Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Introduction

Nanosensors are one of the most recent technologies obtained from the nanoworld. They have enhanced properties with potential applications in a wide spectrum of sectors. They exhibit exceptional properties in temperature monitoring, hazardous gas and vapor detection, humidity detection, as well as pathogens, toxins, and chemical contaminant detection. Among various nanosensor applications, one of the most recent usages of nanosensor technology is in logistics and supply chain management (SCM).

Aim

This study aims at investigating the potential of nanosensor technology from logistics & SCM perspective, and specifically questions how can this technology contribute to food supply chains.

Methods

A systematic comprehensive literature review was conducted with the keywords: nanosensors & logistics, nanosensors & supply chain, nanosensors & smart packaging, and nanosensors & food logistics for the date range 2001-2022, covering a broad set of references. Findings revealed that nanosensors have significant potential in providing smart packaging, and improving traceability and visibility across all the logistics and SCM processes including end-to-end transportation and storage activities.

Results

Hybrids of different types of nanosensors with the existing material identification systems provide new levels of traceability and visibility in SCM, enabling accurate tracking of a variety of parameters. The study has shown that the intersection of nanotechnology and logistics & SCM domains is still immature.

Conclusion

This intersection is especially critical for food supply chains for meeting their special traceability requirements, and for serving food safety and organic food traceability across all stages of logistics.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615280118240125065504
2024-02-02
2025-10-07
Loading full text...

Full text loading...

References

  1. NalwaH.S. Encyclopedia of Nanoscience and Nanotechnology.LA, USAASP Press2019
    [Google Scholar]
  2. LiuJ. ZhangR. ShangC. ZhangY. FengY. PanL. XuB. HyeonT. BuW. ShiJ. DuJ. Near-infrared voltage nanosensors enable real-time imaging of neuronal activities in mice and zebrafish.J. Am. Chem. Soc.2020142177858786710.1021/jacs.0c0102532259437
    [Google Scholar]
  3. BahlS. JavaidM. BaghaA. SinghR. HaleemA. VaishyaR. SumanR. Biosensors applications in fighting COVID-19 pandemic.Apollo Medicine202000010.4103/am.am_56_20
    [Google Scholar]
  4. WangY. DuncanT.V. Nanoscale sensors for assuring the safety of food products.Curr. Opin. Biotechnol.201744748610.1016/j.copbio.2016.10.00527940406
    [Google Scholar]
  5. WangJ. Biomolecule-functionalized nanowires: From nanosensors to nanocarriers.ChemPhysChem200910111748175510.1002/cphc.20090037719575484
    [Google Scholar]
  6. CuiY. WeiQ. ParkH. LieberC.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.Science200129355331289129210.1126/science.106271111509722
    [Google Scholar]
  7. PeixotoA.C. SilvaA.F. Smart devices: Micro-and nano sensors.Bio Mater Med App2017297329
    [Google Scholar]
  8. AtlamH.F. WaltersR.J. WillsG.B. Internet of nano things: Security issues and applications in ACM.Inter Conf Proc Ser201871710.1145/3264560.3264570
    [Google Scholar]
  9. ZhengZ.S. XieH. DaiX. ChenH. WangH. An overview of blockchain technology: Architecture, consensus, and future trends.Proceedings 2017 IEEE 6th International Congress on Big Data, BigData Congress.201755756410.1109/BigDataCongress.2017.85
    [Google Scholar]
  10. PilkingtonM. Blockchain technology: Principles and applications.Research Handbooks on Digital Transformations.FranceEdward Elgar Publishing Ltd.201622525310.4337/9781784717766.00019
    [Google Scholar]
  11. ZhengZ. XieS. DaiH.N. ChenX. WangH. Blockchain challenges and opportunities: A survey.Int. J. Web Grid Serv.201814435237510.1504/IJWGS.2018.095647
    [Google Scholar]
  12. HanD. KimH. JangJ. Blockchain based smart door lock system.International Conference on Information and Communication Technology Convergence: ICT Convergence Technologies Leading the Fourth Industrial Revolution. ICTC 20171165116710.1109/ICTC.2017.8190886
