Skip to content
2000
Volume 29, Issue 16
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

This review investigates the reactivity of cycloheptane-based β-ketoesters in producing α-functionalized derivatives. Cyclic β-ketoesters are a versatile chemical reagent that can react with suitable electrophiles to produce a variety of α-functionalized derivatives with excellent synthetic potential and promising biological properties. This review covers all reports on α-functionalization of cycloheptane-based β-ketoesters, including those demonstrating enantioselective synthesis using appropriate asymmetric catalysts. The review is divided into sections based on the α-center reaction. We also reviewed all available papers on the ring transformation of cycloheptane-based β-ketoesters, including their ring-opening and ring-expansion reactions. The mechanistic postulates of some complex procedures are highlighted.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728363292241212075337
2025-01-14
2025-10-28
Loading full text...

Full text loading...

References

  1. ChenS. VaccaroL. GuY. Recent advances of versatile reagents as controllable building blocks in organic synthesis.Chin. Chem. Lett.202435210915210.1016/j.cclet.2023.109152
    [Google Scholar]
  2. XieG. de Moura RickettiN. TörökB. Ultrasound-assisted catalyst-free synthesis of α,β‐unsaturated amino acid esters and unsaturated amino ketones.Curr. Green Chem.202411220120910.2174/2213346110666230816095531
    [Google Scholar]
  3. KalarP.L. AgrawalS. KushwahaS. GayenS. DasK. Recent developments on synthesis of organofluorine compounds using green approaches.Curr. Org. Chem.202327319020510.2174/1385272827666230516100739
    [Google Scholar]
  4. KaurC. SharmaS. ThakurA. SharmaR. Asymmetric synthesis: A glance at various methodologies for different frameworks.Curr. Org. Chem.202226877180610.2174/1385272826666220610162605
    [Google Scholar]
  5. RaoG.B.D. AnjaneyuluB. KaushikM.P. PrasadM.R. β‐Ketoesters: An overview and it’s applications via transesterification.ChemistrySelect2021640110601107510.1002/slct.202102949
    [Google Scholar]
  6. XieZ.Y. LiQ.Q. LiuY. CaiB.G. XuanJ. Photoinduced asymmetric formal siloxycarbene insertion into sp3 C-H bonds enabled by chiral phosphoric acid.Org. Lett.202426275827583210.1021/acs.orglett.4c02020 38954473
    [Google Scholar]
  7. DongY. GuoC. BaiY. JiaH. YangA. RenJ. Regioselective halogenation of 2‐oxindoles and β‐keto esters using oxone‐halide with or without aryl iodine.Eur. J. Org. Chem.202427e20240052210.1002/ejoc.202400522
    [Google Scholar]
  8. GuoH. DingY. FanJ. LiZ. ChengG. Lithium bromide-promoted formal C(sp3)-H bond insertion reactions of β-carbonyl esters with sulfoxonium ylides to synthesize 1,4-dicarbonyl compounds.J. Org. Chem.202489106974698610.1021/acs.joc.4c00336 38703123
    [Google Scholar]
  9. ÖzsırkıntıZ. HakimiA.H. ErşatırM. TürkM. DemirkolO. GirayE.S. Using supercritical diethyl ether as the reaction medium for the synthesis of 3-acetyl and 4-methyl substituted coumarins.Curr. Org. Chem.2024281078979810.2174/0113852728284871240215103216
    [Google Scholar]
  10. ClaisenL. ClaparèdeA. Condensationen von ketonen mit aldehyden.Ber. Dtsch. Chem. Ges.18811422460246810.1002/cber.188101402192
