Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

Because of its numerous advantages, biochar has been widely used to remove contaminants from aqueous media for several years. However, unmodified biochar often exhibits low sorption capacity. Therefore, various nano-sized metal oxides have been developed to modify biochar and improve its ability to remove impurities.

Objective

This review aims to provide information on preparing and applying biochar loaded with nano-sized metal oxides to treat pollutants in water samples.

Results

Raw biochar has limited applicability/capacity for certain pollutants, such as inorganic anions. However, modification with metal oxides improved removal performance, sorption capacity, and selectivity.

Conclusion

Biochar loaded with metal oxides is believed to be an environmentally friendly alternative for treating polluted water. Selective sorbents with high capacity and fast kinetics towards undesirable solutes can be produced using suitable metal oxides. The sorbent can remove pollutants from solutions with a high removal rate.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230512160837
2023-06-05
2025-10-07
Loading full text...

Full text loading...

References

  1. TaghizadehA. TaghizadehM. JouyandehM. Conductive polymers in water treatment: A review.J. Mol. Liq.202031211344710.1016/j.molliq.2020.113447
    [Google Scholar]
  2. KhodakaramiM. BagheriM. Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment.J. Clean. Prod.202129612640410.1016/j.jclepro.2021.126404
    [Google Scholar]
  3. RaizadaP. SudhaikA. PatialS. Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges.Arab. J. Chem.202013118424845710.1016/j.arabjc.2020.06.031
    [Google Scholar]
  4. DottoG.L. McKayG. Current scenario and challenges in adsorption for water treatment.J. Environ. Chem. Eng.20208410398810.1016/j.jece.2020.103988
    [Google Scholar]
  5. SophiaA.C. LimaE.C. Removal of emerging contaminants from the environment by adsorption.Ecotoxicol. Environ. Saf.201815011710.1016/j.ecoenv.2017.12.026 29253687
    [Google Scholar]
  6. IhsanullahA.A. AbbasA. Al-AmerA.M. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications.Separ. Purif. Tech.201615714116110.1016/j.seppur.2015.11.039
    [Google Scholar]
  7. MpataniF.M. HanR. AryeeA.A. KaniA.N. LiZ. QuL. Adsorption performance of modified agricultural waste materials for removal of emerging micro-contaminant bisphenol A: A comprehensive review.Sci. Total Environ.202178014662910.1016/j.scitotenv.2021.146629 34030339
    [Google Scholar]
  8. WangJ. WangS. Preparation, modification and environmental application of biochar: A review.J. Clean. Prod.20192271002102210.1016/j.jclepro.2019.04.282
    [Google Scholar]
  9. ChaJ.S. ParkS.H. JungS.C. Production and utilization of biochar: A review.J. Ind. Eng. Chem.20164011510.1016/j.jiec.2016.06.002
    [Google Scholar]
  10. ChenW. MengJ. HanX. LanY. ZhangW. Past, present, and future of biochar.Biochar201911758710.1007/s42773‑019‑00008‑3
    [Google Scholar]
  11. LiangL. XiF. TanW. MengX. HuB. WangX. Review of organic and inorganic pollutants removal by biochar and biochar-based composites.Biochar20213325528110.1007/s42773‑021‑00101‑6
    [Google Scholar]
  12. DaiY. ZhangN. XingC. CuiQ. SunQ. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review.Chemosphere2019223122710.1016/j.chemosphere.2019.01.161 30763912
    [Google Scholar]
  13. InyangM.I. GaoB. YaoY. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal.Crit. Rev. Environ. Sci. Technol.201646440643310.1080/10643389.2015.1096880
    [Google Scholar]
  14. DaiY. WangW. LuL. YanL. YuD. Utilization of biochar for the removal of nitrogen and phosphorus.J. Clean. Prod.202025712057310.1016/j.jclepro.2020.120573
    [Google Scholar]
  15. ZeghioudH. FrydaL. DjelalH. AssadiA. KaneA. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors.J. Water Process Eng.20224710280110.1016/j.jwpe.2022.102801
    [Google Scholar]
  16. ZhaoC. WangB. ThengB.K.G. Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review.Sci. Total Environ.202176714530510.1016/j.scitotenv.2021.145305 33636788
    [Google Scholar]
  17. WeidnerE. KarbassiyazdiE. AltaeeA. JesionowskiT. CiesielczykF. Hybrid metal oxide/biochar materials for wastewater treatment technology: A review.ACS Omega2022731270622707810.1021/acsomega.2c02909 35967031