    [Google Scholar]
  13. UnderwoodS. Blockchain beyond bitcoin.Commun. ACM20165911151710.1145/2994581
    [Google Scholar]
  14. LeD.N. VanL.C. TrompJ.G. NguyenG.N. Emerging technologies for health and medicine: Virtual reality, augmented reality, artificial intelligence, Internet of Things, Robotics, Industry 4.0.Hoboken, NJ, USAJohn Wiley & Sons Press201810.1002/9781119509875
    [Google Scholar]
  15. BeheraA. SahooA.K. MohapatraS.S. VisakhP.M. Nanomaterials and nanotechnology in medicine.Nanosensors, Wiley20221333336610.1002/9781119558026.ch13
    [Google Scholar]
  16. MunawarA. OngY. SchirhaglR. TahirM.A. KhanW.S. BajwaS.Z. Nanosensors for diagnosis with optical, electric and mechanical transducers.RSC Advances20199126793680310.1039/C8RA10144B35518460
    [Google Scholar]
  17. CaiD. RenL. ZhaoH. XuC. ZhangL. YuY. WangH. LanY. RobertsM.F. ChuangJ.H. NaughtonM.J. RenZ. ChilesT.C. A molecular-imprint nanosensor for ultrasensitive detection of proteins.Nat. Nanotechnol.20105859760110.1038/nnano.2010.11420581835
    [Google Scholar]
  18. DesaiUR KalitaM. BalagurunathanK. Nanosensor for detecting the activity of glycosaminoglycan-cleaving enzymes and uses thereof. Patent application no. US20160201112A1. 2013
    [Google Scholar]
  19. HongY. HuhY.M. YoonD.S. YangJ. Nanobiosensors based on localized surface plasmon resonance for biomarker detection.J. Nanomater.2012201211310.1155/2012/759830
    [Google Scholar]
  20. HaleemA. JavaidM. SinghR.P. SumanR. RabS. Biosensors applications in medical field: A brief review.Sens. Int.2021210010010.1016/j.sintl.2021.100100
    [Google Scholar]
  21. WangC. OttoS. DornM. HeinzeK. Resch-GengerU. Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength.Anal. Chem.20199132337234410.1021/acs.analchem.8b0506030614676
    [Google Scholar]
  22. Abdel-KarimR. RedaY. Abdel-FattahA. Nanostructured materials-based nanosensors’.J. Electrochem. Soc.2020167303755410.1149/1945‑7111/ab67aa
    [Google Scholar]
  23. ObareS.O. DeC. GuoW. HaywoodT.L. SamuelsT.A. AdamsC.P. MasikaN.O. MurrayD.H. AndersonG.A. CampbellK. FletcherK. Fluorescent chemosensors for toxic organophosphorus pesticides: A review.Sensors20101077018704310.3390/s10070701822163587
    [Google Scholar]
  24. LiuH. NealA.T. ZhuZ. LuoZ. XuX. TománekD. YeP.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility.ACS Nano2014844033404110.1021/nn501226z24655084
    [Google Scholar]
  25. ChenZ. LiuY. WangY. ZhaoX. LiJ. Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru(bpy)3(2+)-doped silica nanoprobe.Anal. Chem.20138594431443810.1021/ac303572g23560766
    [Google Scholar]
  26. LiuY. ShiL. WangM. LiZ. LiuH. LiJ. A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application.Green Chem.20057965565810.1039/b504689k
    [Google Scholar]
  27. ZhangL. ZhangQ. LiJ. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry.Adv. Funct. Mater.200717121958196510.1002/adfm.200600991
    [Google Scholar]
  28. LuX. WenZ. LiJ. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors.Biomaterials200627335740574710.1016/j.biomaterials.2006.07.02616901539
    [Google Scholar]
  29. MalileB. ChenJ.I.L. Morphology-based plasmonic nanoparticle sensors: Controlling etching kinetics with target-responsive permeability gate.J. Am. Chem. Soc.201313543160421604510.1021/ja408626924066880
    [Google Scholar]
  30. KranzC. Carbon-based nanosensor technology, part of the book series: Springer series on chemical sensors and biosensors.In: SSSENSORS201917
    [Google Scholar]
  31. SenesacL. ThundatT.G. Nanosensors for trace explosive detection.Mater. Today2008113283610.1016/S1369‑7021(08)70017‑8
    [Google Scholar]
  32. RiuJ. MarotoA. RiusF. Nanosensors in environmental analysis.Talanta200669228830110.1016/j.talanta.2005.09.04518970568
    [Google Scholar]
  33. SenerG. OzgurE. YılmazE. UzunL. SayR. DenizliA. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles.Biosens. Bioelectron.201026281582110.1016/j.bios.2010.06.00320605089
    [Google Scholar]
