Skip to content
2000
Volume 29, Issue 18
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Herbal medications provide universal benefits such as effectiveness, safety, cost, and acceptance. With increased interest in plant extract research, there is also increased concern about the activity of bioactive lumberjack climber plants indigenous to Sri Lanka and Indian submontane forests. It was recently determined that plants containing kotalanol, salacinol (derived from roots, especially stems), and mangiferin (xanthone from roots) are anti-diabetic agents. () contains 1,3-diketone, dulcitol, leucopelargonidin, epicatechin, furovatannin, glycoside tannin, triterpene, 30-hydroxy-20(30)-dihydroisoigesterol, hydroxyferruginol, acidic Lambert, and 16-acetate. Chemical components such as collagen in 26-hydroxy-1,3-friederandione and maitenfolate have also been discovered in roots. Root decoction treats skin conditions, rheumatic conditions, gonorrhoea, hemorrhoids, asthma, edema, irritation, dry mouth, menstrual cramps, and dysmenorrhea. The gastrointestinal suppression of enzymes that take over glucose through the blood reduces postprandial hyperglycemia and improves blood sugar control. Additionally, mangiferin can impede the action of aldose reductase, which delays the development or worsening of diabetes. Consequently, efforts are underway to discover new therapeutic targets, signifying a novel approach to medication development. In this regard, has been widely consumed owing to its discoveries and is currently the focus of substantial studies on diabetes treatment.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728346153250114113345
2025-02-11
2025-09-27
Loading full text...

Full text loading...

References

  1. YoshikawaM. MurakamiT. ShimadaH. MatsudaH. YamaharaJ. TanabeG. MuraokaO. Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India.Tetrahedron Lett.199738488367837010.1016/S0040‑4039(97)10270‑2
    [Google Scholar]
  2. JayaweeraD.M.A. Ed.; Medicinal plants used in Ceylon, part 1.ColomboNational Science Council of Sri Lanka198177
    [Google Scholar]
  3. PeirisD.S.H.S. FernandoD.T.K. SenadeeraS.P.N.N. RanaweeraC.B. A comprehensive review of Salacia reticulata: Botanical, ethnomedicinal, phytochemical, and pharmacological insights.Asian Plant Res. J.2023116274310.9734/aprj/2023/v11i6228
    [Google Scholar]
  4. ArunakumaraK.K.I.U. SubasingheS. Salacia reticulata wight: A review of botany, phytochemistry and pharmacology.Trop. Agric. Res. Ext.2011132414710.4038/tare.v13i2.3137
    [Google Scholar]
  5. KishinoE. ItoT. FujitaK. KiuchiY. A mixture of the Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet-induced obesity.J. Nutr.2006136243343910.1093/jn/136.2.433 16424124
    [Google Scholar]
  6. AkaseT. ShimadaT. HarasawaY. AkaseT. IkeyaY. NagaiE. IizukaS. NakagamiG. IizakaS. SanadaH. AburadaM. Preventive effects of Salacia reticulata on obesity and metabolic disorders in TSOD mice.Evid. Based Compl. Alt. Med.201148459010
    [Google Scholar]
  7. KogaK. HisamuraM. KanetakaT. YoshinoK. MatsuoY. TanakaT. Proanthocyanidin oligomers isolated from Salacia reticulata leaves potently inhibit pancreatic lipase activity.J. Food Sci.2013781H105H11110.1111/1750‑3841.12001 23278351
    [Google Scholar]
  8. SekiguchiY. ManoH. NakataniS. ShimizuJ. WadaM. Effects of the Sri Lankan medicinal plant, Salacia reticulata, in rheumatoid arthritis.Genes Nutr.201051899610.1007/s12263‑009‑0144‑3 19727885
    [Google Scholar]
