Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Introduction

Soil bacteria that synthesize varying metallic NPs are underreported, even though there is a promising mechanism in the bio-reduction of gold salts and the synthesis of gold nanoparticles by different bacterial species.

Objective

This study aimed to explore the ancillary potential of some soil microbes obtained from a metal fabricating workshop for gold nanoparticles (AuNPs) synthesis.

Methods

To evaluate the usefulness of these soil microbes, 1 mM chloroauric acid (HAuCl.4HO) was bio-reduced using the wet biomass of these bacterial cells and characterized with UV-Vis spectrophotometer, Fourier Transform Infra-red (FTIR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), and X-ray Diffractometer (XRD).

Results

Findings from this study showed that the studied bacterial isolates synthesized AuNPs with absorbance peaks within the range of 500 and 600 nm. The FTIR analysis showed the involvement of O-H, N-H, and C=O stretch of alcohol, amine, and amide groups, respectively. The SEM images analyzed with Image J reported a mean area size between 17-184 nm. The EDX showed (C11), and (A12) had the lowest (7.32%) and highest (51.26%) weight percentages of AuNPs, respectively.

Conclusion

Gold nanoparticles have been found most appropriate for several novel applications, and this work has provided further understanding of the capacity of naturally occurring bacteria to be non-selective in the bio-reduction of gold salts, hence expanding their potential uses.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615306570240427050641
2024-07-02
2025-09-08
Loading full text...

Full text loading...

