Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Prostate Cancer (PCa) remains a global health concern, and recent advancements in nanomaterial-based immunotherapy are reshaping the landscape of its treatment. The advent of Prostate-Specific Antigen (PSA) screening had a significant impact on the PCa burden until the early 21st century, but the ongoing innovations in therapeutic approaches and early detection methods have contributed to a decline in mortality rates. This comprehensive review delves into the evolving role of the immune system in cancer, with a particular emphasis on the latest advances in nanomaterial-based immunotherapy for PCa. The review focuses on the burgeoning field of nanomaterial-based immunotherapy for PCa, particularly in the context of vaccine-based therapies and immune checkpoint inhibitors. Recent developments in clinical trials highlight the effectiveness of immune checkpoint inhibitors, such as CTLA-4 and PD-1 inhibitors, either as standalone treatments or in combination for metastatic Castration-Resistant Prostate Cancer (mCRPC). We highlight ongoing clinical trials that explore PSMA-targeted CAR-T cells for mCRPC patients, offering valuable insights into the promising field of nanomaterial-based immunotherapy. The review also discusses nanomaterial-based vaccine treatments, such as Sipuleucel-T (Provenge®) and G-VAX. These work in different ways to boost the immune system's response to Tumor-Associated Antigens (TAAs). We also explore viral vector-based vaccines and gene therapy approaches, highlighting their potential to enhance the immune system's ability to target prostate cancer cells at the nanoscale. The article concludes with an in-depth discussion of the current and emerging nanomaterial-based biomarkers for PCa diagnosis and prognosis.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615308368240521075603
2024-05-28
2025-10-07
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. RawlaP. Epidemiology of prostate cancer.World J. Oncol.2019102638910.14740/wjon1191 31068988
    [Google Scholar]
  3. VerzeP. CaiT. LorenzettiS. The role of the prostate in male fertility, health and disease.Nat. Rev. Urol.201613737938610.1038/nrurol.2016.89 27245504
    [Google Scholar]
  4. KarmakarS. DharR. SeethyA. Cancer immunotherapy: Recent advances and challenges.J. Cancer Res. Ther.202117483484410.4103/jcrt.JCRT_1241_20 34528529
    [Google Scholar]
  5. TaefehshokrN. BaradaranB. BaghbanzadehA. TaefehshokrS. Promising approaches in cancer immunotherapy.Immunobiology2020225215187510.1016/j.imbio.2019.11.010 31812343
    [Google Scholar]
  6. KaurK. KhatikG.L. Cancer immunotherapy: An effective tool in cancer control and treatment.Curr. Cancer Ther. Rev.2020161626910.2174/1573394715666190913184853
    [Google Scholar]
  7. MccartyC. Immunology: Essential and Fundamental. Scientific e-Resources2018
    [Google Scholar]
  8. McDonaldD.R. LevyO. Innate immunity. In: Clinical immunology. Elsevier 20193953 e1
    [Google Scholar]
  9. KayaG.G. Characterization of Innate and Adaptive Immune Responses of Two Rare Primary Immune Deficiencies: CTPS1 and CD55.TurkeyBilkent Universitesi2019
    [Google Scholar]
  10. AndrésC. de la LastraP.J. JuanC. PlouF. LebeñaP.E. The role of reactive species on innate immunity.Vaccines 20221010173510.3390/vaccines10101735 36298601
    [Google Scholar]
  11. SteenE.H. WangX. BalajiS. ButteM.J. BollykyP.L. KeswaniS.G. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis.Adv. Wound Care20209418419810.1089/wound.2019.1032 32117582
