Skip to content
2000
Volume 29, Issue 16
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Due to its unique features and environmental benefits, green synthesis is attracting researchers worldwide. To expand the uses of ionic liquids (ILs) in green chemistry, particularly as environmentally friendly solvents and catalysts, researchers are investigating novel methods to ILs and improving their characteristics. Due to its exceptional properties, ILs have been widely utilized as a green catalyst and solvent system in the synthesis of valuable heterocyclic compounds. Aza-heterocycle isatin derivatives are regarded for their versatility in drug development and medicinal research. Organic chemists have developed isatin-based frameworks employing ILs as solvents and catalysts aligning with one of the main goals of green synthesis, maximize synthetic efficiency while reducing environmental effects. This review provides a comprehensive summarization of reports related to the IL-assisted isatin derivative synthesis.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728357158241207145409
2025-01-30
2025-10-25
Loading full text...

Full text loading...

References

  1. MohammadD. Inamuddin, Green Solvents II: Properties and Applications of Ionic LiquidsSpringer20122518
    [Google Scholar]
  2. RemsingR.C. WildinJ.L. RappA.L. MoynaG. Hydrogen bonds in ionic liquids revisited: (35/37) Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride.J. Phys. Chem. B200711140116191162110.1021/jp0756449 17887671
    [Google Scholar]
  3. LaszloJ.A. ComptonD.L. α‐Chymotrypsin catalysis in imidazolium‐based ionic liquids.Biotechnol. Bioeng.200175218118610.1002/bit.1177 11536140
    [Google Scholar]
  4. VisserA.E. HolbreyJ.D. RogersR.D. Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid–liquid separations.Chem. Commun.2001232484248510.1039/b109340c 12240026
    [Google Scholar]
  5. WangY. TianM. BiW. RowK.H. Application of ionic liquids in high performance reversed-phase chromatography.Int. J. Mol. Sci.20091062591261010.3390/ijms10062591 19582220
    [Google Scholar]
  6. SharmaP. SharmaS. KumarH. Introduction to ionic liquids, applications and micellization behaviour in presence of different additives.J. Mol. Liquids2024393123447
    [Google Scholar]
  7. BrenneckeJ.F. MaginnE.J. Ionic liquids: Innovative fluids for chemical processing.AIChE J.200147112384238910.1002/aic.690471102
    [Google Scholar]
  8. JutzF. AndansonJ.M. BaikerA. Ionic liquids and dense carbon dioxide: A beneficial biphasic system for catalysis.Chem. Rev.2011111232235310.1021/cr100194q 21053968
    [Google Scholar]
  9. QinL. WangX.H. Surface adsorption and thermodynamic properties of mixed system of ionic liquid surfactants with cetyltrimethyl ammonium bromide.RSC Adv.2017781514265143510.1039/C7RA08915E
    [Google Scholar]
  10. (a ZiaraniG.M. JavadiF. MohajerF. BadieiA. The synthesis and application of ionic liquid functionalized mesoporous silica SBA-15 for organic synthesis.Curr. Org. Synth.202219887490410.2174/1570179419666220329161233 35352650
    [Google Scholar]
  11. (b SharmaP. SharmaS. KumarH. Introduction to ionic liquids, applications and micellization behaviour in presence of different additives.J. Mol. Liq.2023123447
    [Google Scholar]
  12. RogersR.D. SeddonK.R. Ionic liquids-solvents of the future?Science20033025646792793