  9. OdaY. UedaF. KameiA. KakinumaC. AbeK. Biochemical investigation and gene expression analysis of the immunostimulatory functions of an edible Salacia extract in rat small intestine.Biofactors2011371313910.1002/biof.132 21328625
    [Google Scholar]
  10. YoshikawaM. MorikawaT. MatsudaH. TanabeG. MuraokaO. Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata.Bioorg. Med. Chem.20021051547155410.1016/S0968‑0896(01)00422‑9 11886816
    [Google Scholar]
  11. ChoudharyG.P. KanthV.M.S. Antimicrobial activity of root bark of Salacia reticulata.Anc. Sci. Life200525147 22557181
    [Google Scholar]
  12. PanditS. MukherjeeP.K. MukherjeeK. GajbhiyeR. VenkateshM. PonnusankarS. BhadraS. Cytochrome P450 inhibitory potential of selected Indian spices — possible food drug interaction.Food Res. Int.2012451697410.1016/j.foodres.2011.08.021
    [Google Scholar]
  13. MedagamaA.B. Salacia reticulata (Kothala himbutu) revisited; a missed opportunity to treat diabetes and obesity?Nutr. J.20151412110.1186/s12937‑015‑0013‑4 25889885
    [Google Scholar]
  14. KatiyarM. KumarN.A. A review: Pharmacological activities of “Salacia reticuleta wight.World J. Pharm. Med. Res.2017368184
    [Google Scholar]
  15. StohsS.J. RayS. Anti‐diabetic and anti‐hyperlipidemic effects and safety of Salacia reticulata and related species.Phytother. Res.201529798699510.1002/ptr.5382 26031882
    [Google Scholar]
  16. KeeragalaarachchiK.A. DharmadasaR.M. WijesekaraR.G. KudavidanageE.P. Natural antidiabetic potential of Salacia chinensis L. (Celastraceae) based on morphological, phytochemical, physico-chemical and bioactivity: A promising alternative for Salacia reticulata Thw.WORLD2016424955
    [Google Scholar]
  17. AkpataE.S. AkinrimisiE.O. Antibacterial activity of extracts from some African chewing sticks.Oral Surg. Oral Med. Oral Pathol.197744571772210.1016/0030‑4220(77)90381‑4 270068
    [Google Scholar]
  18. ManskeR.H. The alkaloids: Chemistry and physiologyAcademic Press: New York196518673
    [Google Scholar]
  19. GaleottiF. BarileE. CurirP. DolciM. LanzottiV. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity.Phytochem. Lett.200811444810.1016/j.phytol.2007.10.001
    [Google Scholar]
  20. WeberL.M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin.Cancer Treat. Rev.2009351576810.1016/j.ctrv.2008.09.005 19004559
    [Google Scholar]
  21. NandakumarS. WoolardS.N. YuanD. RouseB.T. KumaraguruU. Natural killer cells as novel helpers in anti-herpes simplex virus immune response.J. Virol.20088221108201083110.1128/JVI.00365‑08 18715907
    [Google Scholar]
  22. YamamotoY. GaynorR.B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer.J. Clin. Invest.2001107213514210.1172/JCI11914 11160126
    [Google Scholar]
  23. LiuR.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action.J. Nutr.2004134123479S3485S10.1093/jn/134.12.3479S 15570057
    [Google Scholar]
  24. SerasingheS. SerasingheP. YamazakiH. NishiguchiK. HombhanjeF. NakanishiS. SawaK. HattoriM. NambaT. Oral hypoglycemic effect of Salacia reticulata in the streptozotocin induced diabetic rat.Phytother. Res.19904520520610.1002/ptr.2650040511
    [Google Scholar]
  25. TatiyaA. SuranaS. BhavsarS. PatilD. PatilY. Pharmacognostic and preliminary phytochemical investigation of Eulophia herbacea Lindl. Tubers (Orchidaceae).Asian Pac. J. Trop. Dis.20122S50S5510.1016/S2222‑1808(12)60123‑6
    [Google Scholar]
  26. PeraltaJ.R. dea-Torresdey, G.J.L.; Tiemann, K.J.; Gomez, E.; Arteaga, S.; Rascon, E.; Parsons, J.G. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.).Bull. Environ. Contam. Toxicol.200166672773410.1007/s001280069 11353374
