Skip to content
2000
Volume 29, Issue 16
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In the past decade, the field of -quinone methides (-QMs) has witnessed remarkable advancements, underscoring their pivotal role as synthetic intermediates in organic chemistry. These electrically neutral species, distinguished by a cyclohexadiene moiety conjugated with a carbonyl and an exo-methylene group, possess an aromatic zwitterionic resonance structure. This unique framework endows them with a pronounced electrophilicity, particularly at the 1,4-positions. The rich chemistry of -QMs encompasses three principal reaction modalities: 1,4-conjugated addition, [4 + X] cycloaddition (X = 1, 2, 3, ), and oxa-6π-electrocyclization pathways. Specifically, the synthesis of chromane derivatives is achieved through [4 + 2] cycloaddition and subsequent oxa-6π-electrocyclization, whereas benzofuran derivatives are accessed the [4 + 1] cycloaddition route. This review provides a systematic summary of the latest advancements in cycloaddition reactions involving -quinone methides and their derivatives. It offers an in-depth analysis of the substrate diversity and potential reaction mechanisms underlying these transformations. The cycloaddition reactions presented herein are uniformly characterized as ionic systems, with the tautomerization between the oxygen anion generated subsequent to the deprotonation of -QMs and the resulting carbonyl group identified as a pivotal step for reaction activation. Moreover, we have expanded on the discussion to include a detailed examination of drug intermediate compounds derived from -QMs. These skeletal derivatives are highlighted for their growing utility in the realm of drug design and synthesis, effectively bridging the divide between foundational research and pharmaceutical applications. We aspire to stimulate the evolution and innovation of synthetic methodologies that leverage -QMs as scaffolds. By in-depth investigation of the -QMs-mediated cyclization reactions, we aim to offer theoretical insights that will guide the synthesis of intricate (chiral) cyclic compounds, thereby, enhancing the practical application of -QMs in both chemical research and medical development.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728356759241129064208
2025-01-13
2025-09-01
Loading full text...

Full text loading...

References

  1. PurdyT.N. MooreB.S. LukowskiA.L. Harnessing ortho-quinone methides in natural product biosynthesis and biocatalysis.J. Nat. Prod.202285368870110.1021/acs.jnatprod.1c01026 35108487
    [Google Scholar]
  2. SinghM.S. NagarajuA. AnandN. ChowdhuryS. ortho-quinone methide (o-QM): A highly reactive, ephemeral and versatile intermediate in organic synthesis.RSC Adv.2014499559245595910.1039/C4RA11444B
    [Google Scholar]
  3. WillisN.J. BrayC.D. Ortho-quinone methides in natural product synthesis.Chemistry201218309160917310.1002/chem.201200619 22707392
    [Google Scholar]
  4. MaestroA. ZurroM. Phosphine-catalysed transformations of ortho- and para-quinone methides.Org. Biomol. Chem.202321418244825810.1039/D3OB01276J 37807758
    [Google Scholar]
  5. MaY.H. HeX.Y. YangQ.Q. BoucherifA. XuanJ. Recent advances in organocatalytic asymmetric cycloaddition reactions through ortho‐quinone methide scaffolds.Asian J. Org. Chem.20211061233125010.1002/ajoc.202100141