    [Google Scholar]
  18. ZhangQ. WangY. WangZ. ZhangZ. WangX. YangZ. Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water.J. Alloys Compd.202185215699310.1016/j.jallcom.2020.156993
    [Google Scholar]
  19. LianJ.J. HuangY.G. ChenB. Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: Adsorption kinetic, isotherm and mechanism studies.Water Sci. Technol.20182017385986810.2166/wst.2018.258 30016303
    [Google Scholar]
  20. QiuY ZhangQ GaoB Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation.Environ Pollut2020265Pt B11501810.1016/j.envpol.2020.11501832806451
    [Google Scholar]
  21. ZhangS. LyuH. TangJ. SongB. ZhenM. LiuX. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water.Chemosphere201921768669410.1016/j.chemosphere.2018.11.040 30448748
    [Google Scholar]
  22. ShuY. JiB. CuiB. Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: Performance and mechanisms.Nanomaterials 202010219810.3390/nano10020198 31979270
    [Google Scholar]
  23. AiD. WeiT. MengY. ChenX. WangB. Ball milling sulfur-doped nano zero-valent iron @biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms.Bioresour. Technol.202235712731610.1016/j.biortech.2022.127316 35597516
    [Google Scholar]
  24. AhmadM. AhmadM. UsmanA.R.A. Al-FarajA.S. AbduljabbarA.S. Al-WabelM.I. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions.Environ. Sci. Pollut. Res. Int.20182526257572577110.1007/s11356‑017‑0125‑9 28921403
    [Google Scholar]
  25. ZhuL. TongL. ZhaoN. LiJ. LvY. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution.Chemosphere201921949350310.1016/j.chemosphere.2018.12.013 30551116
    [Google Scholar]
  26. FanC. ChenN. QinJ. Biochar stabilized nano zero-valent iron and its removal performance and mechanism of pentavalent vanadium(V(V)).Colloids Surf. A Physicochem. Eng. Asp.202059912488210.1016/j.colsurfa.2020.124882
    [Google Scholar]
  27. ShabaE.Y. JacobJ.O. TijaniJ.O. SuleimanM.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment.Appl. Water Sci.20211124810.1007/s13201‑021‑01370‑z
    [Google Scholar]
  28. YuJ. JiangC. GuanQ. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth.Chemosphere201819563264010.1016/j.chemosphere.2017.12.128 29289904
    [Google Scholar]
  29. CruzG.J.F. MondalD. RimaycunaJ. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water.J. Environ. Chem. Eng.20208310380010.1016/j.jece.2020.103800
    [Google Scholar]
  30. YuF. TianF. ZouH. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue.J. Hazard. Mater.202141512551110.1016/j.jhazmat.2021.125511 33740715
    [Google Scholar]
  31. YangY. Phuong NguyenT.M. VanH.T. ZnO nanoparticles loaded rice husk biochar as an effective adsorbent for removing reactive red 24 from aqueous solution.Mater. Sci. Semicond. Process.202215010696010.1016/j.mssp.2022.106960
    [Google Scholar]
  32. HuH. SunL. GaoY. Synthesis of ZnO nanoparticle-anchored biochar composites for the selective removal of perrhenate, a surrogate for pertechnetate, from radioactive effluents.J. Hazard. Mater.202038712167010.1016/j.jhazmat.2019.121670 31761646
    [Google Scholar]
  33. LongL. XueY. ZengY. YangK. LinC. Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid.J. Clean. Prod.20171661244125210.1016/j.jclepro.2017.08.122
    [Google Scholar]
  34. RoyH. IslamM.S. ArifinM.T. FirozS.H. Chitosan-ZnO decorated Moringa oleifera seed biochar for sequestration of methylene blue: Isotherms, kinetics, and response surface analysis.Environ. Nanotechnol. Monit. Manag.20221810075210.1016/j.enmm.2022.100752
    [Google Scholar]
  35. ChinthalaM. BalakrishnanA. VenkataramanP. ManaswiniG.V. PolaganiR.K. Synthesis and applications of nano-MgO and composites for medicine, energy, and environmental remediation: A review.Environ. Chem. Lett.20211964415445410.1007/s10311‑021‑01299‑4
    [Google Scholar]
  36. ZhangM. GaoB. YaoY. XueY. InyangM. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions.Chem. Eng. J.2012210263210.1016/j.cej.2012.08.052
    [Google Scholar]
  37. JungK.W. AhnK.H. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method.Bioresour. Technol.20162001029103210.1016/j.biortech.2015.10.008 26476871
    [Google Scholar]
  38. ChengS. ZhaoS. GuoH. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed.Bioresour. Technol.202234312608110.1016/j.biortech.2021.126081 34610424