    [Google Scholar]
  12. AkabariA.H. Recent application of nanotechnology for cancer immunotherapy and its future prospects.Int J Immunol Immunother20231069
    [Google Scholar]
  13. JiangZ. ZhangW. ZhangJ. Nanomaterial-based drug delivery systems: A new weapon for cancer immunotherapy.Int. J. Nanomedicine2022174677469610.2147/IJN.S376216 36211025
    [Google Scholar]
  14. BeckerJ.T. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer.J. Immunother.2010336639
    [Google Scholar]
  15. YangF. LiJ. GeQ. Non-coding RNAs: Emerging roles in the characterization of immune microenvironment and immunotherapy of prostate cancer.Biochem. Pharmacol.202321411566910.1016/j.bcp.2023.115669 37364622
    [Google Scholar]
  16. OnziG. Passive targeting and the enhanced permeability and retention (EPR) effect.The ADME Encyclopedia2021
    [Google Scholar]
  17. PandaP.K. SarafS. TiwariA. Novel strategies for targeting prostate cancer.Curr. Drug Deliv.201916871272710.2174/1567201816666190821143805 31433757
    [Google Scholar]
  18. DacobaT.G. Modulating the immune system through nanotechnology.Seminars in immunology.Elsevier201710.1016/j.smim.2017.09.007
    [Google Scholar]
  19. DuJ. LaneL.A. NieS. Stimuli-responsive nanoparticles for targeting the tumor microenvironment.J. Control. Release201521920521410.1016/j.jconrel.2015.08.050 26341694
    [Google Scholar]
  20. AshrafizadehM. HushmandiK. MoghadamR.E. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer.Bioengineering 2020739110.3390/bioengineering7030091 32784981
    [Google Scholar]
  21. SadreddiniS. BaradaranB. Aghebati-MalekiA. Immune checkpoint blockade opens a new way to cancer immunotherapy.J. Cell. Physiol.201923468541854910.1002/jcp.27816 30511409
    [Google Scholar]
  22. WangZ. WuX. Study and analysis of antitumor resistance mechanism of PD1/PD‐L1 immune checkpoint blocker.Cancer Med.20209218086812110.1002/cam4.3410 32875727
    [Google Scholar]
  23. ZhangH. DaiZ. WuW. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer.J. Exp. Clin. Cancer Res.202140118410.1186/s13046‑021‑01987‑7 34088360
    [Google Scholar]
  24. GrazianiG. Monoclonal antibodies to CTLA-4 with focus on ipilimumab.Interaction of Immune and Cancer Cells.Springer202229535010.1007/978‑3‑030‑91311‑3_10
    [Google Scholar]
  25. DermaniF.K. SamadiP. RahmaniG. KohlanA.K. NajafiR. PD‐1/PD‐L1 immune checkpoint: Potential target for cancer therapy.J. Cell. Physiol.201923421313132510.1002/jcp.27172 30191996
    [Google Scholar]
  26. AiL. XuA. XuJ. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond.Adv. Exp. Med. Biol.202012483359
    [Google Scholar]
  27. ScimecaM. Programmed death ligand 1 expression in prostate cancer cells is associated with deep changes of the tumor inflammatory infiltrate composition.Urol. Oncol.2019375297.e19297.e3110.1016/j.urolonc.2019.02.013
    [Google Scholar]
  28. ReimersM.A. SlaneK.E. PachynskiR.K. Immunotherapy in metastatic castration-resistant prostate cancer: past and future strategies for optimization.Curr. Urol. Rep.201920106410.1007/s11934‑019‑0931‑3 31482315
    [Google Scholar]
  29. DoroshowD.B. BhallaS. BeasleyM.B. PD-L1 as a biomarker of response to immune-checkpoint inhibitors.Nat. Rev. Clin. Oncol.202118634536210.1038/s41571‑021‑00473‑5 33580222
    [Google Scholar]
  30. AdamakiM. ZoumpourlisV. Immunotherapy as a precision medicine tool for the treatment of prostate cancer.Cancers 202113217310.3390/cancers13020173 33419051