    [Google Scholar]
  6. BonnerW.A. BurkeN.I. FleckW.E. HillR.K. JouleJ.A. SjöbergB. ZalkowL.H. The absolute configurations of tremetone and toxol.Tetrahedron1964208198610.1016/S0040‑4020(01)98469‑8
    [Google Scholar]
  7. AsaiT. LuoD. ObaraY. TaniguchiT. MondeK. YamashitaK. OshimaY. Dihydrobenzofurans as cannabinoid receptor ligands from Cordyceps annullata, an entomopathogenic fungus cultivated in the presence of an HDAC inhibitor.Tetrahedron Lett.201253172239224310.1016/j.tetlet.2012.02.088
    [Google Scholar]
  8. JarvisB.B. PenaN.B. Cömezóg̀luS.N. RaoM.M. Non-trichothecenes from Baccharis megapotamica.Phytochemistry198625253353510.1016/S0031‑9422(00)85519‑3
    [Google Scholar]
  9. RattanaburiS. MahabusarakamW. PhongpaichitS. CarrollA.R. Neolignans from Callistemon lanceolatus.Phytochem. Lett.201251182110.1016/j.phytol.2011.08.010
    [Google Scholar]
  10. AbdissaN. PanF. GruhonjicA. GräfensteinJ. FitzpatrickP.A. LandbergG. RissanenK. YenesewA. ErdélyiM. Naphthalene derivatives from the roots of Pentas parvifolia and Pentas bussei.J. Nat. Prod.20167992181218710.1021/acs.jnatprod.6b00178 27518587
    [Google Scholar]
  11. LinY. WuX. FengS. JiangG. LuoJ. ZhouS. VrijmoedL.L.P. JonesE.B.G. KrohnK. SteingröverK. ZsilaF. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the south china sea coast.J. Org. Chem.200166196252625610.1021/jo015522r 11559170
    [Google Scholar]
  12. BaldwinJ.E. MaywegA.V.W. NeumannK. PritchardG.J. Studies toward the biomimetic synthesis of tropolone natural products via a hetero Diels-Alder reaction.Org. Lett.19991121933193510.1021/ol991067y 10905860
    [Google Scholar]
  13. FerreiraS.B. de Carvalho da SilvaF. BezerraF.A.F.M. LourençoM.C.S. KaiserC.R. PintoA.C. FerreiraV.F. Synthesis of α- and β-pyran naphthoquinones as a new class of antitubercular agents.Arch. Pharm. (Weinheim)20103432819010.1002/ardp.200900162 20077521
    [Google Scholar]
  14. KimS. SuB.N. RiswanS. KardonoL.B.S. AfriastiniJ.J. GallucciJ.C. ChaiH. FarnsworthN.R. CordellG.A. SwansonS.M. KinghornA.D. Edulisones A and B, two epimeric benzo[b]oxepine derivatives from the bark of Aglaia edulis.Tetrahedron Lett.200546529021902410.1016/j.tetlet.2005.10.107
    [Google Scholar]
  15. LanW. GaoX. LiM. XuL. QinZ. FuB. Base-mediated [4 + 3] annulation of α-halogen hydroximate with o-QMs: Facile access to 1, 4-benzoxazepine scaffold.Tetrahedron Lett.202413615491110.1016/j.tetlet.2024.154911
    [Google Scholar]
  16. DeanF.H. PartonB. SomvichienN. TaylorD.A.H. Chromones, containing an oxepin ring, from Ptaeroxylon obliqum.Tetrahedron Lett.19678363459346410.1016/S0040‑4039(01)89821‑X
    [Google Scholar]
  17. HerrmannJ.M. UntergehrerM. JürgenliemkG. HeilmannJ. KönigB. Synthesis of phenyl‐1‐benzoxepinols isolated from butcher’s broom and analogous benzoxepines.Eur. J. Org. Chem.20142014153170318110.1002/ejoc.201400004
    [Google Scholar]
  18. LiuW. XingY. YanD. KongW. ShenK. Nickel-catalyzed electrophiles-controlled enantioselective reductive arylative cyclization and enantiospecific reductive alkylative cyclization of 1,6-enynes.Nat. Commun.2024151178710.1038/s41467‑024‑45617‑0 38413585
    [Google Scholar]
  19. SteimanT.J. KalbA.E. CoombsJ.C. KirklandJ.K. TorresH. EssD.H. UyedaC. Dinickel-catalyzed vinylidene–alkene cyclization reactions.ACS Catal.20211123144081441610.1021/acscatal.1c03350 36237605
