.molstruc.2022.134137
    [Google Scholar]
  76. MassonP. LegrandP. BartelsC.F. FromentM.T. SchopferL.M. LockridgeO. Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase.Biochem.19973682266227710.1021/bi962484a 9047329
    [Google Scholar]
  77. NachonF. Ehret-SabatierL. LoewD. ColasC. van DorsselaerA. GoeldnerM. Trp82 and Tyr332 are involved in two quaternary ammonium binding domains of human butyrylcholinesterase as revealed by photoaffinity labeling with [3H]DDF.Biochemi.19983729105071051310.1021/bi980536l 9671522
    [Google Scholar]
  78. XuY. ColletierJ.P. WeikM. JiangH. MoultJ. SilmanI. SussmanJ.L. Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics.Biophys. J.20089552500251110.1529/biophysj.108.129601 18502801
    [Google Scholar]
  79. JohnsonG. MooreS. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design.Curr. Pharm. Des.200612221722510.2174/138161206775193127 16454738
    [Google Scholar]
  80. CetinA. TürkanF. BursalE. MurahariM. Synthesis, characterization, enzyme inhibitory activity, and molecular docking analysis of a new series of thiophene-based heterocyclic compounds.Russ. J. Org. Chem.202157459860410.1134/S107042802104014X
    [Google Scholar]
  81. TurkanF. CetinA. TaslimiP. KaramanM. Gulçinİ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors.Bioorg. Chem.20198642042710.1016/j.bioorg.2019.02.013 30769267
    [Google Scholar]
  82. ShaikhS. DhavanP. PavaleG. RamanaM.M.V. JadhavB.L. Design, synthesis and evaluation of pyrazole bearing α-aminophosphonate derivatives as potential acetylcholinesterase inhibitors against alzheimer’s disease.Bioorg. Chem.20209610358910.1016/j.bioorg.2020.103589 31978679
    [Google Scholar]
  83. ReddyP.H. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in alzheimer’s disease: Implications for synaptic dysfunction and neuronal damage.Biochim. Biophys. Acta Mol. Basis Dis.20131832121913192110.1016/j.bbadis.2013.06.012 23816568
    [Google Scholar]
  84. DaggupatiT. PamanjiR. YeguvapalliS. In silico screening and identification of potential GSK3β inhibitors.J. Recept. Signal Transduct. Res.201838427928910.1080/10799893.2018.1478854 29947280
    [Google Scholar]
  85. Eldar-FinkelmanH. Glycogen synthase kinase 3: An emerging therapeutic target.Trends Mol. Med.20028312613210.1016/S1471‑4914(01)02266‑3 11879773
    [Google Scholar]
  86. Llorens-MartínM. JuradoJ. HernándezF. ÁvilaJ. GSK-3β, a pivotal kinase in alzheimer disease.Front. Mol. Neurosci.2014746 24904272
    [Google Scholar]
  87. LimN.K.H. HungL.W. PangT.Y. McleanC.A. LiddellJ.R. HiltonJ.B. LiQ.X. WhiteA.R. HannanA.J. CrouchP.J. Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the huntington’s disease affected brain.Hum. Mol. Genet.201423154051406310.1093/hmg/ddu119 24634145
    [Google Scholar]
  88. LiD.W. LiuZ.Q. ChenW. YaoM. LiG.R. Association of glycogen synthase kinase-3β with parkinson’s disease (Review).Mol. Med. Rep.2014962043205010.3892/mmr.2014.2080 24681994
    [Google Scholar]
  89. YanN. ShiX.L. TangL.Q. WangD.F. LiX. LiuC. LiuZ.P. Synthesis and biological evaluation of thieno[3,2- c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for alzheimer’s disease.J. Enzyme Inhib. Med. Chem.20223711724173610.1080/14756366.2022.2086867 35698879
    [Google Scholar]
  90. ChiouaM. SamadiA. SorianoE. LozachO. MeijerL. Marco-ContellesJ. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors.Bioorg. Med. Chem. Lett.200919164566456910.1016/j.bmcl.2009.06.099 19615897
    [Google Scholar]
  91. YeQ. ShenY. ZhouY. LvD. GaoJ. LiJ. HuY. Design, synthesis and evaluation of 7-azaindazolyl-indolyl-maleimides as glycogen synthase kinase-3β (GSK-3β) inhibitors.Eur. J. Med. Chem.20136836137110.1016/j.ejmech.2013.07.046 23994329