    [Google Scholar]
  13. AttriP. ChoiS. KimM. ShirataniM. ChoA.E. LeeW. Influence of alkyl chain substitution of ammonium ionic liquids on the activity and stability of tobacco etch virus protease.Int. J. Biol. Macromol.202015543944610.1016/j.ijbiomac.2020.03.175 32220643
    [Google Scholar]
  14. AttriP. ParkD.H. LeeS.H. KimY.S. KimY.B. KwonG.C. ChoiW. JunY. LeeH-S. ChoiE.H. KimI.T. Physicochemical properties of polyaniline–ionic liquid mixtures and their application in dye-sensitized solar cells.Sci. Adv. Mater.20157122583259510.1166/sam.2015.2577
    [Google Scholar]
  15. BhadaniA. SinghS. Novel gemini pyridinium surfactants: Synthesis and study of their surface activity, DNA binding, and cytotoxicity.Langmuir20092519117031171210.1021/la901641f 19788223
    [Google Scholar]
  16. BrevetD. JouanninC. Tourné-PéteilhC. DevoisselleJ.M. ViouxA. ViauL. Self-encapsulation of a drug-containing ionic liquid into mesoporous silica monoliths or nanoparticles by a sol–gel process.RSC Advances2016686829168292310.1039/C6RA17431K
    [Google Scholar]
  17. AttriP. KimM. ChoiE.H. ChoA.E. KogaK. ShirataniM. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays.Phys. Chem. Chem. Phys.20171937252772528810.1039/C7CP04083K 28759059
    [Google Scholar]
  18. LiQ. TongK. QiuJ. YanM. TianQ. ChenX. YueX. Molecular packing of surface active ionic liquids in a deep eutectic solvent: A small angle X-ray scattering (SAXS) study.Soft Matter201915255060506610.1039/C9SM00760A 31180406
    [Google Scholar]
  19. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  20. Cândido-BacaniP.M. ReisM.B. SerpeloniJ.M. CalvoT.R. VilegasW. VarandaE.A. CólusI.M.S. Mutagenicity and genotoxicity of isatin in mammalian cells in vivo.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20117191-2475110.1016/j.mrgentox.2010.11.006 21111845
    [Google Scholar]
  21. (a LiW. ZhaoS.J. GaoF. LvZ.S. TuJ.Y. XuZ. Synthesis and in vitro anti‐tumor, anti‐mycobacterial and anti‐hiv activities of diethylene‐glycol‐tethered bis‐isatin derivatives.ChemistrySelect2018336102501025410.1002/slct.201802185
    [Google Scholar]
  22. (b YakanH. Serdar ÇAVUŞM. KurtB.Z.E.N.G.İ.N. MuğluH. SönmezF. GüzelE. A new series of asymmetric bis-isatin derivatives containing urea/thiourea moiety: Preparation, spectroscopic elucidation, antioxidant properties and theoretical calculations.J. Mol. Struct.2021123913049510.1016/j.molstruc.2021.130495
    [Google Scholar]
  23. (c ObafemiC.A. AdegbiteO.B. FadareO.A. IwalewaE.O. OmisoreN.O. SanusiK. YilmazY. CeylanÜ. Tryptanthrin from microwave-assisted reduction of isatin using solid-state-supported sodium borohydride: DFT calculations, molecular docking and evaluation of its analgesic and anti-inflammatory activity.Heliyon202171e0575610.1016/j.heliyon.2020.e05756 33437886
    [Google Scholar]
  24. (a El-GhamryH.A. FawzyA. FarghalyT.A. BawazeerT.M. AlqarniN. AlkhatibF.M. GaberM. Evaluation of the efficiency of divalent cobalt and copper chelates based on isatin derivatives and thiosemicarbazide ligands as inhibitors for the corrosion of Sabic iron in acidic medium.Arab. J. Chem.2022151
    [Google Scholar]
  25. (b YounisA.M. Synthesis and characterization of some complexes derived from isatin dye ligand and study of their biological potency and anticorrosive behavior on aluminum metal in acidic medium.J. Inorg. Organomet. Polym. Mater.2022323895911