    [Google Scholar]
  20. FontM. GulíasM. MascareñasJ.L. Transition‐metal‐catalyzed annulations involving the activation of C(sp3)-H bonds.Angew. Chem. Int. Ed.2022616e20211284810.1002/anie.202112848 34699657
    [Google Scholar]
  21. TanT.D. ZhuX.Q. BuH.Z. DengG. ChenY.B. LiuR.S. YeL.W. Copper‐catalyzed cascade cyclization of indolyl homopropargyl amides: Stereospecific construction of bridged aza‐[n. 2.1] skeletons.Angew. Chem. Int. Ed.201958289632963910.1002/anie.201904698 31095848
    [Google Scholar]
  22. BlaszczykS.A. GlazierD.A. TangW. Rhodium-catalyzed (5 + 2) and (5 + 1) cycloadditions using 1,4-enynes as five-carbon building blocks.Acc. Chem. Res.202053123124310.1021/acs.accounts.9b00477 31820914
    [Google Scholar]
  23. LiQ.Z. ZengR. FanY. LiuY.Q. QiT. ZhangX. LiJ.L. Remote C(sp3)-H acylation of amides and cascade cyclization via N‐heterocyclic carbene organocatalysis.Angew. Chem. Int. Ed.20226115e20211662910.1002/anie.202116629 35112461
    [Google Scholar]
  24. ShariqueM. TambarU.K. N-Heterocyclic carbene based catalytic platform for Hauser–Kraus annulations.Chem. Sci. (Camb.)202011277239724310.1039/D0SC03116J 34123009
    [Google Scholar]
  25. ShaoY.D. DongM.M. WangY.A. ChengP.M. WangT. ChengD.J. Organocatalytic atroposelective friedländer quinoline heteroannulation.Org. Lett.201921124831483610.1021/acs.orglett.9b01731 31180222
    [Google Scholar]
  26. PlamondonS.J. WarnicaJ.M. KaldreD. GleasonJ.L. Hydrazide‐catalyzed polyene cyclization: Asymmetric organocatalytic synthesis of cis ‐decalins.Angew. Chem. Int. Ed.202059125325810.1002/anie.201911952 31671228
    [Google Scholar]
  27. LuS. OngJ.Y. PohS.B. TsangT. ZhaoY. Transition‐metal‐free decarboxylative propargylic substitution/cyclization with either azolium enolates or acyl anions.Angew. Chem. Int. Ed.201857205714571910.1002/anie.201801340 29577534
    [Google Scholar]
  28. AbramsR. LefebvreQ. ClaydenJ. Transition metal free cycloamination of prenyl carbamates and ureas promoted by aryldiazonium salts.Angew. Chem. Int. Ed.20185741135871359110.1002/anie.201809323 30168287
    [Google Scholar]
  29. HackD. DürrA.B. DeckersK. ChauhanP. SelingN. RübenachL. MertensL. RaabeG. SchoenebeckF. EndersD. Asymmetric synthesis of spiropyrazolones by sequential organo‐ and silver catalysis.Angew. Chem. Int. Ed.20165551797180010.1002/anie.201510602 26676875
    [Google Scholar]
  30. YangB. GaoS. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis.Chem. Soc. Rev.201847217926795310.1039/C8CS00274F 29993045
    [Google Scholar]
  31. SchneiderC. DorschC. Asymmetric brønsted acid-catalyzed cycloadditions of ortho-quinone methides and related compounds.Synthesis202254143125314110.1055/a‑1781‑6538
    [Google Scholar]
  32. XiaoW-J. YangQ-Q. HeX-Y. MaY-H. [4+n] Annulation reactions using ortho-chloromethyl anilines as aza-ortho-quinone methide precursors.Synthesis202154953964
    [Google Scholar]
  33. MartinsM.T.M. DiasF.R.F. de MoraesR.S.M. da SilvaM.F.V. LucioK.R. D’Oliveira GóesK. do NascimentoP.A. da SilvaA.S.S. FerreiraV.F. CunhaA.C. Multicomponent reactions (MCRs) with o‐quinone methides.Chem. Rec.2022223e20210025110.1002/tcr.202100251 35112473
    [Google Scholar]