    [Google Scholar]
  92. SaidU.Z. SaadaH.N. Abd-AllaM.S. ElsayedM.E. AminA.M. Hesperidin attenuates brain biochemical changes of irradiated rats.Int. J. Radiat. Biol.201288861361810.3109/09553002.2012.694008 22671307
    [Google Scholar]
  93. BodkinJ.A. CohenB.M. SalomonM.S. CannonS. ZornbergG.L. ColeJ.O. Treatment of negative symptoms in schizophrenia and schizoaffective disorder by selegiline augmentation of antipsychotic medication. A pilot study examining the role of dopamine.J. Nerv. Ment. Dis.1996184529530110.1097/00005053‑199605000‑00005 8627275
    [Google Scholar]
  94. CohenG. KeslerN. Monoamine oxidase and mitochondrial respiration.J. Neurochem.19997362310231510.1046/j.1471‑4159.1999.0732310.x 10582588
    [Google Scholar]
  95. CaiZ. Monoamine oxidase inhibitors: Promising therapeutic agents for alzheimer’s disease (Review).Mol. Med. Rep.2014951533154110.3892/mmr.2014.2040 24626484
    [Google Scholar]
  96. ThomasT. Monoamine oxidase-B inhibitors in the treatment of alzheimers disease.Neurobiol. Aging200021234334810.1016/S0197‑4580(00)00100‑7 10867219
    [Google Scholar]
  97. YoudimM.B.H. RiedererP. The relevance of glial monoamine oxidase-B and polyamines to the action of selegiline in Parkinson’s disease.Mov. Disord.19938S1S8S1310.1002/mds.870080504 8302308
    [Google Scholar]
  98. CarterS.F. SchöllM. AlmkvistO. WallA. EnglerH. LångströmB. NordbergA. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-pittsburgh compound B and 18F-FDG.J. Nucl. Med.2012531374610.2967/jnumed.110.087031 22213821
    [Google Scholar]
  99. LatherV. Synthesis, docking and evaluation of novel pyr-azole carboxamide derivatives as mul-tifunctional anti-Alzheimer’s agents.J Med Chem Toxicol2017211810.15436/2575‑808X.17.1356
    [Google Scholar]
  100. TokF. Koçyiğit-KaymakçıoğluB. SağlıkB.N. LeventS. ÖzkayY. KaplancıklıZ.A. Synthesis and biological evaluation of new pyrazolone schiff bases as monoamine oxidase and cholinesterase inhibitors.Bioorg. Chem.201984415010.1016/j.bioorg.2018.11.016 30481645
    [Google Scholar]
  101. Acar ÇevikU. OsmaniyeD. SağlikB.N. LeventS. Kaya ÇavuşoğluB. ÖzkayY. KaplancikliZ.A. Synthesis and evaluation of new pyrazoline‐thiazole derivatives as monoamine oxidase inhibitors.J. Heterocycl. Chem.201956113000300710.1002/jhet.3694
    [Google Scholar]
  102. KumarV. SahaA. RoyK. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in alzheimer’s disease.Comput. Biol. Chem.20208810735510.1016/j.compbiolchem.2020.107355 32801088
    [Google Scholar]
  103. ChenR. LiX. ChenH. WangK. XueT. MiJ. BanY. ZhuG. ZhouY. DongW. TangL. SangZ. Development of the “hidden” multi-target-directed ligands by AChE/BuChE for the treatment of alzheimer’s disease.Eur. J. Med. Chem.202325111525310.1016/j.ejmech.2023.115253 36921526
    [Google Scholar]
  104. Fernández-BolañosJ.G. LópezÓ. Butyrylcholinesterase inhibitors as potential anti-alzheimer’s agents: An updated patent review (2018-present).Expert Opin. Ther. Pat.202232891393210.1080/13543776.2022.2083956 35623095
    [Google Scholar]
  105. JiangX. ZhangZ. ZuoJ. WuC. ZhaL. XuY. WangS. ShiJ. LiuX.H. ZhangJ. TangW. Novel cannabidiol-carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against alzheimer’s disease.Eur. J. Med. Chem.202122311373510.1016/j.ejmech.2021.113735 34371367
    [Google Scholar]
  106. SinghR. KaurH. GuptaP. 1, 2, 3-triazole based conjugates-potential cholinesterase (AChE and BuChE) and BACE inhibitors for treatment of alzheimer.AIP Conf. Proc.2023280002031310.1063/5.0162915
    [Google Scholar]