    [Google Scholar]
  31. Abate-DagaD. LagisettyK.H. TranE. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer.Hum. Gene Ther.201425121003101210.1089/hum.2013.209 24694017
    [Google Scholar]
  32. GillS. JuneC.H. Going viral: Chimeric antigen receptor T‐cell therapy for hematological malignancies.Immunol. Rev.20152631688910.1111/imr.12243 25510272
    [Google Scholar]
  33. TruongN.T.H. GargettT. BrownM.P. EbertL.M. Effects of chemotherapy agents on circulating leukocyte populations: Potential implications for the success of CAR-T cell therapies.Cancers 2021139222510.3390/cancers13092225 34066414
    [Google Scholar]
  34. KlossC.C. LeeJ. ZhangA. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication.Mol. Ther.20182671855186610.1016/j.ymthe.2018.05.003 29807781
    [Google Scholar]
  35. EshharZ. WaksT. GrossG. SchindlerD.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc. Natl. Acad. Sci. 199390272072410.1073/pnas.90.2.720 8421711
    [Google Scholar]
  36. GattinoniL. LugliE. JiY. A human memory T cell subset with stem cell–like properties.Nat. Med.201117101290129710.1038/nm.2446 21926977
    [Google Scholar]
  37. ToppM.S. RiddellS.R. AkatsukaY. JensenM.C. BlattmanJ.N. GreenbergP.D. Restoration of CD28 expression in CD28- CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production.J. Exp. Med.2003198694795510.1084/jem.20021288 12963692
    [Google Scholar]
  38. KershawM.H. WestwoodJ.A. ParkerL.L. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.Clin. Cancer Res.200612206106611510.1158/1078‑0432.CCR‑06‑1183 17062687
    [Google Scholar]
  39. CarpenitoC. MiloneM.C. HassanR. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.Proc. Natl. Acad. Sci. 200910693360336510.1073/pnas.0813101106 19211796
    [Google Scholar]
  40. ChmielewskiM. KopeckyC. HombachA.A. AbkenH. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression.Cancer Res.201171175697570610.1158/0008‑5472.CAN‑11‑0103 21742772
    [Google Scholar]
  41. LabaniehL. MajznerR.G. MackallC.L. Programming CAR-T cells to kill cancer.Nat. Biomed. Eng.20182637739110.1038/s41551‑018‑0235‑9 31011197
    [Google Scholar]
  42. ComberJ.D. PhilipR. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.Ther. Adv. Vaccines201423778910.1177/2051013614525375 24790732
    [Google Scholar]
  43. KhaliliS. RahbarM.R. DezfulianM.H. JahangiriA. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer.J. Theor. Biol.2015379667810.1016/j.jtbi.2015.04.026 25936349
    [Google Scholar]
  44. YuZ. TheoretM.R. TouloukianC.E. Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance.J. Clin. Invest.2004114455155910.1172/JCI200421695 15314692
    [Google Scholar]
  45. EngelsB. EngelhardV.H. SidneyJ. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity.Cancer Cell201323451652610.1016/j.ccr.2013.03.018 23597565
    [Google Scholar]
  46. CidR. BolívarJ. Platforms for production of protein-based vaccines: From classical to next-generation strategies.Biomolecules2021118107210.3390/biom11081072 34439738
    [Google Scholar]
  47. KantoffP.W. HiganoC.S. ShoreN.D. Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N. Engl. J. Med.2010363541142210.1056/NEJMoa1001294 20818862
    [Google Scholar]
  48. DrakeC.G. Prostate cancer as a model for tumour immunotherapy.Nat. Rev. Immunol.201010858059310.1038/nri2817 20651745
    [Google Scholar]