  34. BaysalA. SayginH. Smart nanosensors and methods for detection of Nps and their potential toxicity in air Nanomaterials for Air Remediation.Micro and Nano Tech2020335910.1016/B978‑0‑12‑818821‑7.00003‑8
    [Google Scholar]
  35. JinP. WirajaC. ZhaoJ. ZhangJ. ZhengL. XuC. Nitric oxide nanosensors for predicting the development of osteoarthritis in rat model.ACS Appl. Mater. Interfaces2017930251282513710.1021/acsami.7b0640428691484
    [Google Scholar]
  36. Tunçİ. SusaptoH.H. GülerM.Ö. Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection.Turk. J. Chem.201539469771310.3906/kim‑1412‑42
    [Google Scholar]
  37. ParkJ. KuoY. LiJ. HuangY.L. MillerE.W. WeissS. Improved surface functionalisation and characterisation of membrane-targeted semiconductor voltage nanosensors.J. Phys. Chem. Lett.201910143906391310.1021/acs.jpclett.9b0125831241960
    [Google Scholar]
  38. LuoX. HanY. ChenX. TangW. YueT. LiZ. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review.Trends Food Sci. Technol.20209514916110.1016/j.tifs.2019.11.017
    [Google Scholar]
  39. Panes-RuizL.A. ShayganM. FuY. LiuY. KhavrusV. OswaldS. GemmingT. BarabanL. BezuglyV. CunibertiG. Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature.ACS Sens.201831798610.1021/acssensors.7b0035829186954
    [Google Scholar]
  40. SinghE. MeyyappanM. NalwaH.S. Flexible graphene-based wearable gas and chemical sensors.ACS Appl. Mater. Interfaces2017940345443458610.1021/acsami.7b0706328876901
    [Google Scholar]
  41. BehiS. BohliN. Casanova-CháferJ. LlobetE. AbdelghaniA. Metal oxide nanoparticle-decorated few layer graphene nanoflake chemoresistors for the detection of aromatic volatile organic compounds.Sensors20202012341310.3390/s2012341332560414
    [Google Scholar]
  42. ChoiJ.H. LeeJ. ByeonM. HongT.E. ParkH. LeeC.Y. Graphene-based gas sensors with high sensitivity and minimal sensor-to-sensor variation.ACS Appl. Nano Mater.2020332257226510.1021/acsanm.9b02378
    [Google Scholar]
  43. ZhangD. LiuJ. JiangC. LiuA. XiaB. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model.Sens. Actuators B Chem.2017240556510.1016/j.snb.2016.08.085
    [Google Scholar]
  44. TonezzerM. LeD.T.T. IannottaS. Van HieuN. Selective discrimination of hazardous gases using one single metal oxide resistive sensor.Sens. Actuators B Chem.20182772012112810.1016/j.snb.2018.08.103
    [Google Scholar]
  45. StetterJ.R. PenroseW.R. YaoS. Sensors, chemical sensors, electrochemical sensors, and ECS.J. Electrochem. Soc.20031502S1110.1149/1.1539051
    [Google Scholar]
  46. ThomasS. JoshiT. TomerV.K. Functional nanomaterials advances in gas sensing technologies.SingaporeSpringer Press202010.1007/978‑981‑15‑4810‑9
    [Google Scholar]
  47. ChenZ. LuC. Humidity sensors: A review of materials and mechanisms.Sens. Lett.20053427429510.1166/sl.2005.045
    [Google Scholar]
  48. NieJ. WuY. HuangQ. JoshiN. LiN. MengX. ZhengS. ZhangM. MiB. LinL. Dew point measurement using a carbon-based capacitive sensor with active temperature control.ACS Appl. Mater. Interfaces20191111699170510.1021/acsami.8b1853830563323
    [Google Scholar]
  49. PatelG. PillaiV. VoraM. Liquid phase exfoliation of two-dimensional materials for sensors and photocatalysis—a review.J. Nanosci. Nanotechnol.20191985054507310.1166/jnn.2019.1693330913822
    [Google Scholar]
  50. WuY. HuangQ. NieJ. LiangJ. JoshiN. HayasakaT. ZhaoS. ZhangM. WangX. LinL. All-carbon based flexible humidity sensor.J. Nanosci. Nanotechnol.20191985310531610.1166/jnn.2019.1682130913849
    [Google Scholar]
  51. JoshiN. HayasakaT. LiuY. LiuH. OliveiraO.N.Jr LinL. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides.Mikrochim. Acta2018185421310.1007/s00604‑018‑2750‑529594538
    [Google Scholar]
  52. TomerVK MalikR JoshiNA Special issue on functional nanomaterials for sensor applications.Sens Lett 2015131082382510.1166/sl.2015.3534
    [Google Scholar]
  53. TomerV.K. MalikR. JoshiN. ‘A special section on applications of 2D/3D materials in sensing and photocatalysis.J. Nanosci. Nanotechnol.20191985052505310.1166/jnn.2019.1684130913821
    [Google Scholar]