  107. WichurT. WięckowskaA. WięckowskiK. GodyńJ. JończykJ. ValdiviesoÁ.R. PanekD. PasiekaA. SabatéR. KnezD. GobecS. MalawskaB. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer’s disease.Eur. J. Med. Chem.202018711191610.1016/j.ejmech.2019.111916 31812794
    [Google Scholar]
  108. Acar ÇevikU. ErcetinT. Design, synthesis and evaluation of pyrrol-thiazole derivatives as AChE and BuChE inhibitory and antioxidant activities.Cumhur. Sci. J.202344462562810.17776/csj.1255826
    [Google Scholar]
  109. LiuS. DangM. LeiY. AhmadS.S. KhalidM. KamalM.A. ChenL. Ajmalicine and its analogues against AChE and BuChE for the management of alzheimer’s disease: An in-silico study.Curr. Pharm. Des.202026374808481410.2174/1381612826666200407161842 32264807
    [Google Scholar]
  110. LiH.H. WuC. ZhangS.L. YangJ.G. QinH.L. TangW. Fluorosulfate-containing pyrazole heterocycles as selective BuChE inhibitors: Structure-activity relationship and biological evaluation for the treatment of alzheimer’s disease.J. Enzyme Inhib. Med. Chem.20223712099211110.1080/14756366.2022.2103553 35899776
    [Google Scholar]
  111. XuY. ZhangZ. JiangX. ChenX. WangZ. AlsulamiH. QinH.L. TangW. Discovery of δ-sultone-fused pyrazoles for treating alzheimer’s disease: Design, synthesis, biological evaluation and SAR studies.Eur. J. Med. Chem.201918111159810.1016/j.ejmech.2019.111598 31415981
    [Google Scholar]
  112. PoloE. Prent-PeñalozaL. NúñezY.A.R. Valdés-SalasL. TrillerasJ. RamosJ. HenaoJ.A. GaldámezA. Morales-BayueloA. GutiérrezM. Microwave-assisted synthesis, biological assessment, and molecular modeling of aza-heterocycles: Potential inhibitory capacity of cholinergic enzymes to Alzheimer’s disease.J. Mol. Struct.2021122412930710.1016/j.molstruc.2020.129307
    [Google Scholar]
  113. BiçerA. KayaR. YakalıG. GültekinM.S. CinG.T. Gülçinİ. Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes.J. Mol. Struct.2020120412745310.1016/j.molstruc.2019.127453
    [Google Scholar]
  114. BilginerS. GonderB. GulH.I. KayaR. GulcinI. AnilB. SupuranC.T. Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties.J. Enzyme Inhib. Med. Chem.202035132532910.1080/14756366.2019.1700240 31813300
    [Google Scholar]
  115. TugrakM. GulH.I. SakagamiH. GulcinI. SupuranC.T. New azafluorenones with cytotoxic and carbonic anhydrase inhibitory properties: 2-Aryl-4-(4-hydroxyphenyl)-5H-indeno[1,2-b]pyridin-5-ones.Bioorg. Chem.20188143343910.1016/j.bioorg.2018.09.013 30223148
    [Google Scholar]
  116. Gülçinİ. ScozzafavaA. SupuranC.T. AkıncıoğluH. KoksalZ. TurkanF. AlwaselS. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII.J. Enzyme Inhib. Med. Chem.20163161095110110.3109/14756366.2015.1094470 26453427
    [Google Scholar]
  117. Gülçinİ. ScozzafavaA. SupuranC.T. KoksalZ. TurkanF. ÇetinkayaS. BingölZ. HuyutZ. AlwaselS.H. Rosmarinic acid inhibits some metabolic enzymes including glutathione S -transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes.J. Enzyme Inhib. Med. Chem.20163161698170210.3109/14756366.2015.1135914 26864149
    [Google Scholar]
  118. TaslimiP. TurhanK. TürkanF. KaramanH.S. TurgutZ. Gulcinİ. Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives: Synthetic analogues for the treatment of Alzheimer’s disease and diabetes mellitus.Bioorg. Chem.20209710364710.1016/j.bioorg.2020.103647 32078939
    [Google Scholar]
  119. TaslimiP. TürkanF. CetinA. BurhanH. KaramanM. BildiriciI. Gulçinİ. ŞenF. Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials.Bioorg. Chem.20199210321310.1016/j.bioorg.2019.103213 31470200
    [Google Scholar]
  120. SeverB. TürkeşC. AltıntopM.D. DemirY. BeydemirŞ. Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors.Int. J. Biol. Macromol.20201631970198810.1016/j.ijbiomac.2020.09.043 32931834