    [Google Scholar]
  27. YoshikawaM. MurakamiT. YashiroK. MatsudaH. Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata.Chem. Pharm. Bull.19984681339134010.1248/cpb.46.1339 9734318
    [Google Scholar]
  28. KarunanayakeE.H. SirimanneS.R. Mangiferin from the root bark of Salacia reticulata.J. Ethnopharmacol.198513222722810.1016/0378‑8741(85)90010‑8 4021520
    [Google Scholar]
  29. YoshikawaM. NishidaN. ShimodaH. TakadaM. KawaharaY. MatsudaH. Polyphenol constituents from Salacia species: Quantitative analysis of mangiferin with alpha-glucosidase and aldose reductase inhibitory activities.Yakugaku Zasshi2001121537137810.1248/yakushi.121.371 11360491
    [Google Scholar]
  30. MinhaT.T. AnhN.T.H. ThangaV.D. SungT.V. Study on chemical constituents of Salacia chinensis L. collected in Vietnam.Z. Naturforsch. B. J. Chem. Sci.200863121411141410.1515/znb‑2008‑1211
    [Google Scholar]
  31. GunatilakaA.A.L. DhanabalasinghamB. KarunaratneV. KikuchiT. TezukaY. Studies on terpenoids and stereoids. Part 27. Structure of a D:A-friedo-oleanane triterpenoid from Salacia reticulata and revision of the structures of kokoonol and kokzeylanol series of triterpenoids.Tetrahedron19934945103971040410.1016/S0040‑4020(01)80566‑4
    [Google Scholar]
  32. KumarV. WazeerM.I.M. WijeratneD.B.T. 21α,26-dihydroxy-D:A-friedooleanan-3-one from Salacia reticulata var. Diandra (Celastraceae).Phytochemistry19852492067206910.1016/S0031‑9422(00)83123‑4
    [Google Scholar]
  33. DhanabalasinghamB. KarunaratneV. TezukaY. KikuchiT. GunatilakaA.A.L. Biogenetically important quinonemethides and other triterpenoid constituents of Salacia reticulata.Phytochemistry19964251377138510.1016/0031‑9422(96)00886‑2
    [Google Scholar]
  34. RamamoorthyJ. VanathyM.R. VenkataramanS. DeviP. Phytochemical investigation and anti-inflammatory activity of Salacia reticulate.J. Chem. Pharm. Res.201025618625
    [Google Scholar]
  35. MorikawaT. NinomiyaK. TanabeG. MatsudaH. YoshikawaM. MuraokaO. A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia.J. Nat. Med.202175344946610.1007/s11418‑021‑01522‑0 33900535
    [Google Scholar]
  36. JayawardenaM.H.S. Alwisd.N.M.W. HettigodaV. FernandoD.J.S. A double blind randomised placebo controlled cross over study of a herbal preparation containing Salacia reticulata in the treatment of type 2 diabetes.J. Ethnopharmacol.200597221521810.1016/j.jep.2004.10.026 15707755
    [Google Scholar]
  37. TisseraM.H.A. ThabrewM.I. Medicinal plants and ayurvedic preparations used in Sri Lanka for the control of diabetes mellitus. A publication of the department of ayurveda, ministry of health and indigenous medicineSri Lanka2001
    [Google Scholar]
  38. ImR. ManoH. NakataniS. ShimizuJ. WadaM. Aqueous extract of Kotahla Himbutu (Salacia reticulata) stems promotes oxygen comsumption and supresses body fat accumulation in mice.J. Health Sci.200854664565310.1248/jhs.54.645
    [Google Scholar]
  39. JeykodiS. DeshpandeJ. JuturuV. Salacia extract improves postprandial glucose and insulin response: A randomized doubleblind, placebo controlled, crossover study in healthy volunteers.J. Diabetes Res.201620161910.1155/2016/7971831 27803937
    [Google Scholar]
  40. MatsudaH. MurakamiT. YashiroK. YamaharaJ. YoshikawaM. Antidiabetic principles of natural medicines. IV. Aldose reductase and qlpha-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): Structure of a new friedelane-type triterpene, kotalagenin 16-acetate.Chem. Pharm. Bull.199947121725172910.1248/cpb.47.1725 10748716