    [Google Scholar]
  11. ClaisenL. Ueber die einführung von säureradicalen in ketone.Ber. Dtsch. Chem. Ges.188720165565710.1002/cber.188702001150
    [Google Scholar]
  12. Prakash RaoH.S. RafiS. PadmavathyK. The Blaise reaction.Tetrahedron200864358037804310.1016/j.tet.2008.05.109
    [Google Scholar]
  13. KashimaC. HuangX.C. HaradaY. HosomiA. Synthesis of beta-keto esters by the Reformatsky reaction of 3-acyloxazolidin-2-ones and thiazolidine-2-thiones.J. Org. Chem.199358379379410.1021/jo00055a046
    [Google Scholar]
  14. RoskampE.J. DragovichP.S. HartungJ.B.Jr PedersenS.F. A regioselective synthesis of pyrroles via the coupling of alpha beta-unsaturated imines with esters or N,N-dimethylformamide promoted by NbCl3(DME).J. Org. Chem.198954204736473710.1021/jo00281a006
    [Google Scholar]
  15. BrinkerhoffR.C. TarazonaH.F. de OliveiraP.M. FloresD.C. Montes D’OcaC.D.R. RussowskyD. Montes D’OcaM.G. Synthesis of β-ketoesters from renewable resources and Meldrum’s acid.RSC Advances2014491495564955910.1039/C4RA08986C
    [Google Scholar]
  16. WitzemanJ.S. NottinghamW.D. Transacetoacetylation with tert-butyl acetoacetate: Synthetic applications.J. Org. Chem.19915651713171810.1021/jo00005a013
    [Google Scholar]
  17. RomeoR. LegnaniL. ChiacchioM.A. GiofrèS.V. IannazzoD. Antiviral compounds to address influenza pandemics: An update from 2016-2022.Curr. Med. Chem.202431182507254910.2174/0929867331666230907093501 37691217
    [Google Scholar]
  18. TayadeY.A. WaghY.B. DalalD.S. β-cyclodextrin mediated green synthesis of bioactive heterocycles.Curr. Org. Chem.202327121036105210.2174/1385272827666230911115818
    [Google Scholar]
  19. OsmanN.A. EL-SayedN.S. Abdel FattahH.A. AlmalkiA.J. KammounA.K. IbrahimT.S. AlharbiA.S. AL-MahmoudyA.M. Design, synthesis and anticancer evaluation of new 1-allyl-4-oxo-6-(3,4,5- trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazole moieties.Curr. Org. Synth.202320889790910.2174/1570179420666230320153649 36941818
    [Google Scholar]
  20. DieckmannW. Zur kenntniss der ringbildung aus kohlenstoffketten.Ber. Dtsch. Chem. Ges.189427110210310.1002/cber.18940270126
    [Google Scholar]
  21. LeonardN.J. SchimelpfenigC.W.Jr Synthesis of medium- and large-ring ketones via the Dieckmann condensation.J. Org. Chem.195823111708171010.1021/jo01105a034
    [Google Scholar]
  22. SmithA.M.R. HiiK.K.M. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds.Chem. Rev.201111131637165610.1021/cr100197z 20954710
    [Google Scholar]
  23. KawaguchiM. MinamiS. IedaN. NakagawaH. [1,2,4]Triazolo[1,5-a]pyrimidine derivatives: Structure-activity relationship study leading to highly selective ENPP1 inhibitors.Bioorg. Med. Chem. Lett.202411012982010.1016/j.bmcl.2024.129820 38851358
    [Google Scholar]
  24. WangT.T. CaoJ. LiX. Synthesis of N-N axially chiral pyrrolyl-oxoisoindolin via isothiourea-catalyzed acylative dynamic kinetic resolution.Org. Lett.202426296179618410.1021/acs.orglett.4c02031 39023300
    [Google Scholar]
  25. MakJ.Y.W. RiveroR.J.D. HoangH.N. LimX.Y. DengJ. McWilliamH.E.G. VilladangosJ.A. McCluskeyJ. CorbettA.J. FairlieD.P. Potent immunomodulators developed from an unstable bacterial metabolite of vitamin B2 biosynthesis.Angew. Chem. Int. Ed.20246331e20240063210.1002/anie.202400632 38679861