  49. SmallE.J. SchellhammerP.F. HiganoC.S. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer.J. Clin. Oncol.200624193089309410.1200/JCO.2005.04.5252 16809734
    [Google Scholar]
  50. HiganoC.S. SchellhammerP.F. SmallE.J. Integrated data from 2 randomized, double‐blind, placebo‐controlled, phase 3 trials of active cellular immunotherapy with sipuleucel‐T in advanced prostate cancer.Cancer2009115163670367910.1002/cncr.24429 19536890
    [Google Scholar]
  51. BeerT.M. BernsteinG.T. CormanJ.M. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer.Clin. Cancer Res.201117134558456710.1158/1078‑0432.CCR‑10‑3223 21558406
    [Google Scholar]
  52. MarkD. Outcomes of Sipuleucel-T Therapy.Rockville, MDAgency for Healthcare Research and Quality2015
    [Google Scholar]
  53. HiganoC.S. ArmstrongA.J. SartorA.O. Real‐world outcomes of sipuleucel‐T treatment in PROCEED, a prospective registry of men with metastatic castration‐resistant prostate cancer.Cancer2019125234172418010.1002/cncr.32445 31483485
    [Google Scholar]
  54. WarrenT.L. WeinerG.J. Uses of granulocyte-macrophage colony-stimulating factor in vaccine development.Curr. Opin. Hematol.20007316817310.1097/00062752‑200005000‑00007 10786654
    [Google Scholar]
  55. SimonsJ.W. CarducciM.A. MikhakB. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naïve prostate cancer.Clin. Cancer Res.200612113394340110.1158/1078‑0432.CCR‑06‑0145 16740763
    [Google Scholar]
  56. SimmonsA.D. LiB. Gonzalez-EdickM. GM-CSF-secreting cancer immunotherapies: Preclinical analysis of the mechanism of action.Cancer Immunol. Immunother.200756101653166510.1007/s00262‑007‑0315‑2 17410360
    [Google Scholar]
  57. GoriJ.L. HsuP.D. MaederM.L. ShenS. WelsteadG.G. BumcrotD. Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy.Hum. Gene Ther.201526744345110.1089/hum.2015.074 26068008
    [Google Scholar]
  58. SabatinoD.E. BushmanF.D. ChandlerR.J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective.Mol. Ther.20223082646266310.1016/j.ymthe.2022.06.004 35690906
    [Google Scholar]
  59. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.024 31380246
    [Google Scholar]
  60. VermaA.K. MandalS. TiwariA. Current status and perspectives on the application of CRISPR/Cas9 gene-editing system to develop a low-gluten, non-transgenic wheat variety.Foods20211010235110.3390/foods10102351 34681400
    [Google Scholar]
  61. SinghV. KhuranaA. NavikU. AllawadhiP. BharaniK.K. WeiskirchenR. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics.Sci2022421510.3390/sci4020015
    [Google Scholar]
  62. NehaDesai. MominM. KhanT. GharatS. NingthoujamR.S. OmriA. Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.1912008 33793359
    [Google Scholar]
  63. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules27175730 36080493
    [Google Scholar]
  64. SannaV. PalaN. SechiM. Targeted therapy using nanotechnology: Focus on cancer.Int. J. Nanomedicine20149467483 24531078
    [Google Scholar]
  65. MvilongoP.T.N. VanhamelJ. SiegelM. NöstlingerC. The ‘4th 90’ target as a strategy to improve health‐related quality of life of people living with HIV in sub‐Saharan Africa.Trop. Med. Int. Health202227121026104310.1111/tmi.13825 36268604
    [Google Scholar]
  66. GooY.A. GoodlettD.R. Advances in proteomic prostate cancer biomarker discovery.J. Proteomics201073101839185010.1016/j.jprot.2010.04.002 20398807
    [Google Scholar]
  67. NedelkovD. Mass spectrometry-based protein assays for in vitro diagnostic testing.Expert Rev. Mol. Diagn.201212323523910.1586/erm.12.15 22468814