  34. QinW. LiuY. YanH. Enantioselective synthesis of atropisomers via vinylidene ortho‐quinone methides (VQMs).Acc. Chem. Res.202255192780279510.1021/acs.accounts.2c00486 36121104
    [Google Scholar]
  35. ZhuX.Q. YangH.Y. YeL.W. Chiral brønsted acid‐catalyzed asymmetric reaction via vinylidene ortho‐quinone methides.Chemistry20243049e20240224710.1002/chem.202402247 38923595
    [Google Scholar]
  36. JiangF. LuoG.Z. ZhuZ.Q. WangC.S. MeiG.J. ShiF. Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o‐quinone methides with Morita–Baylis–Hillman carbonates.J. Org. Chem.20188317100601006910.1021/acs.joc.8b01390 30106576
    [Google Scholar]
  37. ZielkeK. WaserM. Formal (4 + 1)-addition of allenoates to o‐quinone methides.Org. Lett.201820376877110.1021/acs.orglett.7b03906 29350040
    [Google Scholar]
  38. ZhouJ. HuangW.J. JiangG.F. Synthesis of chiral pyrazolone and spiropyrazolone derivatives through squaramide-catalyzed reaction of pyrazolin-5-ones with o‐quinone methides.Org. Lett.20182041158116110.1021/acs.orglett.8b00025 29420039
    [Google Scholar]
  39. ZhouT. XiaT. LiuZ. LiuL. ZhangJ. Asymmetric phosphine‐catalyzed [4 + 1] annulations of o‐quinone methides with MBH carbonates.Adv. Synth. Catal.2018360234475447910.1002/adsc.201801152
    [Google Scholar]
  40. ChenL. LiuX.Y. ZhangJ. DuanL. WenZ. NiH.L. Relay Cu(I)/brønsted base catalysis for phospha‐michael addition/5‐exo‐dig cyclization/isomerization of in situ formed aza‐Alkynyl o‐quinone methides with P(O)−H compounds to C3‐phosphorylated indoles.Adv. Synth. Catal.2021363123006301210.1002/adsc.202100275
    [Google Scholar]
  41. ZhangX. GaoY. LiuY. MiaoZ. Diastereoselective synthesis of tetrabenzohydrofuran spirooxindoles via diethyl phosphite-mediated coupling of isatins with o‐quinone methides.J. Org. Chem.202186138630864010.1021/acs.joc.1c00336 34162210
    [Google Scholar]
  42. MaY.H. HeX.Y. WangL. YangQ.Q. PPh3‐triggered tandem synthesis of 2,3-disubstituted benzofuran derivatives from o‐quinone methides with acyl chlorides.J. Org. Chem.20228717118521185610.1021/acs.joc.2c00910 35960255
    [Google Scholar]
  43. LiuY.Q. LiQ.Z. ZhuH.P. FengX. PengC. HuangW. LiJ.L. HanB. Direct sulfide-catalyzed diastereoselective [4 + 1] annulations of ortho‐quinone methides and bromides.J. Org. Chem.20188320127531276210.1021/acs.joc.8b02189 30247029
    [Google Scholar]
  44. DuJ.Y. MaY.H. YuanR.Q. XinN. NieS.Z. MaC.L. LiC.Z. ZhaoC.Q. Metal-free one-pot synthesis of 3-phosphinoylbenzofurans via phospha-michael addition/cyclization of h-phosphine oxides and in situ generated ortho-quinone methides.Org. Lett.201820247748010.1021/acs.orglett.7b03863 29313691
    [Google Scholar]
  45. WangM.C. WeiP. LiP. LinC. Facile synthesis of spirocyclic oxindole scaffolds via intermolecular [4 + 1] cycloaddition of ortho‐quinone methides with 3-chlorooxindoles.Org. Prep. Proced. Int.202456435037010.1080/00304948.2024.2367850
    [Google Scholar]
  46. PietersL. Van DyckS. GaoM. BaiR. HamelE. VlietinckA. LemièreG. Synthesis and biological evaluation of dihydrobenzofuran lignans and related compounds as potential antitumor agents that inhibit tubulin polymerization.J. Med. Chem.199942265475548110.1021/jm990251m 10639289
    [Google Scholar]