    [Google Scholar]
  41. YoshinoK. MiyauchiY. KanetakaT. TakagiY. KogaK. Anti-diabetic activity of a leaf extract prepared from Salacia reticulata in mice.Biosci. Biotechnol. Biochem.20097351096110410.1271/bbb.80854 19420711
    [Google Scholar]
  42. BaiF.W. ZhaoX.Q. XuJ. Immobilization technology.Comp. Biotechnol.2011247748910.1016/B978‑0‑08‑088504‑9.00115‑X
    [Google Scholar]
  43. DuS. LiuH. LeiT. XieX. WangH. HeX. TongR. WangY. Mangiferin: An effective therapeutic agent against several disorders (Review).Mol. Med. Rep.20181864775478610.3892/mmr.2018.9529 30280187
    [Google Scholar]
  44. MatsudaH.Y.M. MorikawaT. TanabeG. MuraokaO. Antidiabetogenic constituents from Salacia species.J. Tradit. Med.2005221145153
    [Google Scholar]
  45. DwivediJ. GuptaA. VermaS. DwivediM. PaliwalS. RawatA.K.S. Validated high-performance thin-layer chromatographic analysis of ursolic acid and β-sitosterol in the methanolic fraction of Paederia foetida L. leaves.J. Planar Chromatogr. Mod. TLC201831537738110.1556/1006.2018.31.5.5
    [Google Scholar]
  46. LiY. HuangT.H.W. YamaharaJ. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity.Life Sci.20088221-221045104910.1016/j.lfs.2008.03.005 18433791
    [Google Scholar]
  47. YoshikawaM. ShimodaH. MatsudaH. NishidaN. TakadaM. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats.J. Nutr.200213271819182410.1093/jn/132.7.1819 12097653
    [Google Scholar]
  48. ShimadaT. NakayamaY. HarasawaY. MatsuiH. KobayashiH. SaiY. MiyamotoK. TomatsuS. AburadaM. Salacia reticulata has therapeutic effects on obesity.J. Nat. Med.201468466867610.1007/s11418‑014‑0845‑9 24838513
    [Google Scholar]
  49. ShimadaT. NagaiE. HarasawaY. WatanabeM. NegishiK. AkaseT. SaiY. MiyamotoK. AburadaM. Salacia reticulata inhibits differentiation of 3T3-L1 adipocytes.J. Ethnopharmacol.20111361677410.1016/j.jep.2011.04.012 21511020
    [Google Scholar]
  50. YoshikawaM. NinomiyaK. ShimodaH. NishidaN. MatsudaH. Hepatoprotective and antioxidative properties of Salacia reticulata: Preventive effects of phenolic constituents on CCl4-induced liver injury in mice.Biol. Pharm. Bull.2002251727610.1248/bpb.25.72 11824561
    [Google Scholar]
  51. CarvalhoP.R.F. SilvaD.H.S. BolzaniV.S. FurlanM. Antioxidant quinonemethide triterpenes from Salacia campestris.Chem. Biodivers.20052336737210.1002/cbdv.200590016 17191985
    [Google Scholar]
  52. KishiA. MorikawaT. MatsudaH. YoshikawaM. Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis LINN. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents.Chem. Pharm. Bull.20035191051105510.1248/cpb.51.1051 12951446
    [Google Scholar]
  53. KrishnakumarK. AugustiK.T. VijayammalP.L. Hypoglycaemic and anti-oxidant activity of Salacia oblonga Wall. Extract in Streptezotocin-induced diabetic rats.Indian J. Physiol. Pharmacol.19994351051410.1076/1388‑0209(200004)3821‑1FT101 21214447
    [Google Scholar]
  54. YoshikawaM. PongpiriyadachaY. KishiA. KageuraT. WangT. MorikawaT. MatsudaH. Biological activities of Salacia chinensis originating in Thailand: The quality evaluation guided by alpha-glucosidase inhibitory activity.Yakugaku Zasshi20031231087188010.1248/yakushi.123.871 14577333
    [Google Scholar]
  55. SellamuthuP.S. ArulselvanP. MuniappanB.P. FakuraziS. KandasamyM. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats.J. Med. Food201316871972710.1089/jmf.2012.2480 23957355
    [Google Scholar]