    [Google Scholar]
  26. Al-KhuzaieM.G.A. FahadM.M. Al-SafiA.J. Synthesis, reaction and biological importance of isatin derivatives.Biomed. Chem. Sci.20223119320610.48112/bcs.v1i3.221
    [Google Scholar]
  27. SharmaS. Magnetic nanoparticles‐supported synthesis of pyrazole scaffolds: A review.ChemistrySelect2024928e202401627
    [Google Scholar]
  28. SharmaS. SharmaP. BudhalakotiB. KumarA. SinghK. Kumar KambojR. BhatrolaK. Exploring the impact of ionic liquids on pyrazole derivatives synthesis: A critical review.ChemistrySelect2024931e20240192510.1002/slct.202401925
    [Google Scholar]
  29. SharmaS. BhatrolaK. IrfanA. DeviN. MishraK. DubeyK. Green synthesis of imidazoles: The catalytic efficacy of magnetic nanoparticles.Tetrahedron2024134246
    [Google Scholar]
  30. (a ShuklaP. K. SinghM. P. PatelR. A review on recent advances in chemistry, synthesis and biological applications of isatin derivatives.J. Appl. Pharm. Sci. Res.20181622
    [Google Scholar]
  31. (b VarunV. SonamS. KakkarR. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications.MedChemComm201910335136810.1039/C8MD00585K30996856
    [Google Scholar]
  32. (c AzizT. UllahA. UllahR. HaqF. IqbalM. KhanF.U. KiranM. Synthesis of isatin and its derivatives and their applications in biological system.Biomed. J. Sci. Tech. Res.20203042361523621http://dx.doi.org/10.26717/BJSTR.2020.30.004991
    [Google Scholar]
  33. (d GandhiP.V. BurandeS.R. ChardeM.S. ChakoleR.D. A review on isatin and its derivatives: Synthesis, reactions and applications.Int. J. Adv. Sci. Res.20211204111
    [Google Scholar]
  34. (e AsifM. AzazT. TiwariB. NasibullahM. Propagative isatin in organic synthesis of spirooxindoles through catalysis.Tetrahedron202313413330810.1016/j.tet.2023.133308
    [Google Scholar]
  35. (f Mohammadi ZiaraniG. PanahandeZ. MohajerF. GoodarziM. VarmaS. An overview of recent advances in isatin-based multicomponent reactions.Curr. Org. Chem.202226151485150210.2174/1385272827666221103102758
    [Google Scholar]
  36. PintoA.C. LapisA.A.M. da SilvaB.V. BastosR.S. DupontJ. NetoB.A.D. Pronounced ionic liquid effect in the synthesis of biologically active isatin-3-oxime derivatives under acid catalysis.Tetrahedron Lett.200849395639564110.1016/j.tetlet.2008.07.067
    [Google Scholar]
  37. KefayatiH. NarchinF. Rad-MoghadamK. An unexpected multicomponent reaction leading to 2-arylpyrrolo[2,3,4-kl]acridin-1(2H)-ones.Tetrahedron Lett.201253344573457510.1016/j.tetlet.2012.06.070
    [Google Scholar]
  38. AryaK. RawatD.S. DandiaA. SasaiH. Brønsted acidic ionic liquids: Green, efficient and reusable catalyst for synthesis of fluorinated spiro [indole-thiazinones/thiazolidinones] as antihistamic agents.J. Fluor. Chem.201213711712210.1016/j.jfluchem.2012.03.003
    [Google Scholar]
  39. AryaK. RawatD.S. SasaiH. Zeolite supported Brønsted-acid ionic liquids: An eco approach for synthesis of spiro[indole-pyrido[3,2-e]thiazine] in water under ultrasonication.Green Chem.20121471956196310.1039/c2gc35168d
    [Google Scholar]
  40. Khalafi-NezhadA. MohammadiS. Magnetic, acidic, ionic liquid-catalyzed one-pot synthesis of spirooxindoles.ACS Comb. Sci.201315951251810.1021/co400080z 23971413