    [Google Scholar]
  121. HeckmanP.R.A. WoutersC. PrickaertsJ. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and alzheimer’s disease: A translational overview.Curr. Pharm. Des.201421331733110.2174/1381612820666140826114601 25159073
    [Google Scholar]
  122. García-OstaA. Cuadrado-TejedorM. García-BarrosoC. OyarzábalJ. FrancoR. Phosphodiesterases as therapeutic targets for alzheimer’s disease.ACS Chem. Neurosci.201231183284410.1021/cn3000907 23173065
    [Google Scholar]
  123. WuY. LiZ. HuangY.Y. WuD. LuoH.B. Novel phosphodiesterase inhibitors for cognitive improvement in alzheimer’s disease.Miniperspective. J. Med. Chem.201861135467548310.1021/acs.jmedchem.7b01370 29363967
    [Google Scholar]
  124. NabaviS.M. TalarekS. ListosJ. NabaviS.F. DeviK.P. Roberto de OliveiraM. TewariD. ArgüellesS. MehrzadiS. HosseinzadehA. D’onofrioG. OrhanI.E. SuredaA. XuS. MomtazS. FarzaeiM.H. Phosphodiesterase inhibitors say no to alzheimer’s disease.Food Chem. Toxicol.201913411082210.1016/j.fct.2019.110822 31536753
    [Google Scholar]
  125. ShengJ. ZhangS. WuL. KumarG. LiaoY. GkP. FanH. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and alzheimer’s disease.Front. Aging Neurosci.202214101918710.3389/fnagi.2022.1019187 36268188
    [Google Scholar]
  126. HeckmanP.R.A. BloklandA. PrickaertsJ. From age-related cognitive decline to alzheimer’s disease: A translational overview of the potential role for phosphodiesterases.Adv. Neurobiol.20171713516810.1007/978‑3‑319‑58811‑7_6 28956332
    [Google Scholar]
  127. XiM. SunT. ChaiS. XieM. ChenS. DengL. DuK. ShenR. SunH. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in alzheimer’s disease.Eur. J. Med. Chem.202223211417010.1016/j.ejmech.2022.114170 35144038
    [Google Scholar]
  128. PrickaertsJ. HeckmanP.R.A. BloklandA. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for alzheimer’s disease.Expert Opin. Investig. Drugs20172691033104810.1080/13543784.2017.1364360 28772081
    [Google Scholar]
  129. El-BaklyW. WagdyO. SobhyA. abo elenain, O.; Riad, M.S.; El Sayed, M.; Tarkhan, S.; Yassen, M.; Mahmoud, A.; Bassiony, M.; Nabil, N. The efficacy and underlying mechanism of phosphodiesterase- 5 inhibitors in preventing cognitive impairment and alzheimer pathology: A systematic review of animal studies.Behav. Brain Res.201937211200410.1016/j.bbr.2019.112004 31163203
    [Google Scholar]
  130. ZhouY. LiJ. YuanH. SuR. HuangY. HuangY. LiZ. WuY. LuoH. ZhangC. HuangL. Design, synthesis, and evaluation of dihydropyranopyrazole derivatives as novel PDE2 inhibitors for the treatment of alzheimer’s disease.Mol.20212610303410.3390/molecules26103034 34069639
    [Google Scholar]
  131. YuY.F. HuangY.D. ZhangC. WuX.N. ZhouQ. WuD. WuY. LuoH.B. Discovery of novel pyrazolopyrimidinone derivatives as phosphodiesterase 9A inhibitors capable of inhibiting butyrylcholinesterase for treatment of alzheimer’s disease.ACS Chem. Neurosci.20178112522253410.1021/acschemneuro.7b00268 28783948
    [Google Scholar]
  132. GuttiG. KumarD. PaliwalP. GaneshpurkarA. LahreK. KumarA. KrishnamurthyS. SinghS.K. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of alzheimer’s disease.Bioorg. Chem.20199010308010.1016/j.bioorg.2019.103080 31271946
    [Google Scholar]
  133. Unsal-TanO. Tüylü KüçükkılınçT. AyazgökB. BalkanA. Ozadali-SariK. Synthesis, molecular docking, and biological evaluation of novel 2-pyrazoline derivatives as multifunctional agents for the treatment of alzheimer’s disease.MedChemComm20191061018102610.1039/C9MD00030E 31304000
    [Google Scholar]