    [Google Scholar]
  26. MarchesaniF. RebecchiF. PieroniM. FaggianoS. AnnunziatoG. SpaggiariC. BrunoS. RinaldiS. GiaccariR. CostantinoG. CampaniniB. Chemical probes to investigate central nervous system disorders: Design, synthesis and mechanism of action of a potent human serine racemase inhibitor.ACS Med. Chem. Lett.20241581298130510.1021/acsmedchemlett.4c00174 39140049
    [Google Scholar]
  27. DierksA. TönjesJ. SchmidtmannM. ChristoffersJ. Synthesis of Benzo[b]azocin‐2‐ones by aryl amination and ring‐expansion of α‐(Iodophenyl)‐β‐oxoesters.Chemistry20192565149121492010.1002/chem.201903139 31433088
    [Google Scholar]
  28. GeibelI. KahrsC. ChristoffersJ. Formation of bicyclic cyclopentenone derivatives by Robinson-type annulation of cyclic β-oxoesters containing a 1,4-diketone moiety.Synthesis201749173874388410.1055/s‑0036‑1590812
    [Google Scholar]
  29. BoumedieneM. GuignardR.F. ZardS.Z. Methoxycarbonyl migration in 3-methylene-1,4-cyclohexadienes. An extension of the von Auwers rearrangement.Tetrahedron201672263678368610.1016/j.tet.2016.03.032
    [Google Scholar]
  30. YangS. Abdel-RazekO.A. ChengF. BandyopadhyayD. ShetyeG.S. WangG. LukY.Y. Bicyclic brominated furanones: A new class of quorum sensing modulators that inhibit bacterial biofilm formation.Bioorg. Med. Chem.20142241313131710.1016/j.bmc.2014.01.004 24485124
    [Google Scholar]
  31. AeissenE. von SeggernA.R. SchmidtmannM. ChristoffersJ. Enantioselective synthesis of [b]‐annulated azepane scaffolds.Eur. J. Org. Chem.20232614e20230018010.1002/ejoc.202300180
    [Google Scholar]
  32. ChristoffersJ. FliegelL. KraußJ. Ring transformation of annulated benzofuran derivatives to medium-sized lactones.Synlett202435997998210.1055/a‑2192‑4044
    [Google Scholar]
  33. BayirA. BrewerM. Fragmentation of bicyclic γ-silyloxy-β-hydroxy-α-diazolactones as an approach to ynolides.J. Org. Chem.201479136037604610.1021/jo500634d 24922068
    [Google Scholar]
  34. WeckC. NauhaE. GruberT. Does the exception prove the rule? A comparative study of supramolecular synthons in a series of lactam esters.Cryst. Growth Des.20191952899291110.1021/acs.cgd.9b00116
    [Google Scholar]
  35. KuninobuY. MoritaJ. NishiM. KawataA. TakaiK. Rhenium-catalyzed formation of bicyclo[3.3.1]nonene frameworks by a reaction of cyclic β-keto esters with terminal alkynes.Org. Lett.200911122535253710.1021/ol900772h 19456121
    [Google Scholar]
  36. KitsiouC. HindesJ.J. I’AnsonP. JacksonP. WilsonT.C. DalyE.K. FelsteadH.R. HearnshawP. UnsworthW.P. The synthesis of structurally diverse macrocycles by successive ring expansion.Angew. Chem. Int. Ed.20155452157941579810.1002/anie.201509153 26768697
    [Google Scholar]
  37. MaejimaS. YamaguchiE. ItohA. Visible light/molecular-iodine-mediated intermolecular spirolactonization reaction of olefins with cyclic ketones.J. Org. Chem.201984159519953110.1021/acs.joc.9b01081 31131602
    [Google Scholar]
  38. ChungS.H. ChoM.S. ChoiJ.Y. KwonD.W. KimY.H. Facile ring expansions of α-Halomethyl β-keto esters mediated with SmI2.Synlett2001200181266126810.1055/s‑2001‑16064
    [Google Scholar]
  39. DieckmannW. Über keto‐Enol‐gleichgewichte und die claisensche regel.Ber. Dtsch. Chem. Ges. B19225582470249110.1002/cber.19220550826