    [Google Scholar]
  68. WuC.C. YatesJ.R.III The application of mass spectrometry to membrane proteomics.Nat. Biotechnol.200321326226710.1038/nbt0303‑262 12610573
    [Google Scholar]
  69. LiuY. VlatkovicL. SæterT. Is the clinical malignant phenotype of prostate cancer a result of a highly proliferative immune‐evasive B7‐H3‐expressing cell population?Int. J. Urol.201219874975610.1111/j.1442‑2042.2012.03017.x 22487487
    [Google Scholar]
  70. MahnkeK. RingS. JohnsonT.S. Induction of immunosuppressive functions of dendritic cells in vivo by CD4 + CD25 + regulatory T cells: Role of B7‐H3 expression and antigen presentation.Eur. J. Immunol.20073782117212610.1002/eji.200636841 17615586
    [Google Scholar]
  71. RothT.J. SheininY. LohseC.M. B7-H3 ligand expression by prostate cancer: A novel marker of prognosis and potential target for therapy.Cancer Res.200767167893790010.1158/0008‑5472.CAN‑07‑1068 17686830
    [Google Scholar]
  72. ZangX. ThompsonR.H. Al-AhmadieH.A. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome.Proc. Natl. Acad. Sci. 200710449194581946310.1073/pnas.0709802104 18042703
    [Google Scholar]
  73. GerdesJ. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67.J. Immunol.198413341710171510.4049/jimmunol.133.4.1710
    [Google Scholar]
  74. MaduC.O. LuY. Novel diagnostic biomarkers for prostate cancer.J. Cancer2010115017710.7150/jca.1.150 20975847
    [Google Scholar]
  75. ZhaoZ. ZengG. ZhongW. Serum early prostate cancer antigen (EPCA) as a significant predictor of incidental prostate cancer in patients undergoing transurethral resection of the prostate for benign prostatic hyperplasia.Prostate201070161788179810.1002/pros.21215 20583137
    [Google Scholar]
  76. ZhaoZ. MaW. ZengG. QiD. OuL. LiangY. Preoperative serum levels of early prostate cancer antigen (EPCA) predict prostate cancer progression in patients undergoing radical prostatectomy.Prostate201272327027910.1002/pros.21428 21630293
    [Google Scholar]
  77. UetsukiH. TsunemoriH. TaokaR. HabaR. IshikawaM. KakehiY. Expression of a novel biomarker, EPCA, in adenocarcinomas and precancerous lesions in the prostate.J. Urol.2005174251451810.1097/01.ju.0000165154.41159.b1 16006883
    [Google Scholar]
  78. SakataT. FerdousG. TsurutaT. L‐type amino‐acid transporter 1 as a novel biomarker for high‐grade malignancy in prostate cancer.Pathol. Int.200959171810.1111/j.1440‑1827.2008.02319.x 19121087
    [Google Scholar]
  79. KanaiY. SegawaH. MiyamotoK. UchinoH. TakedaE. EndouH. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98).J. Biol. Chem.199827337236292363210.1074/jbc.273.37.23629 9726963
    [Google Scholar]
  80. KanaiY. EndouH. Heterodimeric amino acid transporters: Molecular biology and pathological and pharmacological relevance.Curr. Drug Metab.20012433935410.2174/1389200013338324 11766986
    [Google Scholar]
  81. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  82. XieC. KimH.J. HawJ.G. A novel multiplex assay combining autoantibodies plus PSA has potential implications for classification of prostate cancer from non-malignant cases.J. Transl. Med.2011914310.1186/1479‑5876‑9‑43 21504557
    [Google Scholar]
  83. RamírezM.L. NelsonE.C. EvansC.P. Beyond prostate-specific antigen: Alternate serum markers.Prostate Cancer Prostatic Dis.200811321622910.1038/pcan.2008.2 18227856
    [Google Scholar]