  56. SuwannalertP. KariyaR. SuzuI. OkadaS. The effects of Salacia reticulata on anti-cellular oxidants and melanogenesis inhibition in alpha-MSH-stimulated and UV irradiated B16 melanoma cells.Nat. Prod. Commun.201494551554 24868882
    [Google Scholar]
  57. MuruganandanS. LalJ. GuptaP.K. Immunotherapeutic effects of mangiferin mediated by the inhibition of oxidative stress to activated lymphocytes, neutrophils and macrophages.Toxicology20052151-25768b10.1016/j.tox.2005.06.008 16076520
    [Google Scholar]
  58. ChandrashekarC.N. MadhyasthaS. BenjaminS. Free radical scavenging activities and anti-diabetic properties of various extracts of Salacia reticulata.J. Physiol. Sci.2009214857
    [Google Scholar]
  59. GujjalaS. BangeppagariM. DevarakondaV.L.N.P. BellamkondaR. BhadramrajuR. KameswaranS. RamaswamyR. DesireddyS. Pleiotropic effects of Salacia reticulata and Simvastatin on oxidative stress and insulin resistance in a rat model.Biomed. Pharmacother.202316411496010.1016/j.biopha.2023.114960 37290186
    [Google Scholar]
  60. SellamuthuP.S. ArulselvanP. FakuraziS. KandasamyM. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes.Pak. J. Pharm. Sci.2014271161167 24374436
    [Google Scholar]
  61. DehghanH. SarrafiY. SalehiP. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran.Yao Wu Shi Pin Fen Xi2016241179188 28911402
    [Google Scholar]
  62. VaneJ. BottingR. Inflammation and the mechanism of action of anti‐inflammatory drugs.FASEB J.198712899610.1096/fasebj.1.2.3111928 3111928
    [Google Scholar]
  63. GoldbergG. The report of a British nutrition foundation task force.Plants: Diet and Health2003347
    [Google Scholar]
  64. FunkJ.L. CordaroL.A. WeiH. BenjaminJ.B. YocumD.E. Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis. A possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis.J. Clin. Invest.199810171362137110.1172/JCI728 9525978
    [Google Scholar]
  65. ParekhR.B. DwekR.A. SuttonB.J. FernandesD.L. LeungA. StanworthD. RademacherT.W. MizuochiT. TaniguchiT. MatsutaK. TakeuchiF. NaganoY. MiyamotoT. KobataA. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG.Nature1985316602745245710.1038/316452a0 3927174
    [Google Scholar]
  66. Tuylv.L.H.D. LemsW.F. VoskuylA.E. KerstensP.J.S.M. GarneroP. DijkmansB A C. BoersM. Tight control and intensified COBRA combination treatment in early rheumatoid arthritis: 90% remission in a pilot trial.Ann. Rheum. Dis.200867111574157710.1136/ard.2008.090712 18625629
    [Google Scholar]
  67. BergrothV. ZvaiflerN.J. FiresteinG.S. Cytokines in chronic inflammatory arthritis. III. Rheumatoid arthritis monocytes are not unusually sensitive to γ‐interferon, but have defective γ‐interferon–mediated HLA–DQ and HLA–DR induction.Arthritis Rheum.19893291074107910.1002/anr.1780320904 2505778
    [Google Scholar]
  68. SekiguchiY. ManoH. NakataniS. ShimizuJ. KobataK. WadaM. Anti-proliferative effects of Salacia reticulata leaves hot-water extract on interleukin-1β-activated cells derived from the synovium of rheumatoid arthritis model mice.BMC Res. Notes20125119810.1186/1756‑0500‑5‑198 22537486
    [Google Scholar]
  69. ChandrasenaJ.P.C. The chemistry and pharmacology of ceylon and indian medicinal plants.Colombo, Sri LankaH&C Press1935
    [Google Scholar]
  70. ReddyV.P. BeyazA. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases.Drug Discov. Today20061113-1464665410.1016/j.drudis.2006.05.016 16793534
    [Google Scholar]