    [Google Scholar]
  40. SumP.E. WeilerL. Ring formation via β-keto ester dianions.Can. J. Chem.1977556996100010.1139/v77‑140
    [Google Scholar]
  41. SchietromaD.M.S. MonacoM.R. ViscaV. InsognaS. OvergaardJ. BellaM. Enamine‐mediated addition of aldehydes to cyclic enones.Adv. Synth. Catal.201135314-152648265210.1002/adsc.201000755
    [Google Scholar]
  42. MüllerS.T.R. HokampT. EhrmannS. HellierP. WirthT. Ethyl lithiodiazoacetate: Extremely unstable intermediate handled efficiently in flow.Chemistry20162234119401194210.1002/chem.201602133 27339757
    [Google Scholar]
  43. WinklerJ.D. HongB.C. HeyJ.P. WilliardP.G. Inside-outside stereoisomerism. 5. Synthesis and reactivity of trans-bicyclo[n.3.1] alkanones prepared via the intramolecular photocycloaddition of dioxenones.J. Am. Chem. Soc.1991113238839884610.1021/ja00023a037
    [Google Scholar]
  44. PazderaP. SimberaJ. Facile carbethoxylation and carbamoylation of ketones.Org. Prep. Proced. Int.201143329730110.1080/00304948.2011.582002
    [Google Scholar]
  45. JangH.L. El-GamalM.I. ChoiH.E. ChoiH.Y. LeeK.T. OhC.H. Synthesis of tricyclic fused coumarin sulfonates and their inhibitory effects on LPS-induced nitric oxide and PGE2 productions in RAW 264.7 macrophages.Bioorg. Med. Chem. Lett.201424257157510.1016/j.bmcl.2013.12.018 24360561
    [Google Scholar]
  46. ShibatomiK. SogaY. NarayamaA. FujisawaI. IwasaS. Highly enantioselective chlorination of β-keto esters and subsequent SN2 displacement of tertiary chlorides: A flexible method for the construction of quaternary stereogenic centers.J. Am. Chem. Soc.2012134249836983910.1021/ja304806j 22651700
    [Google Scholar]
  47. DarsesB. MichaelidesI.N. SladojevichF. WardJ.W. RzepaP.R. DixonD.J. Expedient construction of the [7-5-5] all-carbon tricyclic core of the Daphniphyllum alkaloids daphnilongeranin B and daphniyunnine D.Org. Lett.20121471684168710.1021/ol3002267 22404493
    [Google Scholar]
  48. FukushiK. SuzukiS. KamoT. TokunagaE. SumiiY. KagawaT. KawadaK. ShibataN. Methyl NFSI: Atom-economical alternative to NFSI shows higher fluorination reactivity under Lewis acid-catalysis and non-catalysis.Green Chem.20161871864186810.1039/C5GC02612A
    [Google Scholar]
  49. KawatsuraM. HayashiS. KomatsuY. HayaseS. ItohT. Enantioselective α-fluorination and chlorination of β-ketoesters by cobalt catalyst.Chem. Lett.201039546646710.1246/cl.2010.466
    [Google Scholar]
  50. BartoliG. BoscoM. CarloneA. LocatelliM. MelchiorreP. SambriL. Organocatalytic asymmetric α-halogenation of 1,3-dicarbonyl compounds.Angew. Chem. Int. Ed.200544386219622210.1002/anie.200502134 16136622
    [Google Scholar]
  51. MarigoM. KumaragurubaranN. JørgensenK.A. Catalytic asymmetric bromination and chlorination of β-ketoesters.Chemistry20041092133213710.1002/chem.200305759 15112201
    [Google Scholar]
  52. KirschS. UmlandK-D. MayerC. Oxidative chlorination of activated methylene compounds with sodium chloride.Synlett201425681381610.1055/s‑0033‑1340793
    [Google Scholar]
  53. ZhuL. GuoY. ZuB. KeJ. HeC. Electrochemical α-thiolation and azidation of 1,3-dicarbonyls.Chem. Commun. (Camb.)202258162758276110.1039/D1CC06891A 35129193
    [Google Scholar]