  84. BeckettM.L. CazaresL.H. VlahouA. SchellhammerP.F. WrightG.L.Jr Prostate-specific membrane antigen levels in sera from healthy men and patients with benign prostate hyperplasia or prostate cancer.Clin. Cancer Res.199951240344040 10632336
    [Google Scholar]
  85. ReiterR.E. GuZ. WatabeT. Prostate stem cell antigen: A cell surface marker overexpressed in prostate cancer.Proc. Natl. Acad. Sci. 19989541735174010.1073/pnas.95.4.1735 9465086
    [Google Scholar]
  86. HaeseA. GraefenM. SteuberT. Total and Gleason grade 4/5 cancer volumes are major contributors of human kallikrein 2, whereas free prostate specific antigen is largely contributed by benign gland volume in serum from patients with prostate cancer or benign prostatic biopsies.J. Urol.200317062269227310.1097/01.ju.0000095794.04551.0c 14634394
    [Google Scholar]
  87. KohliM. RothbergP.G. FengC. Exploratory study of a KLK2 polymorphism as a prognostic marker in prostate cancer.Cancer Biomark.20107210110810.3233/CBM‑2010‑0152 21178268
    [Google Scholar]
  88. XiaC. MaW. WangF. HuaS. LiuM. Identification of a prostate-specific G-protein coupled receptor in prostate cancer.Oncogene200120415903590710.1038/sj.onc.1204803 11593396
    [Google Scholar]
  89. AdleyB.P. YangX.J. Application of alpha-methylacyl coenzyme A racemase immunohistochemistry in the diagnosis of prostate cancer: A review.Anal. Quant. Cytol. Histol.2006281113 16566275
    [Google Scholar]
  90. EdwardsS.M. EvansD.G.R. HopeQ. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis.Br. J. Cancer2010103691892410.1038/sj.bjc.6605822 20736950
    [Google Scholar]
  91. CastroE. GohC. OlmosD. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer.J. Clin. Oncol.201331141748175710.1200/JCO.2012.43.1882 23569316
    [Google Scholar]
  92. VespriniD. NamR. Predicting high risk disease using serum and DNA biomarkers.Curr. Opin. Urol.201323325226010.1007/978‑1‑61779‑912‑9_4
    [Google Scholar]
  93. QinJ. WuS.P. CreightonC.J. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.Nature2013493743123624010.1038/nature11674 23201680
    [Google Scholar]
  94. SchutzmanJ.L. MartinG.R. Sprouty genes function in suppression of prostate tumorigenesis.Proc. Natl. Acad. Sci. 201210949200232002810.1073/pnas.1217204109 23150596
    [Google Scholar]
  95. LiongM.L. Blood-based biomarkers of aggressive prostate cancer.PLoS One201279e4580210.1371/journal.pone.0045802
    [Google Scholar]
  96. VoutsadakisI.A. VlachostergiosP.J. DalianiD.D. CD10 is inversely associated with nuclear factor-kappa B and predicts biochemical recurrence after radical prostatectomy.Urol. Int.201288215816410.1159/000335299 22286396
    [Google Scholar]
  97. FleischmannA. RochaC. Saxer-SekulicN. ZlobecI. SauterG. ThalmannG.N. High CD10 expression in lymph node metastases from surgically treated prostate cancer independently predicts early death.Virchows Arch.2011458674174810.1007/s00428‑011‑1084‑z 21538124
    [Google Scholar]
  98. FleischmannA. SchlommT. HulandH. Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients.Clin. Cancer Res.200814237838784210.1158/1078‑0432.CCR‑08‑1432 19047112
    [Google Scholar]
  99. XuL.L. SunC. PetrovicsG. Quantitative expression profile of PSGR in prostate cancer.Prostate Cancer Prostatic Dis.200691566110.1038/sj.pcan.4500836 16231015
    [Google Scholar]
  100. SowalskyA.G. YeH. BubleyG.J. BalkS.P. Clonal progression of prostate cancers from Gleason grade 3 to grade 4.Cancer Res.20137331050105510.1158/0008‑5472.CAN‑12‑2799 23204237
    [Google Scholar]