References

  1. DashD.K. PanikR.K. SahuA.K. TripathiV. DashD.K. PanikR.K. Role of nanobiotechnology in drug discovery, development and molecular diagnostic. In: Applications of Nanobiotechnology.IntechOpen2020Available from: https://www.intechopen.com/chapters/72461 [cited 2023 Jun 17].
    [Google Scholar]
  2. GawandeM.B. GoswamiA. FelpinF.X. Cu and Cu-Based Nanoparticles: Synthesis and applications in catalysis.Chem. Rev.201611663722381110.1021/acs.chemrev.5b00482 26935812
    [Google Scholar]
  3. DaramolaO.B. OmoleR.K. AkinwaleI.V. Bio-receptors functionalized nanoparticles: A resourceful sensing and colorimetric detection tool for pathogenic bacteria and microbial biomolecules.Front. Nanotechnol.2022488580310.3389/fnano.2022.885803
    [Google Scholar]
  4. UematsuT. WajimaK. SharmaD.K. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III–VI semiconductor shells.NPG Asia Mater.201810871372610.1038/s41427‑018‑0067‑9
    [Google Scholar]
  5. TorimiroN. DaramolaO.B. OshibanjoO.D. OtuyeluF.O. AkinsanolaB.A. YusufO.O. Ecorestoration of heavy metals and toxic chemicals in polluted environment using microbe-mediated nanomaterials.Int. J. Environ. Bioremediat. Biodegrad.202191821
    [Google Scholar]
  6. CostanzoH. GoochJ. FrascioneN. Nanomaterials for optical biosensors in forensic analysis.Talanta202325312394510.1016/j.talanta.2022.123945 36191514
    [Google Scholar]
  7. KumarS. WangZ. ZhangW. Optically active nanomaterials and its biosensing applications: A review.Biosensors 20231318510.3390/bios13010085 36671920
    [Google Scholar]
  8. KimD. KimJ. ParkY.I. LeeN. HyeonT. Recent development of inorganic nanoparticles for biomedical imaging.ACS Cent. Sci.20184332433610.1021/acscentsci.7b00574 29632878
    [Google Scholar]
  9. BhattiR. ShakeelH. MalikK. Inorganic Nanoparticles: Toxic effects, mechanisms of cytotoxicity and phytochemical interactions.Adv. Pharm. Bull.2022124757762 36415644
    [Google Scholar]
  10. SinghP. KimY.J. ZhangD. YangD.C. Biological synthesis of nanoparticles from plants and microorganisms.Trends Biotechnol.201634758859910.1016/j.tibtech.2016.02.006 26944794
    [Google Scholar]
  11. DikshitP. KumarJ. DasA. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  12. PalG. RaiP. PandeyA. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Shukla AK, Iravani S, Eds. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier2019126Available from: https://www.sciencedirect.com/science/article/pii/B9780081025796000010 [cited 2023 Jun 17].
    [Google Scholar]
  13. YingS. GuanZ. OfoegbuP.C. Green synthesis of nanoparticles: Current developments and limitations.Environ. Technol. Innov.20222610233610.1016/j.eti.2022.102336
    [Google Scholar]
  14. RamrakhianiL. GhoshS. Metallic nanoparticle synthesised by biological route: safer candidate for diverse applications.IET Nanobiotechnol.201812439240410.1049/iet‑nbt.2017.0076 29768220
    [Google Scholar]
  15. HanoC. AbbasiB.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications.Biomolecules20211213110.3390/biom12010031 35053179
    [Google Scholar]
  16. KoulB. PooniaA.K. YadavD. JinJ.O. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects.Biomolecules202111688610.3390/biom11060886 34203733
    [Google Scholar]
  17. DorchehS.K. VahabiK. Biosynthesis of nanoparticles by fungi: Large-scale production.. In: Fungal Metabolites.ChamSpringer International Publishing201612010.1007/978‑3‑319‑19456‑1_8‑1
    [Google Scholar]
  18. SamuelM.S. RavikumarM. JohnJ.A. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications.Catalysts202212545910.3390/catal12050459
    [Google Scholar]
  19. FariqA. KhanT. YasminA. Microbial synthesis of nanoparticles and their potential applications in biomedicine.J. Appl. Biomed.201715424124810.1016/j.jab.2017.03.004
    [Google Scholar]
  20. LahiriD. NagM. SheikhH.I. Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade.Front. Microbiol.20211263658810.3389/fmicb.2021.636588 33717030
    [Google Scholar]
  21. YaqoobS.B. AdnanR. Rameez KhanR.M. RashidM. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications.Front Chem.2020837610.3389/fchem.2020.00376 32582621
    [Google Scholar]
  22. DaramolaO.B. TorimiroN. FadareT.O. OmoleR.K. Functionalized inorganic nanoparticles for the detection of food and waterborne bacterial pathogens.Nanosci Nanotechnol Res20206111410.12691/nnr‑6‑1‑1
    [Google Scholar]
  23. Al-khattafF.S. Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks.Saudi J. Biol. Sci.20212863624363110.1016/j.sjbs.2021.03.078 34121906
    [Google Scholar]
  24. GhoshS. AhmadR. ZeyaullahM. KhareS.K. Microbial nano-factories: Synthesis and biomedical applications.Front Chem.2021962683410.3389/fchem.2021.626834
    [Google Scholar]
  25. MenonS. S R, S VK. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications.ResEffic Technol20173451652710.1016/j.reffit.2017.08.002
    [Google Scholar]
  26. DaramolaO.B. GeorgeR.C. TorimiroN. OlajideA.A. Insights on the synthesis of iron-oxide nanoparticles and the detection of iron-reducing genes from soil microbes. Colloids and Surfaces C.Environm Asp20242100025
    [Google Scholar]
  27. PouraliP. BadieeS.H. ManafiS. NooraniT. RezaeiA. YahyaeiB. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays.Electron. J. Biotechnol.201729869310.1016/j.ejbt.2017.07.005
    [Google Scholar]