  54. GhadiryM. GholamiM. Choon KongL. Wu YiC. AhmadH. AliasY. Nano-anatase TiO2 for high performance optical humidity sensing on chip’.Sensors20151613910.3390/s1601003926729115
    [Google Scholar]
  55. ShuklaS.K. ShuklaS.K. GovenderP.P. AgorkuE.S. A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix.Mikrochim. Acta2016183257358010.1007/s00604‑015‑1678‑2
    [Google Scholar]
  56. GuL. ZhouD. CaoJ. Piezoelectric active humidity sensors based on lead-free NaNbO3 piezo electric nanofibers.Sensors201616683310.3390/s1606083327338376
    [Google Scholar]
  57. AtalayS. IzgiT. KolatV.S. ErdemogluS. InanO.O. Magnetoelastic humidity sensors with TiO2 nanotube sensing layers’.Sensors202020242510.3390/s2002042531940848
    [Google Scholar]
  58. ZhangZ. HuangJ. YuanQ. DongB. Intercalated graphitic carbon nitride: A fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor.Nanoscale20146159250925610.1039/C4NR01570C24981972
    [Google Scholar]
  59. LuJ. BowlesM. Review on the application of nano-sensor technology to logistics management.8th Int. Conf. Comput. Netw. Technol2012409414
    [Google Scholar]
  60. MarraM. HoW. EdwardsJ.S. Supply chain knowledge management: A literature review.Expert Syst. Appl.20123956103611010.1016/j.eswa.2011.11.035
    [Google Scholar]
  61. ShiX. WeiW. FuZ. GaoW. ZhangC. ZhaoQ. DengF. LuX. Review on carbon dots in food safety applications.Talanta201919480982110.1016/j.talanta.2018.11.00530609610
    [Google Scholar]
  62. SunY.P. ZhouB. LinY. WangW. FernandoK.A.S. PathakP. MezianiM.J. HarruffB.A. WangX. WangH. LuoP.G. YangH. KoseM.E. ChenB. VecaL.M. XieS.Y. Quantum-sized carbon dots for bright and colorful photoluminescence.J. Am. Chem. Soc.2006128247756775710.1021/ja062677d16771487
    [Google Scholar]
  63. FangY. GuoS. LiD. ZhuC. RenW. DongS. WangE. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles.ACS Nano20126140040910.1021/nn204637322188541
    [Google Scholar]
  64. LiuR.L. WuD.Q. LiuS.H. KoynovK. KnollW. LiQ. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers.Angew Chem Int Ed 2009121254668467110.1002/anie.200900652
    [Google Scholar]
  65. ShenL. ZhangL. ChenM. ChenX. WangJ. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging.Carbon20135534334910.1016/j.carbon.2012.12.074
    [Google Scholar]
  66. ChenghuaS. JuanX. HelinW. TianningX. BoY. YulingL. Optical temperature sensor based on ZnO thin film’s temperature-dependent optical properties.Rev. Sci. Instrum.201182808490110.1063/1.361636121895265
    [Google Scholar]
  67. XueF. ZhangL. TangW. ZhangC. DuW. WangZ.L. Piezotronic effect on ZnO nanowire film based temperature sensor.ACS Appl. Mater. Interfaces2014685955596110.1021/am500993p24697564
    [Google Scholar]
  68. WangH. YangA. TangL. Wide measurement-range fiber-optic temperature sensor based on ZnO thin film.Opt. Lasers Eng.201460495310.1016/j.optlaseng.2014.03.008
    [Google Scholar]
  69. KuswandiB.X. Nanotechnology in food packaging. Nanoscience and Food.Agriculture20091151183
    [Google Scholar]
  70. FuertesG. SotoI. CarrascoR. VargasM. SabattinJ. LagosC. Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety.J. Sens.201620161810.1155/2016/4046061
    [Google Scholar]
  71. SinghV.P. Recent approaches in food bio-preservation - A review.Open Vet. J.20188110411110.4314/ovj.v8i1.1629721439
    [Google Scholar]
  72. LiuS.F. PettyA.R. SazamaG.T. SwagerT.M. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage.Angew. Chem. Int. Ed.201554226554655710.1002/anie.20150143425867821
    [Google Scholar]
  73. ShiY. LiZ. ShiJ. ZhangF. ZhouX. LiY. HolmesM. ZhangW. ZouX. Titanium dioxide-polyaniline/silk fibroin microfiber sensor for pork freshness evaluation.Sens. Actuators B Chem.201826046547410.1016/j.snb.2018.01.078
    [Google Scholar]
  74. ZhangJ. SongP. LiZ. ZhangS. YangZ. WangQ. Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles.J. Alloys Compd.20166851024103310.1016/j.jallcom.2016.06.257
    [Google Scholar]
  75. CuiS. YangL. WangJ. WangX. Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage.Sens. Actuators B Chem.201623333734610.1016/j.snb.2016.04.093
    [Google Scholar]