  54. XuC. ZhangL. LuoS. Merging aerobic oxidation and enamine catalysis in the asymmetric α-amination of β-ketocarbonyls using N-hydroxycarbamates as nitrogen sources.Angew. Chem. Int. Ed.201453164149415310.1002/anie.201400776 24623653
    [Google Scholar]
  55. KasaplarP. OzkalE. Rodríguez-EscrichC. PericàsM.A. Enantioselective α-amination of 1,3-dicarbonyl compounds in batch and flow with immobilized thiourea organocatalysts.Green Chem.20151753122312910.1039/C5GC00496A
    [Google Scholar]
  56. KumarA. GhoshS.K. GladyszJ.A. Tris(1,2-diphenylethylenediamine) cobalt(III) complexes: Chiral hydrogen bond donor catalysts for enantioselective α-aminations of 1,3-dicarbonyl compounds.Org. Lett.201618476076310.1021/acs.orglett.6b00023 26820242
    [Google Scholar]
  57. InokumaT. FurukawaM. UnoT. SuzukiY. YoshidaK. YanoY. MatsuzakiK. TakemotoY. Bifunctional hydrogen-bond donors that bear a quinazoline or benzothiadiazine skeleton for asymmetric organocatalysis.Chemistry20111737104701047710.1002/chem.201101338 21812044
    [Google Scholar]
  58. NaganawaY. KomatsuH. NishiyamaH. Zinc-catalyzed enantioselective electrophilic amination of β-ketocarbonyl compounds with axially chiral phenanthroline ligands.Chem. Lett.201544121652165410.1246/cl.150802
    [Google Scholar]
  59. RaoM.V.K. ReddyK.N. SridharB. ReddyB.V.S. Ru(II)-catalyzed α-sulfonamidation of cyclic β-ketoesters with sulfonyl azides.Tetrahedron Lett.2019604115108310.1016/j.tetlet.2019.151083
    [Google Scholar]
  60. DuschekA. KirschS.F. Novel oxygenations with IBX.Chemistry20091541107131071710.1002/chem.200901867 19760735
    [Google Scholar]
  61. CaiM. XuK. LiY. NieZ. ZhangL. LuoS. Chiral primary amine/ketone cooperative catalysis for asymmetric α-hydroxylation with hydrogen peroxide.J. Am. Chem. Soc.202114321078108710.1021/jacs.0c11787 33399468
    [Google Scholar]
  62. WangD. XuC. ZhangL. LuoS. Asymmetric α-benzoyloxylation of β-ketocarbonyls by a chiral primary amine catalyst.Org. Lett.201517357657910.1021/ol503592n 25590858
    [Google Scholar]
  63. ZhangL. NagarajuS. PaplalB. LinY. LiuS. Sulfonium salts enable the direct sulfenylation of activated C(sp3)−H bonds.Eur. J. Org. Chem.2021202191365136910.1002/ejoc.202001569
    [Google Scholar]
  64. KrawczykE. OwsianikK. SkowrońskaA. WieczorekM. MajznerW. An expedient, stereoselective synthesis of highly functionalized cyclic compounds.New J. Chem.200226121753176710.1039/B207700K
    [Google Scholar]
  65. RameshB. KumarG.R. YarlagaddaS. SridharB. ReddyB.V.S. BINOL-phosphoric acid catalyzed asymmetric Mannich addition of β-ketoesters to indolenines generated in situ by DDQ.Tetrahedron2019754413062010.1016/j.tet.2019.130620
    [Google Scholar]
  66. YouY. ZhangL. CuiL. MiX. LuoS. Catalytic asymmetric Mannich reaction with N‐carbamoyl imine surrogates of formaldehyde and glyoxylate.Angew. Chem. Int. Ed.20175644138141381810.1002/anie.201707005 28887903
    [Google Scholar]
  67. HollowayC.A. MuratoreM.E. StorerR. DixonD.J. Direct enantioselective Brønsted acid catalyzed N-acyliminium cyclization cascades of tryptamines and ketoacids.Org. Lett.201012214720472310.1021/ol101651t 20929214
    [Google Scholar]
  68. GeibelI. ChristoffersJ. Synthesis of 1,4‐diketones from β‐oxo esters and enol acetates by Cerium‐catalyzed Oxidative Umpolung reaction.Eur. J. Org. Chem.20162016591892010.1002/ejoc.201600057