  101. RomeroD. O’NeillC. TerzicA. Endoglin regulates cancer-stromal cell interactions in prostate tumors.Cancer Res.201171103482349310.1158/0008‑5472.CAN‑10‑2665 21444673
    [Google Scholar]
  102. SvatekR.S. KaramJ.A. RoehrbornC.G. KarakiewiczP.I. SlawinK.M. ShariatS.F. Preoperative plasma endoglin levels predict biochemical progression after radical prostatectomy.Clin. Cancer Res.200814113362336610.1158/1078‑0432.CCR‑07‑4707 18519764
    [Google Scholar]
  103. FujitaK. EwingC.M. ChanD.Y.S. Endoglin (CD105) as a urinary and serum marker of prostate cancer.Int. J. Cancer2009124366466910.1002/ijc.24007 19004009
    [Google Scholar]
  104. PircherA. HilbeW. HeideggerI. DrevsJ. TichelliA. MedingerM. Biomarkers in tumor angiogenesis and anti-angiogenic therapy.Int. J. Mol. Sci.201112107077709910.3390/ijms12107077 22072937
    [Google Scholar]
  105. FeneleyM.R. JanH. GranowskaM. Imaging with prostate-specific membrane antigen (PSMA) in prostate cancer.Prostate Cancer Prostatic Dis.200031475210.1038/sj.pcan.4500390 12497162
    [Google Scholar]
  106. GhoshA. HestonW.D.W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer.J. Cell. Biochem.200491352853910.1002/jcb.10661 14755683
    [Google Scholar]
  107. FreemanM.R. YangW. Di VizioD. Caveolin-1 and prostate cancer progression.Adv. Exp. Med. Biol.20127299511010.1007/978‑1‑4614‑1222‑9_7
    [Google Scholar]
  108. GumulecJ. SochorJ. HlavnaM. Caveolin-1 as a potential high-risk prostate cancer biomarker.Oncol. Rep.2012273831841 22159333
    [Google Scholar]
  109. GuoY. XuF. LuT. DuanZ. ZhangZ. Interleukin-6 signaling pathway in targeted therapy for cancer.Cancer Treat. Rev.201238790491010.1016/j.ctrv.2012.04.007 22651903
    [Google Scholar]
  110. HanZ. BiX. QinW. CD147 expression indicates unfavourable prognosis in prostate cancer.Pathol. Oncol. Res.200915336937410.1007/s12253‑008‑9131‑z 19048397
    [Google Scholar]
  111. ZhongW. LiangY. LinS.X. Expression of CD147 is associated with prostate cancer progression.Int. J. Cancer2012130230030810.1002/ijc.25982 21328337
    [Google Scholar]
  112. GomesP.N. VizcaínoJ.R. GonçalvesM.V. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer.BMC Cancer201111131210.1186/1471‑2407‑11‑312 21787388
    [Google Scholar]
  113. DonatoR. Intracellular and extracellular roles of S100 proteins.Microsc. Res. Tech.200360654055110.1002/jemt.10296 12645002
    [Google Scholar]
  114. GuptaS. HussainT. MacLennanG.T. FuP. PatelJ. MukhtarH. Differential expression of S100A2 and S100A4 during progression of human prostate adenocarcinoma.J. Clin. Oncol.200321110611210.1200/JCO.2003.03.024 12506178
    [Google Scholar]
  115. RehmanI. AzzouziA.R. CrossS.S. Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions.Hum. Pathol.200435111385139110.1016/j.humpath.2004.07.015 15668896
    [Google Scholar]
  116. RehmanI. CrossS.S. CattoJ.W.F. Promoter hyper-methylation of calcium binding proteins S100A6 and S100A2 in human prostate cancer.Prostate200565432233010.1002/pros.20302 16015609
    [Google Scholar]
  117. HermaniA. HessJ. De ServiB. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer.Clin. Cancer Res.200511145146515210.1158/1078‑0432.CCR‑05‑0352 16033829
    [Google Scholar]
  118. KöllermannJ. SchlommT. BangH. Expression and prognostic relevance of annexin A3 in prostate cancer.Eur. Urol.20085461314132310.1016/j.eururo.2008.01.001 18222597
    [Google Scholar]
  119. GerkeV. CreutzC.E. MossS.E. Annexins: Linking Ca2+ signalling to membrane dynamics.Nat. Rev. Mol. Cell Biol.20056644946110.1038/nrm1661 15928709