  76. AhmedA. RushworthJ.V. HirstN.A. MillnerP.A. Biosensors for whole-cell bacterial detection.Clin. Microbiol. Rev.201427363164610.1128/CMR.00120‑1324982325
    [Google Scholar]
  77. KumarV. GuleriaP. MehtaS.K. Nanosensors for food quality and safety assessment.Environ. Chem. Lett.201715216517710.1007/s10311‑017‑0616‑4
    [Google Scholar]
  78. BanerjeeT. SulthanaS. ShelbyT. HeckertB. JewellJ. WoodyK. KarimniaV. McAfeeJ. SantraS. Multiparametric Magneto-fluorescent nanosensors for the ultrasensitive detection of escherichia coliO157:H7.ACS Infect. Dis.201621066767310.1021/acsinfecdis.6b0010827737552
    [Google Scholar]
  79. BanerjeeT. ShelbyT. SantraS. How can nanosensors detect bacterial contamination before it ever reaches the dinner table?Future Microbiol.20171229710010.2217/fmb‑2016‑020228106479
    [Google Scholar]
  80. VarshneyM. YangL. SuX.L. LiY. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef.J. Food Prot.20056891804181110.4315/0362‑028X‑68.9.180416161677
    [Google Scholar]
  81. YangH. QuL. WimbrowA.N. JiangX. SunY. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR.Int. J. Food Microbiol.2007118213213810.1016/j.ijfoodmicro.2007.06.01917716768
    [Google Scholar]
  82. CallD.R. BoruckiM.K. LogeF.J. Detection of bacterial pathogens in environmental samples using DNA microarrays.J. Microbiol. Methods200353223524310.1016/S0167‑7012(03)00027‑712654494
    [Google Scholar]
  83. JoungH.A. LeeN.R. LeeS.K. AhnJ. ShinY.B. ChoiH.S. LeeC.S. KimS. KimM.G. High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor.Anal. Chim. Acta2008630216817310.1016/j.aca.2008.10.00119012828
    [Google Scholar]
  84. FranzD.R. JahrlingP.B. McClainD.J. HooverD.L. ByrneW.R. PavlinJ.A. ChristopherG.W. CieslakT.J. FriedlanderA.M. EitzenE.M.Jr Clinical recognition and management of patients exposed to biological warfare agents.Clin. Lab. Med.200121343547410.1016/S0272‑2712(18)30018‑011572137
    [Google Scholar]
  85. ZhouY. PanF.G. LiY.S. ZhangY.Y. ZhangJ.H. LuS.Y. RenH.L. LiuZ.S. Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples.Biosens. Bioelectron.20092482744274710.1016/j.bios.2009.01.03419237277
    [Google Scholar]
  86. RadoiA. TargaM. Prieto-SimonB. MartyJ.L. Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection.Talanta200877113814310.1016/j.talanta.2008.05.04818804611
    [Google Scholar]
  87. PanielN. RadoiA. MartyJ.L. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk.Sensors201010109439944810.3390/s10100943922163418
    [Google Scholar]
  88. DinçkayaE. KınıkÖ. SezgintürkM.K. AltuğÇ. AkkocaA. Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles.Biosens. Bioelectron.20112693806381110.1016/j.bios.2011.02.03821420290
    [Google Scholar]
  89. ZamoloV.A. ValentiG. VenturelliE. ChaloinO. MarcaccioM. BoscoloS. CastagnolaV. SosaS. BertiF. FontaniveG. PoliM. TubaroA. BiancoA. PaolucciF. PratoM. Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin.ACS Nano2012697989799710.1021/nn302573c22913785
    [Google Scholar]
  90. PiętaE. PaluszkiewiczC. OćwiejaM. KwiatekW.M. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules.Appl. Surf. Sci.201740416817910.1016/j.apsusc.2017.01.270
    [Google Scholar]
  91. SchmidtM.A. LeiD.Y. WondraczekL. NazabalV. MaierS.A. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability.Nat. Commun.201231110810.1038/ncomms210923047666
    [Google Scholar]
  92. AuchinvoleC.A.R. RichardsonP. McGuinnesC. MallikarjunV. DonaldsonK. McNabH. CampbellC.J. Monitoring intracellular redox potential changes using SERS nanosensors.ACS Nano20126188889610.1021/nn204397q22165857
    [Google Scholar]
  93. VikeslandP.J. Nanosensors for water quality monitoring.Nat. Nanotechnol.201813865166010.1038/s41565‑018‑0209‑930082808
    [Google Scholar]
  94. JiangJ. AuchinvoleC. FisherK. CampbellC.J. Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors.Nanoscale2014620121041211010.1039/C4NR01263A25195575
    [Google Scholar]
  95. JamiesonL.E. JaworskaA. JiangJ. BaranskaM. HarrisonD.J. CampbellC.J. Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors.Analyst201514072330233510.1039/C4AN02365J25700000
    [Google Scholar]