    [Google Scholar]
  41. KoradeS.N. PatilJ.D. PoreD.M. Novel task-specific ionic liquid for room temperature synthesis of spiro-1,2,4-triazolidine-3-thiones.Monatsh. Chem.2016147122143214910.1007/s00706‑016‑1740‑8
    [Google Scholar]
  42. SatasiaS.P. KalariaP.N. VaghasiyaB.K. AvalaniJ.R. RavalD.K. Synthesis of symmetrical and unsymmetrical 3, 3-Di (Indolyl) indolin-2-ones via friedel–crafts substitution reaction using cellulose supported acidic ionic liquid.J. Pure Appl. Sci201724110116
    [Google Scholar]
  43. Mirhosseini-EshkevariB. GhasemzadehM.A. EsnaashariM. Highly efficient and green approach for the synthesis of spirooxindole derivatives in the presence of novel Brønsted acidic ionic liquids incorporated in UiO‐66 nanocages.Appl. Organomet. Chem.2019338e502710.1002/aoc.5027
    [Google Scholar]
  44. GuptaR. YadavM. GaurR. AroraG. RanaP. YadavP. AdholeyaA. SharmaR.K. Silica-coated magnetic-nanoparticle-supported DABCO-derived acidic ionic liquid for the efficient synthesis of bioactive 3, 3-di (indolyl) indolin-2-ones.ACS Omega2019425215292153910.1021/acsomega.9b03237 31867549
    [Google Scholar]
  45. ElyasiZ. GhomiJ.S. NajafiG.R. Ultrasound-Engineered fabrication of immobilized molybdenum complex on Cross-Linked poly (Ionic Liquid) as a new acidic catalyst for the regioselective synthesis of pharmaceutical polysubstituted spiro compounds.Ultrason. Sonochem.20217510561410.1016/j.ultsonch.2021.105614 34111724
    [Google Scholar]
  46. PasuparthyS.D. SomkuwarP. KaliV. Somanahalli KalleshappaA.K. MaitiB. Synthesis of dimeric indoles from Friedel–Crafts reaction of indoles with ketones catalysed by a Brønsted acid ionic liquid and their interactions with BSA and DNA.New J. Chem.20244834149041492310.1039/D4NJ02651A
    [Google Scholar]
  47. Rad-MoghadamK. Sharifi-KiasaraieM. Taheri-AmlashiH. Synthesis of symmetrical and unsymmetrical 3,3-di(indolyl)indolin-2-ones under controlled catalysis of ionic liquids.Tetrahedron201066132316232110.1016/j.tet.2010.02.017 32287419
    [Google Scholar]
  48. DandiaA. JainA.K. SharmaS. An efficient and highly selective approach for the construction of novel dispiro heterocycles in guanidine-based task-specific [TMG][Ac] ionic liquid.Tetrahedron Lett.201253445859586310.1016/j.tetlet.2012.08.060
    [Google Scholar]
  49. SinghH. SindhuJ. KhuranaJ.M. SharmaC. AnejaK.R. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity.Eur. J. Med. Chem.20147714515410.1016/j.ejmech.2014.03.016 24631842
    [Google Scholar]
  50. HojatiS.F. RaoufH. Ionic liquid for one-pot synthesis of spiro[indoline-3,4′-pyrano[2,3- c]pyrazoles].Org. Prep. Proced. Int.201648647448010.1080/00304948.2016.1234824
    [Google Scholar]
  51. ZhangM. LiuY.H. ShangZ.R. HuH.C. ZhangZ.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation.Catal. Commun.201788394410.1016/j.catcom.2016.09.028
    [Google Scholar]
  52. GillC.H. KulkarniM.V. JadhavC.K. NipateA.S. MagarB.K. Efficient and environmentally sustainable domino protocol for the synthesis of diversified dispiroheterocycles using 1-Butyl-3-methylimidazolium bromide [bmim]Br. Chem. Rev. Lett.202143153163
    [Google Scholar]
  53. MehrdadM. FarajiL. JadidiK. EslamiP. SureniH. A regioselective and diastereoselective synthesis of new spiro-isoxazolidines via 1,3-dipolar cycloaddition of stable isatin ketonitrone and various dipolarophiles.Monatsh. Chem.2011142991792110.1007/s00706‑011‑0518‑2