  71. DerosaG. MaffioliP. Mini-special issue paper management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice.Arch. Med. Sci.20125589990610.5114/aoms.2012.31621 23185202
    [Google Scholar]
  72. KawamoriS. KawaharaY. Effects of an aqueous extract of Salacia reticulata, a useful plant in Sri Lanka, on postprandial hyperglycemia in rats and humans.J. Japanese Society Nut. Food Sci.1998515279287
    [Google Scholar]
  73. OeH. OzakiS. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel α-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata).Biosci. Biotechnol. Biochem.20087271962196410.1271/bbb.80118 18603797
    [Google Scholar]
  74. ShivaprasadH.N. BhanumathyM. SushmaG. MidhunT. RaveendraK.R. SushmaK.R. VenkateshwarluK. Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: A double-blind, placebo-controlled, randomized trial.J. Med. Food201316656456810.1089/jmf.2013.2751 23767865
    [Google Scholar]
  75. KajimotoO. KawamoriS. ShimodaH. KawaharaY. HirataH. TakahashiT. Effects of a diet containing Salacia reticulata on mild type 2 diabetes in humans. A placebo-controlled, cross-over trial.J. Jpn. Soc. Nutr. Food Sci.200053519920510.4327/jsnfs.53.199
    [Google Scholar]
  76. KumaraR.N.K.V.M. PathiranaR.N. PathiranaC. Hypoglycemic activity of the root and stem of Salacia reticulata. var. β-diandra. in alloxan diabetic rats.Pharm. Biol.200543321922510.1080/13880200590928780
    [Google Scholar]
  77. SaadB. ZaidH. ShanakS. KadanS. Anti-diabetes and anti-obesity medicinal plants and phytochemicalsAnti-diabetes and antiobesity medicinal plants and phytochemicals201710.1007/978‑3‑319‑54102‑0
    [Google Scholar]
  78. MatsuzawaY. FunahashiT. KiharaS. ShimomuraI. Adiponectin and metabolic syndrome.Arterioscler. Thromb. Vasc. Biol.2004241293310.1161/01.ATV.0000099786.99623.EF 14551151
    [Google Scholar]
  79. YamauchiT. KamonJ. MinokoshiY. ItoY. WakiH. UchidaS. YamashitaS. NodaM. KitaS. UekiK. EtoK. AkanumaY. FroguelP. FoufelleF. FerreP. CarlingD. KimuraS. NagaiR. KahnB.B. KadowakiT. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.Nat. Med.20028111288129510.1038/nm788 12368907
    [Google Scholar]
  80. IizukaS. SuzukiW. TabuchiM. NagataM. ImamuraS. KobayashiY. KanitaniM. YanagisawaT. KaseY. TakedaS. AburadaM. TakahashiK.W. Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity.Exp. Anim.2005541718310.1538/expanim.54.71 15725683
    [Google Scholar]
  81. HirayamaI. YiZ. IzumiS. AraiI. SuzukiW. NagamachiY. KuwanoH. TakeuchiT. IzumiT. Genetic analysis of obese diabetes in the TSOD mouse.Diabetes19994851183119110.2337/diabetes.48.5.1183 10331427
    [Google Scholar]
  82. OfnerM. TomaschitzA. WonischM. LitscherG. Complementary treatment of obesity and overweight with Salacia reticulata and vitamin D.Int. J. Vitam. Nutr. Res.201383421622310.1024/0300‑9831/a000162 25008011
    [Google Scholar]
  83. KumarC.H. RameshA. KumarJ.S. IshaqB.M. A review on hepatoprotective activity of medicinal plants.Int. J. Pharm. Sci. Res.201123501
    [Google Scholar]
  84. ImR. ManoH. NakataniS. ShimizuJ. WadaM. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays.Biosci. Biotechnol. Biochem.200872123075308310.1271/bbb.70745 19060410
    [Google Scholar]
  85. WatanabeM. ShimadaT. IidukaS. IidaN. KojimaK. IshizakiJ. SaiY. MiyamotoK.I. AburadaM. Preventive effects of Salacia reticulata on non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) in monosodium glutamate treated mice.J. Tradit. Med.20112827382
    [Google Scholar]