  96. UsibeB.E. MenkitiA.I. OnuuM.U. OgbulezieJ.C. Development and analysis of a potential nanosensor communication network using carbon nanotubes.Inter J Mater Eng 201331410
    [Google Scholar]
  97. DubeyA. MailapalliD.R. Nano fertilizers, nano pesticides, nanosensors of pest and nanotoxicity in agriculture.Sus Agri Rev2016307330
    [Google Scholar]
  98. PatolskyF. LieberC.M. Nanowire nanosensors.Mater. Today200584202810.1016/S1369‑7021(05)00791‑1
    [Google Scholar]
  99. WujcikE.K. WeiH. ZhangX. GuoJ. YanX. SutraveN. WeiS. GuoZ. Antibody nanosensors: A detailed review.RSC Advances2014482437254374510.1039/C4RA07119K
    [Google Scholar]
  100. MarchantG.E. What are best practices for ethical use of nanosensors for worker surveillance.AMA J. Ethics2019214E356E36210.1001/amajethics.2019.35631012423
    [Google Scholar]
  101. YangH. LiuX. FeiR. HuY. Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors.Talanta201311654855310.1016/j.talanta.2013.07.04124148443
    [Google Scholar]
  102. KaurR. SharmaS.K. Tripathy Advantages and limitations of environmental nanosensors.Adv Nanosens Bio Envir Anal201911913210.1016/B978‑0‑12‑817456‑2.00007‑3
    [Google Scholar]
  103. WangW.U. ChenC. LinK. FangY. LieberC.M. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors.Proc. Natl. Acad. Sci. USA200510293208321210.1073/pnas.040636810215716362
    [Google Scholar]
  104. PurohitB. VernekarP.R. ShettiN.P. ChandraP. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis.Sens. Int.2020110004010.1016/j.sintl.2020.100040
    [Google Scholar]
  105. LewT.T.S. KomanV.B. SilmoreK.S. SeoJ.S. GordiichukP. KwakS.Y. ParkM. AngM.C.Y. KhongD.T. LeeM.A. Chan-ParkM.B. ChuaN.H. StranoM.S. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors.Nat. Plants20206440441510.1038/s41477‑020‑0632‑432296141
    [Google Scholar]
  106. KnudsenB.R. JepsenM.L. HoY.P. Quantum dot-based nanosensors for diagnosis via enzyme activity measurement.Expert Rev. Mol. Diagn.201313436737510.1586/erm.13.1723638819
    [Google Scholar]
  107. SuY. ZhouZ. Electromechanical analysis of flexoelectric nanosensors based on nonlocal elasticity theory.Micromachines20201112107710.3390/mi1112107733291573
    [Google Scholar]
  108. DahlanN.A. ThihaA. IbrahimF. MilićL. MuniandyS. JamaluddinN.F. PetrovićB. KojićS. StojanovićG.M. Role of nanomaterials in the fabrication of bioNEMS/MEMS for biomedical applications and towards pioneering food waste utilisation.Nanomaterials20221222402510.3390/nano1222402536432311
    [Google Scholar]
  109. BiswalS. ChatterjeeC. MailapalliD. Yield Assessment due to varied inundation in paddy crop using UAV-based remote sensing.Authorea Preprints202310.22541/essoar.167590835.56643949/v1
    [Google Scholar]
  110. AlfianG. SyafrudinM. FarooqU. Ma’arifM.R. SyaekhoniM.A. FitriyaniN.L. LeeJ. RheeJ. Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model.Food Control202011010701610.1016/j.foodcont.2019.107016
    [Google Scholar]
  111. LiX. YangL. DuanY. WuZ. ZhangX. Developing a real-time monitoring traceability system for cold chain of tricholoma matsutake.Electronics20198442310.3390/electronics8040423
    [Google Scholar]
  112. ShihC.W. WangC.H. Integrating wireless sensor networks with statistical quality control to develop a cold chain system in food industries.Comput. Stand. Interfaces201645627810.1016/j.csi.2015.12.004
    [Google Scholar]
  113. ViscontiP. de FazioR. VelázquezR. Del-Valle-SotoC. GiannoccaroN.I. Giannoccaro. Development of sensor based agri-food traceability system remotely managed by a software platform for optimized farm management.Sensors20202013363210.3390/s2013363232605300
    [Google Scholar]
  114. FengY. XieL. ChenQ. ZhengL.R. Low-cost printed chipless rfid humidity sensor tag for intelligent packaging.IEEE Sens. J.20151563201320810.1109/JSEN.2014.2385154
    [Google Scholar]
  115. SarapulovaO. SherstiukV. ShvalaginV. KukhtaA. Photonics and nanophotonics and information and communication technologies in modern food packaging.Nanoscale Res. Lett.201510122910.1186/s11671‑015‑0939‑726034421
    [Google Scholar]