    [Google Scholar]
  120. PisitkunT. ShenR.F. KnepperM.A. Identification and proteomic profiling of exosomes in human urine.Proc. Natl. Acad. Sci. 200410136133681337310.1073/pnas.0403453101 15326289
    [Google Scholar]
  121. SchostakM. SchwallG.P. PoznanovićS. Annexin A3 in urine: A highly specific noninvasive marker for prostate cancer early detection.J. Urol.2009181134335310.1016/j.juro.2008.08.119 19012935
    [Google Scholar]
  122. KattanM.W. ShariatS.F. AndrewsB. The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer.J. Clin. Oncol.200321193573357910.1200/JCO.2003.12.037 12913106
    [Google Scholar]
  123. ShariatS.F. ShalevM. Menesses-DiazA. Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy.J. Clin. Oncol.200119112856286410.1200/JCO.2001.19.11.2856 11387358
    [Google Scholar]
  124. MortonD.M. BarrackE.R. Modulation of transforming growth factor β 1 effects on prostate cancer cell proliferation by growth factors and extracellular matrix.Cancer Res.1995551225962602 7780974
    [Google Scholar]
  125. ShariatS.F. KattanM.W. TraxelE. Association of pre- and postoperative plasma levels of transforming growth factor β(1) and interleukin 6 and its soluble receptor with prostate cancer progression.Clin. Cancer Res.20041061992199910.1158/1078‑0432.CCR‑0768‑03 15041717
    [Google Scholar]
  126. AvgerisM MavridisK ScorilasA Kallikrein-related peptidases in prostate, breast, and ovarian cancers: From pathobiology to clinical relevance. bchm 201239353011710.1515/hsz‑2011‑026022505514
    [Google Scholar]
  127. GallagherD.J. VijaiJ. CroninA.M. Susceptibility loci associated with prostate cancer progression and mortality.Clin. Cancer Res.201016102819283210.1158/1078‑0432.CCR‑10‑0028 20460480
    [Google Scholar]
  128. HarriesL.W. PerryJ.R.B. McCullaghP. CrundwellM. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer.BMC Cancer201010131510.1186/1471‑2407‑10‑315 20569440
    [Google Scholar]
  129. FitzGeraldL.M. ZhangX. KolbS. Investigation of the relationship between prostate cancer and MSMB and NCOA4 genetic variants and protein expression.Hum. Mutat.201334114915610.1002/humu.22176 22887727
    [Google Scholar]
  130. MehtaN. Regulatory and ethical concerns in the use of nanomaterials.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Elsevier202419721210.1016/B978‑0‑443‑13205‑6.00002‑9
    [Google Scholar]
  131. OjhaA. JaiswalS. BhartiP. MishraS.K. Nanoparticles and nanomaterials-based recent approaches in upgraded targeting and management of cancer: A review.Cancers 202215116210.3390/cancers15010162 36612158
    [Google Scholar]
  132. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  133. PalC. Mitochondria-targeted metallo-drugs against cancer: A current mechanistic perspective.In: Result Chem.20236101149
    [Google Scholar]
  134. AnfrayC. MaininiF. AndónF.T. Nanoparticles for immunotherapy.Front Nanosci20201626530610.1016/B978‑0‑08‑102828‑5.00011‑5
    [Google Scholar]
  135. LiaoJ. LiX. GanY. Artificial intelligence assists precision medicine in cancer treatment.Front. Oncol.20231299822210.3389/fonc.2022.998222 36686757
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615308368240521075603
Loading
/content/journals/cnm/10.2174/0124054615308368240521075603
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; CAR; gene therapy; immunotherapy; prostate cancer; Vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test