    [Google Scholar]
  39. LiR. WangJ.J. ZhouB. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment.J. Clean. Prod.20171479610710.1016/j.jclepro.2017.01.069
    [Google Scholar]
  40. XiangJ. LinQ. YaoX. YinG. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil.Environ. Res.202119511065010.1016/j.envres.2020.110650 33587947
    [Google Scholar]
  41. ChenT. WeiY. YangW. LiuC. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity.J. Hazard. Mater.202141612582210.1016/j.jhazmat.2021.125822 34492784
    [Google Scholar]
  42. ShiQ. ZhangH. ShahabA. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb2+ and Cd2+ from aqueous solution.Ecotoxicol. Environ. Saf.202122111242610.1016/j.ecoenv.2021.112426 34166940
    [Google Scholar]
  43. ZhuD. YangH. ChenX. Temperature-dependent magnesium citrate modified formation of MgO nanoparticles biochar composites with efficient phosphate removal.Chemosphere202127412990410.1016/j.chemosphere.2021.129904 33979927
    [Google Scholar]
  44. IslamM.A. MortonD.W. JohnsonB.B. MainaliB. AngoveM.J. Manganese oxides and their application to metal ion and contaminant removal from wastewater.J. Water Process Eng.20182626428010.1016/j.jwpe.2018.10.018
    [Google Scholar]
  45. WanS. QiuL. LiY. Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure.Chem. Eng. J.202040212602110.1016/j.cej.2020.126021
    [Google Scholar]
  46. ShenQ. WangZ. YuQ. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues.Environ. Res.202018310919510.1016/j.envres.2020.109195 32044570
    [Google Scholar]
  47. LiR. WangZ. ZhaoX. LiX. XieX. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water.Environ. Sci. Pollut. Res. Int.20182531311363114810.1007/s11356‑018‑3064‑1 30187413
    [Google Scholar]
  48. WangB. LiF. WangL. Enhanced hexavalent chromium (Cr(VI)) removal from aqueous solution by Fe–Mn oxide-modified cattail biochar: Adsorption characteristics and mechanism.Chem. Ecol.202036213815410.1080/02757540.2019.1699537
    [Google Scholar]
  49. LinL. SongZ. HuangY. KhanZ.H. QiuW. Removal and oxidation of arsenic from aqueous solution by biochar impregnated with Fe-Mn oxides.Water Air Soil Pollut.2019230510510.1007/s11270‑019‑4146‑5
    [Google Scholar]
  50. ZhuY. FanW. ZhangK. XiangH. WangX. Nano-manganese oxides-modified biochar for efficient chelated copper citrate removal from water by oxidation-assisted adsorption process.Sci. Total Environ.202070913615410.1016/j.scitotenv.2019.136154 31884297
    [Google Scholar]
  51. WanS. WuJ. ZhouS. WangR. GaoB. HeF. Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism.Sci. Total Environ.2018616-6171298130610.1016/j.scitotenv.2017.10.188 29103653
    [Google Scholar]
  52. AchariV.S. LopezR.M. RajalakshmiA.S. Microporous carbon with highly dispersed nano-lanthanum oxide (La2O3) for enhanced adsorption of methylene blue.Separ. Purif. Tech.202127911962610.1016/j.seppur.2021.119626
    [Google Scholar]
  53. SunX. GuoP. SunY. CuiY. Adsorption of hexavalent chromium by sodium alginate fiber biochar loaded with lanthanum.Materials2021149222410.3390/ma14092224 33925966
    [Google Scholar]
  54. FengY. LuH. LiuY. Nano-cerium oxide functionalized biochar for phosphate retention: Preparation, optimization and rice paddy application.Chemosphere201718581682510.1016/j.chemosphere.2017.07.107 28735234
    [Google Scholar]
  55. YiS. SunY. HuX. XuH. GaoB. WuJ. Porous nano-cerium oxide wood chip biochar composites for aqueous levofloxacin removal and sorption mechanism insights.Environ. Sci. Pollut. Res. Int.20182526256292563710.1007/s11356‑016‑8342‑1 28091999
    [Google Scholar]
  56. LiangT. LiL. ZhuC. Adsorption of As(V) by the novel and efficient adsorbent cerium-manganese modified biochar.Water20201210272010.3390/w12102720
    [Google Scholar]
  57. LiR. DengH. ZhangX. High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar.Bioresour. Technol.201927333534010.1016/j.biortech.2018.10.053 30448686
    [Google Scholar]
  58. LiJ. LiB. HuangH. ZhaoN. ZhangM. CaoL. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption.Sci. Total Environ.202071413683910.1016/j.scitotenv.2020.136839 32018980
    [Google Scholar]