  116. LaoS.I. ChoyK.L. HoG.T.S. TsimY.C. PoonT.C. ChengC.K. A real-time food safety management system for receiving operations in distribution centers.Expert Syst. Appl.20123932532254810.1016/j.eswa.2011.08.105
    [Google Scholar]
  117. MusaA. GunasekaranA. YusufY. Supply chain product visibility: Methods, systems and impacts.Expert Syst. Appl.201441117619410.1016/j.eswa.2013.07.020
    [Google Scholar]
  118. SinghR. SinghE. NalwaH.S. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things.RSC Advances2017777485974863010.1039/C7RA07191D
    [Google Scholar]
  119. RealiniC.E. MarcosB. Active and intelligent packaging systems for a modern society.Meat Sci.201498340441910.1016/j.meatsci.2014.06.03125034453
    [Google Scholar]
  120. WuL. YuY. ZhiJ. Low cost and large-area fabrication of self-cleaning coating on polymeric surface based on electroless-plating-like solution deposition approach.RSC Advances2015514101591016410.1039/C4RA10513C
    [Google Scholar]
  121. De JongA.R. BoumansH. SlaghekT. Van VeenJ. RijkR. Van ZandvoortM. Active and intelligent packaging for food: Is it the future?Food Addit. Contam.2005221097597910.1080/0265203050033625416227181
    [Google Scholar]
  122. PehanichM. Small gains in processing, packaging’Food Process114648
    [Google Scholar]
  123. MahalikN.P. NambiarA.N. Trends in food packaging and manufacturing systems and technology.Trends Food Sci. Technol.201021311712810.1016/j.tifs.2009.12.006
    [Google Scholar]
  124. WatsonS. GergelyA. JanusE. Where is “agronanotechnology” heading in the united states and european union?Nat. Resour. Environ.201126812
    [Google Scholar]
  125. EchegoyenY. Nano-developments for food packaging and labeling applications.New York, NYSpringer International Publishing201514116610.1007/978‑3‑319‑14024‑7_7
    [Google Scholar]
  126. FAO/WHO FAO/WHO Expert meeting on the application of nanotechnologies in the food and agriculture sectors: Potential food safety implications.Food and Agriculture Organization of the United Nations and World Health Organization2010
    [Google Scholar]
  127. MeetooD. Nanotechnology and the food sector: From the farm to the table.Emir. J. Food Agric.201123387403
    [Google Scholar]
  128. SekhonB.S. Food nanotechnology - An overview.Nanotechnol. Sci. Appl.2010311524198465
    [Google Scholar]
  129. NugenS.R. BaeumnerA.J. Trends and opportunities in food pathogen detection.Anal. Bioanal. Chem.2008391245145410.1007/s00216‑008‑1886‑218347781
    [Google Scholar]
  130. BuschL. Nanotechnologies, food, and agriculture: Next big thing or flash in the pan?Agric. Human Values200825221521810.1007/s10460‑008‑9119‑z
    [Google Scholar]
  131. ETC-Group Food Packaging Using nanotechnology methods: an overview of ‘smart packaging’, and ‘active packaging’2004Available from: http://www.azonano.com/Details.asp?ArticleID=1317
  132. ChelliahR. WeiS. DaliriE.B.M. RubabM. ElahiF. YeonS.J. JoK. YanP. LiuS. OhD.H. Development of nanosensors based intelligent packaging systems: Food quality and medicine.Nanomaterials2021116151510.3390/nano1106151534201071
    [Google Scholar]
  133. DingmanJ. Nanotechnology: Its impact on food safety.J. Environ. Health2008706475018236938
    [Google Scholar]
  134. MagnusonB.A. JonaitisT.S. CardJ.W. A brief review of the occurrence, use, and safety of food-related nanomaterials.J. Food Sci.2011766R126R13310.1111/j.1750‑3841.2011.02170.x22417518
    [Google Scholar]
  135. CarlsonC. HussainS.M. SchrandA.M. Braydich-StolleL.K. HessK.L. JonesR.L. SchlagerJ.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species.J. Phys. Chem. B200811243136081361910.1021/jp712087m18831567
    [Google Scholar]
  136. Carrero-SánchezJ.C. ElíasA.L. MancillaR. ArrellínG. TerronesH. LacletteJ.P. TerronesM. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen.Nano Lett.2006681609161610.1021/nl060548p16895344
    [Google Scholar]
  137. KimY.S. KimJ.S. ChoH.S. RhaD.S. KimJ.M. ParkJ.D. ChoiB.S. LimR. ChangH.K. ChungY.H. KwonI.H. JeongJ. HanB.S. YuI.J. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats.Inhal. Toxicol.200820657558310.1080/0895837070187466318444010
    [Google Scholar]