    [Google Scholar]
  69. GeibelI. DierksA. SchmidtmannM. ChristoffersJ. Formation of δ-lactones by cerium-catalyzed, Baeyer-Villiger-type coupling of β-oxoesters, enol acetates, and dioxygen.J. Org. Chem.201681177790779810.1021/acs.joc.6b01441 27494288
    [Google Scholar]
  70. ZhangW. ZhuY. ZhangL. LuoS. Asymmetric α‐Alkylation of β‐Ketocarbonyls via direct phenacyl bromide photolysis by chiral primary amine.Chin. J. Chem.201836871672210.1002/cjoc.201800125
    [Google Scholar]
  71. ZhuY. ZhangL. LuoS. Asymmetric α-photoalkylation of β-ketocarbonyls by primary amine catalysis: Facile access to acyclic all-carbon quaternary stereocenters.J. Am. Chem. Soc.201413642146421464510.1021/ja508605a 25229998
    [Google Scholar]
  72. MuthusamyS. Arulananda BabuS. GunanathanC. 1,8-Diazabicyclo[5.4.0]Undec-7-ENE (DBU): A powerful catalyst for the michael addition reaction of β-ketoesters to acrylates and enones.Synth. Commun.200232213247325410.1081/SCC‑120014028
    [Google Scholar]
  73. YoshidaM. Asymmetric α-allylation of α-substituted β-ketoesters with allyl alcohols.J. Org. Chem.20178223128211282610.1021/acs.joc.7b02188 29047274
    [Google Scholar]
  74. KitaY. KavtheR.D. OdaH. MashimaK. Asymmetric allylic alkylation of β‐ketoesters with allylic alcohols by a nickel/diphosphine catalyst.Angew. Chem. Int. Ed.20165531098110110.1002/anie.201508757 26637131
    [Google Scholar]
  75. ZhangG.M. ZhangH. WangB. WangJ.Y. Boron-catalyzed dehydrative allylation of 1,3-diketones and β-ketone esters with 1,3-diarylallyl alcohols in water.RSC Adv.20211128170251703110.1039/D1RA01922H 35479693
    [Google Scholar]
  76. YoshidaM. YanoS. HaraS. Asymmetric allylation of 2-oxocycloalkanecarboxylates.Synthesis20164961295130010.1055/s‑0036‑1588095
    [Google Scholar]
  77. NemotoT. FukudaT. MatsumotoT. HitomiT. HamadaY. Enantioselective construction of all‐carbon quaternary stereocenters using palladium‐catalyzed asymmetric allylic alkylation of γ‐Acetoxy‐α,β‐unsaturated carbonyl compounds.Adv. Synth. Catal.200534711-131504150610.1002/adsc.200505149
    [Google Scholar]
  78. LiuJ. HanZ. WangX. MengF. WangZ. DingK. Palladium‐catalyzed asymmetric construction of vicinal tertiary and all‐carbon quaternary stereocenters by allylation of β‐ketocarbonyls with Morita–Baylis–Hillman adducts.Angew. Chem. Int. Ed.201756185050505410.1002/anie.201701455 28378466
    [Google Scholar]
  79. AburelP.S. RømmingC. MaK. UndheimK. Synthesis of α-hydroxy and α-oxospiranes through ruthenium(II)-catalyzed ring-closing metathesis.J. Chem. Soc., Perkin Trans. 120012001121458147210.1039/b101462p
    [Google Scholar]
  80. MoloneyM.G. NettletonE. SmithiesK. Novel alkylation, lactonisation and cascade coupling processes mediated by lead tetracarboxylates: The importance of ligands.Tetrahedron Lett.200243590790910.1016/S0040‑4039(01)02288‑2
    [Google Scholar]
  81. XuY.N. ZhuM.Z. TianS.K. Chiral α-amino acid/palladium-catalyzed asymmetric allylation of α-branched β-ketoesters with allylic amines: Highly enantioselective construction of all-carbon quaternary stereocenters.J. Org. Chem.20198422149361494210.1021/acs.joc.9b02282 31608635
    [Google Scholar]