  59. IghaloJ.O. SagboyeP.A. UmenwekeG. CuO nanoparticles (CuO NPs) for water treatment: A review of recent advances.Environ. Nanotechnol. Monit. Manag.20211510044310.1016/j.enmm.2021.100443
    [Google Scholar]
  60. WeiX. WangX. GaoB. ZouW. DongL. Facile ball-milling synthesis of CuO/biochar nanocomposites for efficient removal of reactive red 120.ACS Omega20205115748575510.1021/acsomega.9b03787 32226853
    [Google Scholar]
  61. CuiS. ZhaoY. LiuY. PanJ. Preparation of copper-based biochar adsorbent with outstanding H2S adsorption capacity and study on H2S removal.Journal of the Energy Institute20221051048149010.1016/j.joei.2022.11.004
    [Google Scholar]
  62. ImranM. IqbalM.M. IqbalJ. Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: Modeling, thermodynamics and reusability.J. Hazard. Mater.202140112333810.1016/j.jhazmat.2020.123338 32634661
    [Google Scholar]
  63. HamadnehI. Al-MobydeenA. HannoonF. Arsenite adsorption on biochar-based nano copper oxide composites using Mediterranean cypress cones: Equilibrium, kinetic and thermodynamic studies.Desalination Water Treat.202122126026910.5004/dwt.2021.27043
    [Google Scholar]
  64. PriyadarshniN. NathP. Nagahanumaiah, Chanda N. Sustainable removal of arsenate, arsenite and bacterial contamination from water using biochar stabilized iron and copper oxide nanoparticles and associated mechanism of the remediation process.J. Water Process Eng.20203710149510.1016/j.jwpe.2020.101495
    [Google Scholar]
  65. Bombuwala DewageN. LiyanageA.S. PittmanC.U.Jr MohanD. MlsnaT. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar.Bioresour. Technol.201826325826510.1016/j.biortech.2018.05.001 29753258
    [Google Scholar]
  66. ArarÖ. Application of sorption process for the removal of radioactive elements. In: Sorbents materials for controlling environmental pollution.Elsevier202149551210.1016/B978‑0‑12‑820042‑1.00020‑1
    [Google Scholar]
  67. KarunanayakeA.G. NavarathnaC.M. GunatilakeS.R. Fe 3 O 4 nanoparticles dispersed on douglas fir biochar for phosphate sorption.ACS Appl. Nano Mater.2019263467347910.1021/acsanm.9b00430
    [Google Scholar]
  68. ChaukuraN. MurimbaE.C. GwenziW. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge.Appl. Water Sci.2017752175218610.1007/s13201‑016‑0392‑5
    [Google Scholar]
  69. IghaloJ.O. ArowoyeleL.T. OgunniyiS. Utilisation of biomass and hybrid biochar from elephant grass and low density polyethylene for the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media.Recent Innov. Chem. Eng.202114214815910.2174/2405520413999201117143926
    [Google Scholar]
  70. ZhuZ. HuangC.P. ZhuY. WeiW. QinH. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water.J. Water Process Eng.2018259610410.1016/j.jwpe.2018.05.010
    [Google Scholar]
  71. PengZ. FanZ. ChenX. Fabrication of nano iron oxide–modified biochar from co-hydrothermal carbonization of microalgae and Fe(II) salt for efficient removal of rhodamine B.Nanomaterials 20221213227110.3390/nano12132271 35808107
    [Google Scholar]
  72. LiS. YouT. GuoY. High dispersions of nano zero valent iron supported on biochar by one-step carbothermal synthesis and its application in chromate removal.RSC Advances2019922124281243510.1039/C9RA00304E 35515827
    [Google Scholar]
  73. CaoY. JiangS. ZhangY. XuJ. QiuL. WangL. Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar.J. Environ. Chem. Eng.20219410572710.1016/j.jece.2021.105727
    [Google Scholar]
  74. ChenH. GaoY. LiJ. Engineered biochar for environmental decontamination in aquatic and soil systems: A review.Carbon Research202211410.1007/s44246‑022‑00005‑5
    [Google Scholar]
  75. WeiA. MaJ. ChenJ. ZhangY. SongJ. YuX. Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zero-valent iron.Chem. Eng. J.201835359560510.1016/j.cej.2018.07.127
    [Google Scholar]
  76. ThoP.T. VanH.T. NguyenL.H. Enhanced simultaneous adsorption of As(III), Cd(II), Pb(II) and Cr(VI) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles.RSC Advances20211131188811889710.1039/D1RA01599K 35478660
    [Google Scholar]
  77. TangQ. ShiC. ShiW. Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge.Sci. Total Environ.201966251152010.1016/j.scitotenv.2019.01.159 30699371
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230512160837
Loading
/content/journals/cnm/10.2174/2405461508666230512160837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test