  28. DaramolaO.B. TorimiroN. AlayandeS.O. Affinity capture of escherichia coli pathotypes using poly-L-lysine functionalized silver nanoparticles.Adv Nat Sci Nanosci Nanotechnol202213202501210.1088/2043‑6262/ac7712
    [Google Scholar]
  29. AlexanderC.M. GoodismanJ. Size histograms of gold nanoparticles measured by gravitational sedimentation.J. Colloid Interface Sci.201441810311210.1016/j.jcis.2013.11.074 24461824
    [Google Scholar]
  30. Correa-LlanténD.N. Muñoz-IbacacheS.A. CastroM.E. MuñozP.A. BlameyJ.M. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica.Microb. Cell Fact.20131217510.1186/1475‑2859‑12‑75 23919572
    [Google Scholar]
  31. Mohd YusofH. Abdul RahmanN.A. MohamadR. ZaidanU.H. Microbial mediated synthesis of silver nanoparticles by lactobacillus plantarum TA4 and its antibacterial and antioxidant activity.Appl. Sci. 20201019697310.3390/app10196973
    [Google Scholar]
  32. DoanV.D. HuynhB.A. NguyenT.D. Biosynthesis of silver and gold nanoparticles using aqueous extract of Codonopsis pilosula roots for antibacterial and catalytic applications.J. Nanomater.2020202011810.1155/2020/8492016
    [Google Scholar]
  33. HajialiS. DaneshjouS. DaneshjooS. Biomimetic synthesis of iron oxide nanoparticles from Bacillus megaterium to be used in hyperthermia therapy.AMB Express202212114510.1186/s13568‑022‑01490‑y 36402871
    [Google Scholar]
  34. JungJ.H. ChoM. SeoT.S. LeeS.Y. Biosynthesis and applications of iron oxide nanocomposites synthesized by recombinant Escherichia coli.Appl. Microbiol. Biotechnol.202210631127113710.1007/s00253‑022‑11779‑4 35061092
    [Google Scholar]
  35. NadafN.Y. KanaseS.S. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation.Arab. J. Chem.20191284806481410.1016/j.arabjc.2016.09.020
    [Google Scholar]
  36. PriyadarshiniE. PradhanN. SuklaL.B. PandaP.K. MishraB.K. Biogenic synthesis of floral-shaped gold nanoparticles using a novel strain, Talaromyces flavus.Ann. Microbiol.20146431055106310.1007/s13213‑013‑0744‑4
    [Google Scholar]
  37. HeS. GuoZ. ZhangY. ZhangS. WangJ. GuN. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata.Mater. Lett.200761183984398710.1016/j.matlet.2007.01.018
    [Google Scholar]
  38. PriyaN. Green Synthesis: An eco-friendly route for the synthesis of iron oxide nanoparticles. In: Front. Nanotechnol.20212021303Available from: https://www.frontiersin.org/articles/10.3389/fnano.2021.655062
    [Google Scholar]
  39. NarayananK.B. SakthivelN. Biological synthesis of metal nanoparticles by microbes.Adv. Colloid Interface Sci.20101561-211310.1016/j.cis.2010.02.001 20181326
    [Google Scholar]
  40. BajpaiA. ShindeS. BasuS. Nanobiomaterials for drug delivery and theranostics. Liu HH, Shokuhfar T. Nanotechnology in Medicine and Biology.20222556Available from: https://www.sciencedirect.com/science/article/pii/B9780128194690000022
    [Google Scholar]
  41. PerraultS.D. ChanW.C.W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm.J. Am. Chem. Soc.200913147170421704310.1021/ja907069u 19891442
    [Google Scholar]
  42. BastúsN.G. ComengeJ. PuntesV. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.Langmuir20112717110981110510.1021/la201938u 21728302
    [Google Scholar]
  43. SreedharanS.M. SinghS.P. SinghR. Flower shaped gold nanoparticles: Biogenic synthesis strategies and characterization.Indian J. Microbiol.201959332132710.1007/s12088‑019‑00804‑2 31388209
    [Google Scholar]
  44. MendozaR.M. BaybayZ.K. FernandoL.M. MontecilloA.D. IlagL.L. VillegasL.C. Characterization of gold nanoparticles produced by biogenic synthesis using Serratia marcescens NBL1001.IOP Conf. Ser. Earth Environ. Sci.2019230101210310.1088/1755‑1315/230/1/012103
    [Google Scholar]
  45. QianL. SuW. WangY. DangM. ZhangW. WangC. Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa).Artif. Cells Nanomed. Biotechnol.20194711173118010.1080/21691401.2018.1549064 30942109
    [Google Scholar]
  46. PatilM.P. KimJ.O. SeoY.B. Biogenic synthesis of metallic nanoparticles and their antibacterial applications.J. Life Sci.2021319862872
    [Google Scholar]
  47. AlhumaydhiF.A. KhanI. RaufA. Synthesis, characterization, biological activities, and catalytic applications of alcoholic extract of saffron (Crocus sativus) flower stigma-based gold nanoparticles.Green Processing and Synthesis202110123024510.1515/gps‑2021‑0024
    [Google Scholar]
  48. SrinathB.S. NamrathaK. ByrappaK. eco-friendly synthesis of gold nanoparticles by bacillus subtilis and their environmental applications.Adv. Sci. Lett.20182485942594610.1166/asl.2018.12224
    [Google Scholar]
  49. VoT.T. DangC.H. DoanV.D. DangV.S. NguyenT.D. Biogenic synthesis of silver and gold nanoparticles from lactuca indica leaf extract and their application in catalytic degradation of toxic compounds.J. Inorg. Organomet. Polym. Mater.202030238839910.1007/s10904‑019‑01197‑x
    [Google Scholar]
  50. MikhailovaE.O. gold nanoparticles: biosynthesis and potential of biomedical application.J. Funct. Biomater.20211247010.3390/jfb12040070 34940549
    [Google Scholar]
  51. LiuJ. LuY. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection.J. Am. Chem. Soc.200412639122981230510.1021/ja046628h 15453763
    [Google Scholar]
  52. GahlawatG. ChoudhuryA.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes.RSC Adv2019923129441296710.1039/C8RA10483B 35520790
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615306570240427050641
Loading
/content/journals/cnm/10.2174/0124054615306570240427050641
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test