  47. ShiG.Q. DropinskiJ.F. ZhangY. SantiniC. SahooS.P. BergerJ.P. MacNaulK.L. ZhouG. AgrawalA. AlvaroR. CaiT. HernandezM. WrightS.D. MollerD.E. HeckJ.V. MeinkeP.T. Novel 2,3-dihydrobenzofuran-2-carboxylic acids: Highly potent and subtype-selective PPARα agonists with potent hypolipidemic activity.J. Med. Chem.200548175589559910.1021/jm050373g 16107159
    [Google Scholar]
  48. SunY. LingS. ChenZ. Synthesis of trifluoromethyl‐containing 2,3‐dihydrobenzofurans via a formal [4+1] annulation of in situ generated] o‐quinone methides and CF3−imidoyl sulfoxonium ylides.Asian J. Org. Chem.2024135e20240002510.1002/ajoc.202400025
    [Google Scholar]
  49. DengY.H. ChuW.D. ZhangX.Z. YanX. YuK.Y. YangL.L. HuangH. FanC.A. Cinchona alkaloid catalyzed enantioselective [4 + 2] annulation of allenic esters and in situ generated ortho‐quinone methides: Asymmetric synthesis of functionalized chromans.J. Org. Chem.201782105433544010.1021/acs.joc.7b00370 28421762
    [Google Scholar]
  50. ZhaoP. ChengA. WangX. MaJ. ZhaoG. LiY. ZhangY. ZhaoB. Asymmetric intramolecular hydroalkoxylation of unactivated alkenes catalyzed by chiral N‐triflyl phosphoramide and TiCl4+.Chin. J. Chem.202038656556910.1002/cjoc.201900544
    [Google Scholar]
  51. NishikawaY. HamamotoY. SatohR. AkadaN. KajitaS. NomotoM. MiyataM. NakamuraM. MatsubaraC. HaraO. Enantioselective bromolactonization of trisubstituted olefinic acids catalyzed by chiral pyridyl phosphoramides.Chemistry20182471188801888510.1002/chem.201804630 30230634
    [Google Scholar]
  52. FanL. HanC. LiX. YaoJ. WangZ. YaoC. ChenW. WangT. ZhaoJ. Enantioselective polyene cyclization catalyzed by a chiral brønsted acid.Angew. Chem. Int. Ed.20185782115211910.1002/anie.201711603 29316110
    [Google Scholar]
  53. VillarL. UriaU. MartínezJ.I. PrietoL. ReyesE. CarrilloL. VicarioJ.L. Enantioselective oxidative (4 + 3) cycloadditions between allenamides and furans through bifunctional hydrogen‐bonding/ion‐pairing interactions.Angew. Chem. Int. Ed.20175635105351053810.1002/anie.201704804 28671738
    [Google Scholar]
  54. NishikawaY. NakanoS. TahiraY. TerazawaK. YamazakiK. KitamuraC. HaraO. Chiral pyridinium phosphoramide as a dual brønsted acid catalyst for enantioselective Diels–Alder reaction.Org. Lett.20161892004200710.1021/acs.orglett.6b00608 27093584
    [Google Scholar]
  55. HanZ.Y. ChenD.F. WangY.Y. GuoR. WangP.S. WangC. GongL.Z. Hybrid metal/organo relay catalysis enables enynes to be latent dienes for asymmetric Diels-Alder reaction.J. Am. Chem. Soc.2012134156532653510.1021/ja3007148 22471657
    [Google Scholar]
  56. LiL.Z. WangC.S. GuoW.F. MeiG.J. ShiF. Catalytic asymmetric [4+2] cycloaddition of in situ generated o‐quinone methide imines with o‐hydroxystyrenes: Diastereo- and enantioselective construction of tetrahydroquinoline frameworks.J. Org. Chem.201883261462310.1021/acs.joc.7b02533 29276884
    [Google Scholar]
  57. ZhangJ. LiuX. GuoS. HeC. XiaoW. LinL. FengX. Enantioselective formal [4 + 2] annulation of ortho-quinone methides with ortho-hydroxyphenyl α,β-unsaturated compounds.J. Org. Chem.20188317101751018510.1021/acs.joc.8b01425 30028136
    [Google Scholar]
  58. WangZ. SunJ. Enantioselective [4 + 2] cycloaddition of o‐quinone methides and vinyl sulfides: Indirect access to generally substituted chiral chromanes.Org. Lett.20171992334233710.1021/acs.orglett.7b00867 28445070
    [Google Scholar]