  86. HiroseY. YamamotoY. YoshikaiY. MurosakiS. Oral intake of heat-killed Lactobacillus plantarum L-137 decreases the incidence of upper respiratory tract infection in healthy subjects with high levels of psychological stress.J. Nutr. Sci.20132e3910.1017/jns.2013.35 25191589
    [Google Scholar]
  87. MitsuokaT. Development of functional foods.Biosci. Microbiota Food Health201433311712810.12938/bmfh.33.117 25032085
    [Google Scholar]
  88. KukkonenK. SavilahtiE. HaahtelaT. BackmanT.J.K. KorpelaR. PoussaT. TuureT. KuitunenM. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: A randomized, double-blind, placebo-controlled trial.J. Allergy Clin. Immunol.2007119119219810.1016/j.jaci.2006.09.009 17208601
    [Google Scholar]
  89. LehneG. HanebergB. GaustadP. JohansenP.W. PreusH. AbrahamsenT.G. Oral administration of a new soluble branched β-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers.Clin. Exp. Immunol.20051431656910.1111/j.1365‑2249.2005.02962.x 16367935
    [Google Scholar]
  90. HirokawaK. UtsuyamaM. HayashiY. KitagawaM. MakinodanT. FulopT. Slower immune system aging in women versus men in the Japanese population.Immun. Ageing20131011910.1186/1742‑4933‑10‑19 23675689
    [Google Scholar]
  91. RadhaR. AmrithaveniM. Role of medicinal plant Salacia reticulate in the management of type II diabetic subjects.Anc. Sci. Life20092911416 22557337
    [Google Scholar]
  92. RathoreS.S. WaniI.A. Usha, AgrawalA. DubeyG. SinghR.G. Effects of Salacia oblonga on cardiovascular risk factors in chronic kidney disease patients: A prospective study.Saudi J. Kidney Dis. Transpl.2015261616610.4103/1319‑2442.148736 25579717
    [Google Scholar]
  93. KarunanayakeE.H. WelihindaJ. SirimanneS.R. AdoraiG.S. Oral hypoglycaemic activity of some medicinal plants of Sri Lanka.J. Ethnopharmacol.198411222323110.1016/0378‑8741(84)90040‑0 6492834
    [Google Scholar]
  94. MuruganandanS. SrinivasanK. GuptaS. GuptaP.K. LalJ. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats.J. Ethnopharmacol.2005973497501a10.1016/j.jep.2004.12.010 15740886
    [Google Scholar]
  95. ShimadaT. NagaiE. HarasawaY. AkaseT. AburadaT. IizukaS. MiyamotoK. AburadaM. Metabolic disease prevention and suppression of fat accumulation by Salacia reticulata.J. Nat. Med.201064326627410.1007/s11418‑010‑0401‑1 20225078
    [Google Scholar]
  96. RajashreeR. ParineethaP. BjhatP. Effects of a mixture of Salacia reticulata W. and Catharanthus roseus L. extracts instreptozotoc in-induced juvenile diabetic rats.J. Physiol. Biomed. Sci.20112458
    [Google Scholar]
  97. ShattatG.F. A review article on hyperlipidemia: Types, treatments and new drug targets.Biomed. Pharmacol. J.201571399409
    [Google Scholar]
  98. UthirapathS. AhamadJ. MohammedA. M.S. Safety Standards and antimicrobial activity of root of Salacia reticulata.Res. J. Phytochem.2021151304010.3923/rjphyto.2021.30.40
    [Google Scholar]
  99. RamakrishnaD. ShashankA.T. ShinomolG.K. KiranS. RavishankarG.A. Salacia Sps–a potent source of herbal drug for antidiabetic and antiobesity ailments: A detailed treatise.Int. J. Pharmacogn. Phytochem. Res.20157374382
    [Google Scholar]
  100. RajalakshmyM.R. AshaK. Maniyan, Sruthi CV, Sindhu A. Standardisation of a polyherbal anti-diabetic Ayurvedic medicine Diajith. Ayurpharm Int J.Ayur. Alli. Sci.201437186194
    [Google Scholar]
  101. OdaY. UedaF. KakinumaC. NakamuraT. NakamuraY. Investigate by microarray analysis of the imunostimulatary function of a an extract of the Genus plant salacia in the small interstine of rats.Fujifilm Res. Develop.2009512104249
    [Google Scholar]