  138. RhimJ.W. ParkH.M. HaC.S. Bio-nanocomposites for food packaging applications.In: Progress in Polymer Science20133810/111629165210.1080/08958370701874663
    [Google Scholar]
  139. AvellaM. De VliegerJ.J. ErricoM.E. FischerS. VaccaP. VolpeM.G. Biodegradable starch/clay nanocomposite films for food packaging applications.Food Chem.200593346747410.1016/j.foodchem.2004.10.024
    [Google Scholar]
  140. HuangY. ChenS. BingX. GaoC. WangT. YuanB. Nanosilver migrated into food simulating solutions from commercially available food fresh containers.Packag. Technol. Sci.201124529129710.1002/pts.938
    [Google Scholar]
  141. HeX. AkerW. HuangM.J. WattsJ. HwangH.M. Metal oxide nanomaterials in nanomedicine: Applications in photodynamic therapy and potential toxicity.Curr. Top. Med. Chem.201515181887190010.2174/156802661566615050614525125961519
    [Google Scholar]
  142. BowlesM. LuJ. Removing the blinders: A literature review on the potential of nanoscale technologies for the management of supply chains.Technol. Forecast. Soc. Change20148219019810.1016/j.techfore.2013.10.017
    [Google Scholar]
  143. SinghaK RegubalanB PanditP MaityS AhmedS Introduction to nanotechnology-enhanced food packaging industry.Ed. Parameswaranpillai2021110.1002/9783527827718.ch1
    [Google Scholar]
  144. AnnanouchF.E. JuanC.C. AanchalA. MiriamA. ErnestoG. EduardL. Nanosensors for food logistics.Nanosens Smart Agri202265768310.1016/B978‑0‑12‑824554‑5.00022‑7
    [Google Scholar]
  145. JavaidM. HaleemA. SinghR.P. RabS. SumanR. Exploring the potential of nanosensors: A brief overview.Sensors International2021210013010.1016/j.sintl.2021.100130
    [Google Scholar]
  146. NeethirajanS. JayasD.S. Nanotechnology for the food and bioprocessing industries.Food Bioprocess Technol.201141394710.1007/s11947‑010‑0328‑232215165
    [Google Scholar]
  147. LiY. CuY.T.H. LuoD. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes.Nat. Biotechnol.200523788588910.1038/nbt110615951805
    [Google Scholar]
  148. RenJ. RFID enable food supply chain traceability and safety2015 International Conference Logistics Informatics Service Science. LISS201510.1109/LISS.2015.7369741
    [Google Scholar]
  149. BargeP. GayP. MerlinoV. TortiaC. Radio frequency identification technologies for livestock management and meat supply chain traceability.Can. J. Anim. Sci.2013931233310.4141/cjas2012‑029
    [Google Scholar]
  150. BargeP. BigliaA. CombaL. Ricauda AimoninoD. TortiaC. GayP. Radiofrequency identification for meat supply-chain digitalization.Sensors20202017495710.3390/s2017495732883048
    [Google Scholar]
  151. HangL. UllahI. KimD.H. A secure fish farm platform based on blockchain for agriculture data integrity.Comput. Electron. Agric.202017010525110.1016/j.compag.2020.105251
    [Google Scholar]
  152. HeloP. ShamsuzzohaA.H.M. Real-time supply chain—A blockchain architecture for project deliveries.Robot. Comput.-Integr. Manuf.20206310190910.1016/j.rcim.2019.101909
    [Google Scholar]
  153. KhanP.W. ByunY.C. ParkN. IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning.Sensors20202010299010.3390/s2010299032466209
    [Google Scholar]
  154. HaroonA. BasharatM. KhattakA.M. EjazW. Internet of things platform for transparency and traceability of food supply chain.IEEE International Conference and Workshop on Computing and Communication (IEMCON)2019131910.1109/IEMCON.2019.8936158
    [Google Scholar]
  155. AdeyeyeS.A.O. AdeyeyeO. Food packaging and nanotechnology: Safeguarding consumer health and safety.Nutr. Food Sci.20194961164117910.1108/NFS‑01‑2019‑0020
    [Google Scholar]
  156. KimK. KimH. KimS-K. JungJ-Y. i-RM: An intelligent risk management framework for context-aware ubiquitous cold chain logistics.Expert Syst. Appl.2016461546347310.1016/j.eswa.2015.11.005
    [Google Scholar]
  157. SinghD.K. KaurA. SinghA.K. KumarA. Smart nanosensors for blockchain- and IoT-enabled sensing.Nanosens Smart Manuf202113714410.1016/B978‑0‑12‑823358‑0.00007‑1
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615280118240125065504
Loading
/content/journals/cnm/10.2174/0124054615280118240125065504
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test