  82. JiaZ. GálvezE. SebastiánR.M. PleixatsR. Álvarez-LarenaÁ. MartinE. VallriberaA. ShafirA. An alternative to the classical α-arylation: The transfer of an intact 2-iodoaryl from ArI(O2CCF3)2.Angew. Chem. Int. Ed.20145342112981130110.1002/anie.201405982 25196839
    [Google Scholar]
  83. ZhouF. DriverT.G. Efficient synthesis of 3H-indoles enabled by the lead-mediated α-arylation of β-ketoesters or γ-lactams using aryl azides.Org. Lett.201416112916291910.1021/ol5010615 24865180
    [Google Scholar]
  84. AzimioaraM. AlperP. CowC. MutnickD. NikulinV. LelaisG. MecomJ. McNeillM. MichellysP.Y. WangZ. RedingE. PaliottiM. LiJ. BaoD. ZollJ. KimY. ZimmermanM. GroesslT. TuntlandT. JosephS.B. McNamaraP. SeidelH.M. EppleR. Novel tricyclic pyrazolopyrimidines as potent and selective GPR119 agonists.Bioorg. Med. Chem. Lett.201424235478548310.1016/j.bmcl.2014.10.010 25455488
    [Google Scholar]
  85. Corral-BautistaF. MayrH. Quantification of the nucleophilic reactivities of cyclic β‐keto ester anions.Eur. J. Org. Chem.20152015347594760110.1002/ejoc.201501107
    [Google Scholar]
  86. ZhangL. LiuS. LinY. WangY. Hydroxymethylation of active methenyl compounds: DMSO as methylene source and H2O as oxygen source.Tetrahedron Lett.20229315366310.1016/j.tetlet.2022.153663
    [Google Scholar]
  87. AndrésJ.M. LosadaJ. MaestroA. Rodríguez-FerrerP. PedrosaR. Supported and unsupported chiral squaramides as organocatalysts for stereoselective Michael additions: Synthesis of enantiopure chromenes and spirochromanes.J. Org. Chem.201782168444845410.1021/acs.joc.7b01177 28738149
    [Google Scholar]
  88. WilligF. LangJ. HansA.C. RingenbergM.R. PfefferD. FreyW. PetersR. Polyfunctional imidazolium aryloxide betaine/Lewis acid catalysts as tools for the asymmetric synthesis of disfavored diastereomers.J. Am. Chem. Soc.201914130120291204310.1021/jacs.9b04902 31268701
    [Google Scholar]
  89. OwolabiI.A. ChennapuramM. SekiC. OkuyamaY. KwonE. UwaiK. TokiwaM. TakeshitaM. NakanoH. Amino amide organocatalysts for asymmetric michael addition of β-Keto esters with β-nitroolefins.Bull. Chem. Soc. Jpn.201992369670110.1246/bcsj.20180302
    [Google Scholar]
  90. ShimJ.H. LeeM.J. LeeM.H. KimB.S. HaD.C. Enantioselective organocatalytic Michael reactions using chiral (R,R)-1,2-diphenylethyl-enediamine-derived thioureas.RSC Adv.20201053318083181410.1039/D0RA03550E 35518159
    [Google Scholar]
  91. AndrésJ.M. GonzálezM. MaestroA. NaharroD. PedrosaR. Recyclable chiral bifunctional thioureas derived from [60]fullerene and their use as highly efficient organocatalysts for the asymmetric nitro‐michael reaction.Eur. J. Org. Chem.20172017192683269110.1002/ejoc.201601640
    [Google Scholar]
  92. AndrésJ.M. CeballosM. MaestroA. SanzI. PedrosaR. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions.Beilstein J. Org. Chem.20161262863510.3762/bjoc.12.61 27340453
    [Google Scholar]
  93. AndrésJ.M. de La CruzN. ValleM. PedrosaR. Bottom‐up synthesis of supported thioureas and their use in enantioselective solvent‐free Aza‐Henry and Michael additions.ChemPlusChem2016811869210.1002/cplu.201500476 31968742
    [Google Scholar]
  94. DelamareA. NauletG. KauffmannB. GuichardG. CompainG. Hexafluoroisobutylation of enolates through a tandem elimination/allylic shift/hydrofluorination reaction.Chem. Sci. (Camb.)202213339507951410.1039/D2SC02871A 36091907