  59. ShenY.B. LiS.S. LiuX. YuL. SunY.M. LiuQ. XiaoJ. Formal [4 + 2] annulation of oxindole-embedded ortho‐quinone methides with 1,3-dicarbonyls: Synthesis of spiro[chromen-4,3′-oxindole] scaffolds.J. Org. Chem.20198473990399910.1021/acs.joc.8b03260 30777425
    [Google Scholar]
  60. OsipovD.V. OsyaninV.A. KhaysanovaG.D. MasterovaE.R. KrasnikovP.E. KlimochkinY.N. An inverse electron demand azo-Diels–Alder reaction of o‐quinone methides and imino ethers: Synthesis of benzocondensed 1,3-oxazines.J. Org. Chem.20188384775478510.1021/acs.joc.8b00692 29595976
    [Google Scholar]
  61. WangC.Y. HanJ.B. WangL. TangX.Y. Lewis acid-catalyzed [4 + 2] cycloaddition of n‐tosylhydrazones with ortho‐quinone methides.J. Org. Chem.20198421142581426910.1021/acs.joc.9b02040 31599153
    [Google Scholar]
  62. WangZ. WangT. YaoW. LuY. Phosphine-catalyzed enantioselective [4 + 2] annulation of o‐quinone methides with allene ketones.Org. Lett.201719154126412910.1021/acs.orglett.7b01936 28723160
    [Google Scholar]
  63. SpankaM. SchneiderC. Phosphoric acid-catalyzed aldehyde addition to in situ generated o‐quinone methides: An enantio- and diastereoselective entry toward cis‐3,4-diaryl dihydrocoumarins.Org. Lett.201820164769477210.1021/acs.orglett.8b01865 30074397
    [Google Scholar]
  64. ShenY.B. LiS.S. WangL. AnX.D. LiuQ. LiuX. XiaoJ. Organocatalytic dearomative [4 + 2] cycloadditions of biomass-derived 2,5-dimethylfuran with ortho‐quinone methides: Access to multisubstituted chromanes.Org. Lett.201820196069607310.1021/acs.orglett.8b02448 30212223
    [Google Scholar]
  65. ShenG. HeF. XieW. GuH. YangX. Diastereodivergent asymmetric [4 + 2] cycloaddition of in situ generated ortho‐quinone methides and allenyl ketones enabled by chiral phosphoric acid catalysis.ACS Catal.20231319124721248010.1021/acscatal.3c02851
    [Google Scholar]
  66. WangL. HuangZ. GuoX. LiuJ. DongJ. XuX. Diastereodivergent synthesis of chromeno[2,3-b]chromenes by tuning all of the reactivity centers of isocyanoacetate.Chem. Commun. (Camb.)202258446433643610.1039/D2CC01632J 35545968
    [Google Scholar]
  67. YamadaT. FujiiA. FurugenC. KobayashiK. HyodoT. IkawaT. SajikiH. Gold‐catalyzed synthesis of ortho‐quinone methide analogues as reactive synthetic precursors.Adv. Synth. Catal.2024366102270227610.1002/adsc.202400013
    [Google Scholar]
  68. XiongT. XuY.Z. WangY. XiaoY.C. ChenF.E. Organocatalytic formal [4 + 2] cycloaddition of o‐quinone-methyl derivatives and 2-isocyanatomalonate diesters for the construction of chroman derivatives with adjacent quaternary chiral centers.Org. Chem. Front.202411102917292110.1039/D4QO00141A
    [Google Scholar]
  69. ShikariA. ParidaC. Chandra PanS. Catalytic asymmetric dearomatization of 2,3-disubstituted indoles by a [4 + 2] cycloaddition reaction with in situ generated vinylidene ortho‐quinone methides: Access to polycyclic fused indolines.Org. Lett.202426245057506210.1021/acs.orglett.4c00557 38489515
    [Google Scholar]
  70. StempelE. GaichT. Cyclohepta[b]indoles: A privileged structure motif in natural products and drug design.Acc. Chem. Res.201649112390240210.1021/acs.accounts.6b00265 27709885
    [Google Scholar]
  71. GataullinR.R. New syntheses of cycloalka[b]indoles.Russ. J. Org. Chem.20165291227126310.1134/S1070428016090013
    [Google Scholar]