    [Google Scholar]
  54. Rad-MoghadamK. Youseftabar-MiriL. Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [BMIm]BF4 catalysis.Tetrahedron201167315693569910.1016/j.tet.2011.05.077
    [Google Scholar]
  55. JainR. SharmaK. KumarD. Ionic liquid mediated 1,3-dipolar cycloaddition of azomethine ylides: A facile and green synthesis of novel dispiro heterocycles.Tetrahedron Lett.201253151993199710.1016/j.tetlet.2012.02.029
    [Google Scholar]
  56. AryaK. PrabhakarB. Ionic liquid confined zeolite system: An approach towards water mediated room temperature synthesis of spiro[pyrazolo[3,4-e]benzothiazepines].Green Chem.201315102885289410.1039/c3gc40553b
    [Google Scholar]
  57. DandiaA. GuptaL. An efficient one-pot synthesis of spiro [indole-pyrazolobenzothiazepine] derivatives in ionic liquid using amberlyst-15 as a reusable catalyst.Curr. Green Chem.201411808510.2174/221334610101131218095819
    [Google Scholar]
  58. RaiP. SrivastavaM. SinghJ. SinghJ. Chitosan/ionic liquid forms a renewable and reusable catalyst system used for the synthesis of highly functionalized spiro derivatives.New J. Chem.20143873181318610.1039/c3nj01545a
    [Google Scholar]
  59. AlmansourA.I. ArumugamN. KumarR.S. PeriyasamiG. A GhabbourH. FunH.K. A novel one-pot green synthesis of dispirooxindolo-pyrrolidines via 1,3-dipolar cycloaddition reactions of azomethine ylides.Molecules201520178079110.3390/molecules20010780 25574820
    [Google Scholar]
  60. AlmansourA. KumarR. ArumugamN. BasiriA. KiaY. AliM. FarooqM. MurugaiyahV. A facile ionic liquid promoted synthesis, cholinesterase inhibitory activity and molecular modeling study of novel highly functionalized spiropyrrolidines.Molecules20152022296230910.3390/molecules20022296 25642838
    [Google Scholar]
  61. PadviS.A. TayadeY.A. WaghY.B. DalalD.S. [bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature.Chin. Chem. Lett.201627571472010.1016/j.cclet.2016.01.016
    [Google Scholar]
  62. Yazdani-Elah-AbadiA. MohebatR. KanganiM. Microwave-assisted domino cyclization for the synthesis of novel spiro-benzo[a]phenazine annulated heterocycles catalyzed by a basic ionic liquid.J. Chin. Chem. Soc.201764669069810.1002/jccs.201700034
    [Google Scholar]
  63. ZhangM.M. WangY. LiuJ.Q. WangX.S. An efficient green synthesis of 5H-spiro[benzo[4,5]imidazo[1,2-c]quinazoline-6,3′-indolin]-2′-ones catalyzed by iodine in ionic liquids.Heterocycl. Commun.201723538538810.1515/hc‑2017‑0046
    [Google Scholar]
  64. ArumugamN. AlmansourA.I. KumarR.S. PeriasamyV.S. AthinarayananJ. AlshatwiA.A. GovindasamiP. AltafM. MenéndezJ.C. Regio- and diastereoselective synthesis of anticancer spirooxindoles derived from tryptophan and histidine via three-component 1,3-dipolar cycloadditions in an ionic liquid.Tetrahedron201874385358536610.1016/j.tet.2018.04.032
    [Google Scholar]
  65. ChakrabortyA. GhoshT. MaitiD.K. MajumdarS. BMIm [OH] catalyzed rapid, mild and improved protocol for the synthesis of 3‐hydroxy‐3‐(nitroalkyl)indolin‐2‐one derivatives in water.ChemistrySelect2019461841184510.1002/slct.201804026
    [Google Scholar]
  66. PogakuV. KrishnaV.S. SriramD. RanganK. BasavojuS. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines.Bioorg. Med. Chem. Lett.201929131682168710.1016/j.bmcl.2019.04.026 31047752