    [Google Scholar]
  95. LiuJ.J. LanL. GaoY.T. LiuQ. ChengL. WangD. LiuL. Visible‐light‐mediated stereoselective 1,2‐iodoalkylation of alkynes.Adv. Synth. Catal.201936161283128810.1002/adsc.201801636
    [Google Scholar]
  96. KieslichD. ChristoffersJ. Formation of δ-lactones by cyanide-catalyzed rearrangement of α-Hydroxy-β-oxoesters.Org. Lett.202123395395710.1021/acs.orglett.0c04157 33464092
    [Google Scholar]
  97. KriegerD. ChristoffersJ. Ring transformation of α‐Amino‐β‐oxoesters to δ‐Butyrolactams.Eur. J. Org. Chem.20232639e20230075710.1002/ejoc.202300757
    [Google Scholar]
  98. KuninobuY. KawataA. TakaiK. Efficient catalytic insertion of acetylenes into a carbon-carbon single bond of nonstrained cyclic compounds under mild conditions.J. Am. Chem. Soc.200612835113681136910.1021/ja064022i 16939256
    [Google Scholar]
  99. KuninobuY. KawataA. NishiM. Yudha SS. ChenJ. TakaiK. Rhenium- and manganese-catalyzed insertion of alkynes into a carbon-carbon single bond of cyclic and acyclic 1,3-dicarbonyl compounds.Chem. Asian J.2009491424143310.1002/asia.200900137 19603451
    [Google Scholar]
  100. ShimizuM. HachiyaI. MaeharaW. YamadaY. KamikiT. Ring-expansion reaction of cyclic β-keto esters or α-cyano ketones via conjugate addition to alkynyl imines: The synthesis of functionalized medium-sized carbocycles.Synlett20062006193271327410.1055/s‑2006‑951554
    [Google Scholar]
  101. WangM. YangY. YinL. FengY. LiY. Selective synthesis of pyrano[3,2-b]indoles or cyclopenta[b]indoles tethered with medium-sized rings via cascade C-C σ-bond cleavage and C-H functionalization.J. Org. Chem.202186168369210.1021/acs.joc.0c02310 33350835
    [Google Scholar]
  102. YuanY. GuoZ. MuY. WangY. XuM. LiY. Synthesis of spiro[5.n (n=6-8)]heterocycles through successive ring‐Expansion/Indole C‐2 functionalization.Adv. Synth. Catal.202036261298130210.1002/adsc.201901631
    [Google Scholar]
  103. BaudL.G. ManningM.A. ArklessH.L. StephensT.C. UnsworthW.P. Ring‐expansion approach to medium‐sized lactams and analysis of their medicinal lead‐like properties.Chemistry20172392225223010.1002/chem.201605615 27935197
    [Google Scholar]
  104. LawerA. EptonR.G. StephensT.C. PalateK.Y. LodiM. MarotteE. LambK.J. SanghaJ.K. LynamJ.M. UnsworthW.P. Evaluating the viability of successive ring‐expansions based on amino acid and hydroxyacid side‐chain insertion.Chemistry20202655126741268310.1002/chem.202002164 32432817
    [Google Scholar]
  105. HieroldJ. HsiaT. LuptonD.W. The Grob/Eschenmoser fragmentation of cycloalkanones bearing β-electron withdrawing groups: A general strategy to acyclic synthetic intermediates.Org. Biomol. Chem.20119378379210.1039/C0OB00632G 21103511
    [Google Scholar]
  106. PacificoR. DestroD. Gillick-HealyM.W. KellyB.G. AdamoM.F.A. Preparation of acidic 5-hydroxy-1,2,3-triazoles via the cycloaddition of aryl azides with β-ketoesters.J. Org. Chem.20218617113541136010.1021/acs.joc.1c00778 34314172
    [Google Scholar]
/content/journals/coc/10.2174/0113852728363292241212075337
Loading
/content/journals/coc/10.2174/0113852728363292241212075337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test