  72. MuraseM. WatanabeK. YoshidaT. TobinagaS. A new concise synthesis of arcyriacyanin A and its unique inhibitory activity against a panel of human cancer cell line.Chem. Pharm. Bull. (Tokyo)2000481818410.1248/cpb.48.81 10705481
    [Google Scholar]
  73. NapperA.D. HixonJ. McDonaghT. KeaveyK. PonsJ.F. BarkerJ. YauW.T. AmouzeghP. FleggA. HamelinE. ThomasR.J. KatesM. JonesS. NaviaM.A. SaundersJ.O. DiStefanoP.S. CurtisR. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1.J. Med. Chem.200548258045805410.1021/jm050522v 16335928
    [Google Scholar]
  74. LaiB.W. QuS.Y. YinY.X. LiR. DongK. ShiF. Cooperative catalysis-enabled (4 + 3) cycloaddition of 2-indolylmethanols with in situ-generated ortho‐naphthoquinone methides.J. Org. Chem.20248914101971021110.1021/acs.joc.4c01080 38959517
    [Google Scholar]
  75. TaylorR.D. MacCossM. LawsonA.D.G. Rings in drugs.J. Med. Chem.201457145845585910.1021/jm4017625 24471928
    [Google Scholar]
  76. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules24213839 31731387
    [Google Scholar]
  77. LiangD. GaoP. ZhangZ. XiaoW. ChenJ. Controlled generation of ortho-quinone methides and (4 + 3) cyclization with 2-indolylalcohols by dual photoredox/Brønsted acid relay catalysis.Green Synth. Catal.2024111210.1016/j.gresc.2024.01.002
    [Google Scholar]
  78. QiS.S. YinH. WangY.F. WangC.J. HanH.T. ManT.T. XuD.Q. Catalytic asymmetric conjugate addition/hydroalkoxylation sequence: Expeditious access to enantioenriched eight-membered cyclic ether derivatives.Org. Lett.20212372471247610.1021/acs.orglett.1c00392 33733793
    [Google Scholar]
  79. DuJ.Y. MaY.H. MengF.X. ZhangR.R. WangR.N. ShiH.L. WangQ. FanY.X. HuangH.L. CuiJ.C. MaC.L. Lewis base-catalyzed [4 + 3] annulation of ortho‐quinone methides and mbh carbonates: Synthesis of functionalized benzo[b]oxepines bearing oxindole scaffolds.Org. Lett.201921246546810.1021/acs.orglett.8b03709 30618260
    [Google Scholar]
  80. DuJ.Y. MaY.H. MengF.X. ChenB.L. ZhangS.L. LiQ.L. GongS.W. WangD.Q. MaC.L. Lewis acid catalyzed tandem 1,4-conjugate addition/cyclization of in situ generated alkynyl o‐quinone methides and electron-rich phenols: Synthesis of dioxabicyclo[3.3.1]nonane skeletons.Org. Lett.201820144371437410.1021/acs.orglett.8b01862 29975066
    [Google Scholar]
  81. JiD.S. ZhangR. HanX.Y. ChaiH.L. GuY. HuX.Q. XuP.F. Enantioselective synthesis of 8-membered lactone derivatives via organocatalytic cascade reactions.Org. Chem. Front.202411102911291610.1039/D4QO00148F
    [Google Scholar]
  82. ShiinaI. Total synthesis of natural 8- and 9-membered lactones: Recent advancements in medium-sized ring formation.Chem. Rev.2007107123927310.1021/cr050045o 17212476
    [Google Scholar]
  83. TapiolasD.M. RomanM. FenicalW. StoutT.J. ClardyJ. Octalactins A and B: Cytotoxic eight-membered-ring lactones from a marine bacterium, Streptomyces sp.J. Am. Chem. Soc.1991113124682468310.1021/ja00012a048
    [Google Scholar]
  84. WangX. LvR. LiX. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: Stereoselective access to furan fused eight-membered heterocycles.Chem. Sci. (Camb.)202415249361936810.1039/D4SC02763A 38903218
    [Google Scholar]
/content/journals/coc/10.2174/0113852728356759241129064208
Loading
/content/journals/coc/10.2174/0113852728356759241129064208
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test