    [Google Scholar]
  67. WestphalR. Venturini FilhoE. LoureiroL.B. TormenaC.F. PessoaC. GuimarãesC.J. MansoM.P. FiorotR.G. CamposV.R. ResendeJ.A.L.C. MediciF. GrecoS.J. Green synthesis of spiro compounds with potential anticancer activity through Knoevenagel/Michael/cyclization multicomponent domino reactions organocatalyzed by ionic liquid and microwave-assisted.Molecules20222722805110.3390/molecules27228051 36432151
    [Google Scholar]
  68. BaddepuriS. GamidiR.K. KumariJ. SriramD. BasavojuS. Ultrasound-assisted ionic liquid-mediated green method for synthesis of 1,3-diphenylpyrazole-based spirooxindolopyrrolizidines, their anti-tubercular activity, molecular docking study and ADME predictions.New J. Chem.2024
    [Google Scholar]
  69. RukyanaikV. GamidiR.K. KumariJ. SriramD. BasavojuS. A Green one-pot three component synthesis of thiazolidine-2,4-dione based bisspirooxindolo-pyrrolidines with [Bmim]BF4: Their in vitro and in silico anti-TB studies.Mol. Divers.202411510.1007/s11030‑024‑10853‑5 38789853
    [Google Scholar]
  70. KumarM. SharmaK. AryaA.K. Use of SO3H-functionalized halogenfree ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles.Tetrahedron Lett.201253344604460810.1016/j.tetlet.2012.06.085
    [Google Scholar]
  71. AshokD. GunduS. AamateV.K. DevulapallyM.G. ReddyM.S. Facile ionic liquid-mediated, microwave assisted green synthesis, and antioxidant studies of novel indolin-2-one annulated spirochromanone conjugates.Russ. J. Gen. Chem.201585370871710.1134/S1070363215030305
    [Google Scholar]
  72. NikoofarK. ShahriyariF. n-Octyl-3-methylpipyridinium bromide ([OMePPy]+ Br-): novel ionic liquid to promote green synthesis of polycyclic fused acridines.Iran J. Catal.2020104325331
    [Google Scholar]
  73. ElyasiZ. Reza NajafiG. Safaei GhomiJ. SharifM.A. Design and fabrication of novel polymerized dual nature ionic liquid as highly effective catalyst for regioselective synthesis of monospiro derivatives.J. Mol. Liq.202134411780010.1016/j.molliq.2021.117800
    [Google Scholar]
  74. KohestaniT. Sayyed-AlangiS.Z. HossainiZ. BaeiM.T. Ionic liquid as an effective green media for the synthesis of (5Z, 8Z)-7H-pyrido[2,3-d]azepine derivatives and recycable Fe3O4/TiO2/multi-wall cabon nanotubes magnetic nanocomposites as high performance organometallic nanocatalyst.Mol. Divers.20222631441145410.1007/s11030‑021‑10269‑5 34304343
    [Google Scholar]
  75. PatelN. PatelU. DadhaniaA. Highly efficient and green synthesis of spiro[indoline-3,9′-xanthene]trione and spiro[chromene-4,3′-indoline]-3-carbonitrile derivatives in water catalyzed by graphene oxide-supported dicationic ionic liquid.Res. Chem. Intermed.20214762189220610.1007/s11164‑021‑04405‑x
    [Google Scholar]
  76. Molaei YielzolehF. NikoofarK. Nano silicated-FeAl2O4 functionalized by DL-alaninium nitrate ionic liquid (FeAl2O4-SiO2@[DL-Ala][NO3]) as versatile promotor for aqua-mediated synthesis of spiro[chromenopyrazole-indene-triones and spiro[chromenopyrazole-indoline-diones.Sci. Rep.20241411629610.1038/s41598‑024‑66750‑239009652
    [Google Scholar]
/content/journals/coc/10.2174/0113852728357158241207145409
Loading
/content/journals/coc/10.2174/0113852728357158241207145409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test