  102. ShivaprasadH.N. MariyannaB. ManoharD. PanditS. ThanduS.A. JainV. KumarP.B. α-Glucosidase and pancreatic lipase inhibitory activity of salcital-plus – A standardized extract of Salacia reticulate.Eur. Acad. Res.201411036663684
    [Google Scholar]
  103. SajeethC. MannaP.K. Manavalan. Antioxidant activity of polyherbal formulation on streptozotoc in induced diabetes in experimental animals.Pelagia Res. Libr.201222220226
    [Google Scholar]
  104. KrishnanG. Herbal formulation for prevention and treatment of diabetes and associated complications.U.S. Patent: 02364882011
  105. WayneD.I. ReedM.J. Triterpenoid compound for the treatment of diabetes.U.S. Patent: US,56913861997
  106. YamaharaJ. Compound with otglucosidase inhibiting action and method for producing the same.U.S. Patent: 6,376,6822002
  107. AsadaM. KawaharaY. KitamuraS. Novel substance havingAlphaglucosidase inhibiting activity and food containing the same.U.S. Patent: 00378702007
  108. AntonS.C. Composition for obesity treatment.U.S. Patent: 8,420,1312013
  109. UedaF. Agent for increasing blood adiponectin quantity.U.S. Patent: 02972682010
  110. LopezPJ ManzanoMM RuedaCR Methods for delaying progression of diabetesusing Salacia oblonga extract.P.T.O WO,20111631832012
  111. DubeyGP AgarwalA DubeyN DubeyS.S DubeyR DeborahS.M. A novel herbal formulation for the preventionand management of type-2 diabetes mellitusand vascular complications associated with diabetes.P.T.O WO,20111582472011
  112. DwivediJ. GuptaA. VermaS. PaliwalS. RawatA.K.S. Validated simultaneous high-performance thin-layer chromatographic analysis of ursolic acid, β-sitosterol, lupeol and quercetin in the methanolic fraction of Ichnocarpus frutescens.J. Planar Chromatogr. Mod. TLC201932210310810.1556/1006.2019.32.2.4
    [Google Scholar]
  113. UedaO.Y.F. Body weight gain suppressing composition and food product comprising the same.U.S. Patent: 02760812012
  114. PintoB.M. JohnstonB.D. GhavamiA. Glycosidase inhibitors and methods of synthesizing same.U.S. Patent: 6,455,5732002
  115. WolfB.W. WeisbrodeS.E. Safety evaluation of an extract from Salacia oblonga.Food Chem. Toxicol.200341686787410.1016/S0278‑6915(03)00038‑3 12738192
    [Google Scholar]
  116. FlammangA.M. ErexsonG.L. MecchiM.S. MurliH. Genotoxicity testing of a Salacia oblonga extract.Food Chem. Toxicol.200644111868187410.1016/j.fct.2006.06.005 16901601
    [Google Scholar]
  117. RatnasooriyaW.D. JayakodyJ.R.A.C. PremakumaraG.A.S. Adverse pregnancy outcome in rats following exposure to a Salacia reticulata (Celastraceae) root extract.Braz. J. Med. Biol. Res.200336793193510.1590/S0100‑879X2003000700015 12845381
    [Google Scholar]
  118. MedagamaA.B. BandaraR. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: Is continued use safe and effective?Nutr. J.201413110210.1186/1475‑2891‑13‑102 25331834
    [Google Scholar]
  119. FysekidisM. CossonE. BanuI. DuteilR. CyrilleC. ValensiP. Increased glycemic variability and decrease of the postprandial glucose contribution to HbA1c in obese subjects across the glycemic continuum from normal glycemia to first time diagnosed diabetes.Metabolism201463121553156110.1016/j.metabol.2014.09.006 25308444
    [Google Scholar]
/content/journals/coc/10.2174/0113852728346153250114113345
Loading
/content/journals/coc/10.2174/0113852728346153250114113345
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): celastraceae; kotalanol; mangiferin; Salacia reticulata; salacinol; triterpene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test