  134. NarayananS.E. NarayananH. MukundanM. BalanS. VishnupriyaC.P. GopinathanA. RajammaR.G. MarathakamA. Design, synthesis and biological evaluation of substituted pyrazoles endowed with brominated 4-methyl 7-hydroxy coumarin as new scaffolds against alzheimer’s disease.Future J. Pharm. Sci.20217110
    [Google Scholar]
  135. HuJ. HuangY.D. PanT. ZhangT. SuT. LiX. LuoH.B. HuangL. Design, synthesis, and biological evaluation of dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 9A (PDE9A) for the treatment of alzheimer’s disease.ACS Chem. Neurosci.201910153755110.1021/acschemneuro.8b00376 30252439
    [Google Scholar]
  136. YamaliC. GulH.I. EceA. TaslimiP. GulcinI. Synthesis, molecular modeling, and biological evaluation of 4‐[5‐aryl‐3‐(thiophen‐2‐yl)‐4,5‐dihydro‐1 H ‐pyrazol‐1‐yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes.Chem. Biol. Drug Des.201891485486610.1111/cbdd.13149 29143485
    [Google Scholar]
  137. OkanoA. SaitohF. MakabeM. OgawaK. Novel Pyrazole Derivative.Europe Patent Office EP2963037A12019
  138. BardenT.C. SheppeckJ.E. RennieG.R. RenhoweP.A. PerlN. NakaiT. MermerianA. LeeT.W. JungJ. JiaJ. IyerK. IyengarR.R. ImG.J. Pyrazole derivatives as SGC stimulators.Patent US20190031641A12021
    [Google Scholar]
  139. BardenT.C. SheppeckJ.E. RennieG.R. RenhoweP.A. PerlN. NakaiT. MermerianA. LeeT. HoW. JungJ. JiaJ. IyerK. IyengarR.R. Pyrazole derivatives as SGC stimulatorsPatent WO2016044447A12016
  140. HananP. C. LiuW. LyssikatosJ. P. MagnusonS. R. MendoncaR. PastorR. RawsonT. E. SiuM. ZakM. E. ZhouA. ZhuB. Y. Pyrazolopyrimidine JAK inhibitor compounds and methods.Patent EP3333169B12020
  141. EstradaA. A. FengJ. A. RichardosJ.P. SweeneyZ. K. FidalgoV. DeJ. Pyrimidine-2-ylamino-1H-pyrazole as an LRRK2 inhibitor used in the treatment of neurodegenerative diseases.Patent JP7004459B22022
  142. EstradaA. A. FenJ. A. LissikatosJ. P. SweeneyZ. K. FidalgoV. J. Pyrimidine-2-ylamino-1H-pyrazoles as LRRK2 inhibitors for use in the treatment of neurodegenerative diseases.Patent EA043797B12023
  143. Llorente-FernándezA. V. Almansa-RosalesC. García-LópezM. ChristmannU. Díaz-FernándezJ. L. 1h-pyrazole derivatives as sigma ligands.Patent US20240239781A12024
  144. BeltuschA. KretschmarU. HabeckH. HirschbergerM. TavanT. GrizingerP. LeonovC. RyazanovA. FrickS. GeisenP. GroßhapM. HavergerM. Novel drug for inhibiting protein aggregation associated with protein aggregation-related diseases and/or neurodegenerative diseases.Patent JP6276744B22018
  145. Baker-GlennC. BurdickD. J. ChambersM. ChenH. EstradaA. SweeneyZ.K. ChanB. K. Pyrazole aminopyrimidine derivatives as LRRK2 modulators.Patent EP3124483B12019
  146. BrakK. JohnsonT. C. SudhakarA. DeignanJ. RemarchukT. Processes and intermediates for the preparation of a pyrimidine aminopyrazole compound.Patent WO2024112746A12024
  147. De Vicente FidalgoJ. EstradaA. A. FengJ. A. FoxB. LeslieC. P. LyssikatosJ. P. PozzanA. SweeneyZ. K. Inhibitors of receptorinteracting protein kinase 1.Patent AU2017213628B22021
  148. DainiM. HattoriY. ItoM. KakuT. KojimaT. MatsumotoS. MorimotoS. ToyofukuM. Cyclopropanamine compound and use thereof.Patent AU2015244698B22019
  149. DingX. JinY. LiuQ. RenF. SangY. StasiL. P. WanZ. WangH. XingW. ZhanY. ZhaoB. Substituted fused pyrazole compounds and their use as LRRK2 inhibitors.Patent US10975081B22021
  150. BotrousI. HongY. LiH. LiuK. K.-C. NukuiS. TengM. Valenzuela TompkinsE.V. YinC. 3-Amido-pyrrolo[3,4-c]pyrazole-5(1H,4H,6H) carbaldehyde derivatives.Patent CA2683695C2013
  151. MakabeM. MakabeT. SatouM. Pyrazole derivative crystals.Patent JP6851318B22021
/content/journals/coc/10.2174/0113852728360592250214110907
Loading
/content/journals/coc/10.2174/0113852728360592250214110907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test