Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

The use of membrane technology has developed rapidly since the proposal of the Robeson upper bound. Nevertheless, the researchers proposed various methods and techniques to enhance the permeability and selectivity to achieve a breakthrough of the upper bound. Metal-organic framework (MOF) and covalent organic framework (COF) were the recently-interest- arising materials enhancing gas separation performance. In this study, recent advances in MOF and COF were comprehensively discussed in terms of the materials, properties and synthesis method. Later, the MOF and COF nanocomposite mixed matrix membrane development was discussed to evaluate the recent improvement of these membranes used in the O/N gas separation performance. This work intends to overview the recent progress and development of the metal-organic framework, covalent organic frameworks and the used nanocomposite membrane in O/N gas separation. This topic review was carried out from a thorough literature review of metal-organic frameworks, covalent organic frameworks and the used nanocomposite membrane in O/N gas separation. Additionally, the recent achievement of the O/N gas separation by nanocomposite membrane in term of permeability and selectivity are also discussed. Findings from this study suggested that MOF and COF-based nanocomposite membranes could be used in either the O/N and N/O gas separation process with the possibility of being involved in the gas production sector.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230505093626
2023-06-27
2025-09-08
Loading full text...

Full text loading...

References

  1. FaneA.G. WangR. JiaY. Membrane and desalination technologies.1st edNew JerseyHumana Press2010
    [Google Scholar]
  2. SidhikkuK.V.R. GhasemN. Al-MarzouqiM. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review.J. Ind. Eng. Chem.20219810312910.1016/j.jiec.2021.03.030
    [Google Scholar]
  3. KambleA.R. PatelC.M. MurthyZ.V.P. A review on the recent advances in mixed matrix membranes for gas separation processes.Renew. Sustain. Energy Rev.202114511106210.1016/j.rser.2021.111062
    [Google Scholar]
  4. LiG. KujawskiW. VálekR. KoterS. A review - The development of hollow fibre membranes for gas separation processes.Int. J. Greenh. Gas Control202110410319510.1016/j.ijggc.2020.103195
    [Google Scholar]
  5. IulianelliA. DrioliE. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications.Fuel Process. Technol.202020610646410.1016/j.fuproc.2020.106464
    [Google Scholar]
  6. CuiZ.F. JiangY. FieldR.W. Membrane Technology.1st edOxfordButterworth-Heinemann2010
    [Google Scholar]
  7. RobesonL.M. The upper bound revisited.J. Membr. Sci.20083201-239040010.1016/j.memsci.2008.04.030
    [Google Scholar]
  8. ChongK.C. LaiS.O. LauW.J. ThiamH.S. IsmailA.F. ZulhairunA.K. Fabrication and characterization of polysulfone membranes coated with polydimethysiloxane for oxygen enrichment.Aerosol Air Qual. Res.201717112735274210.4209/aaqr.2016.12.0571
    [Google Scholar]
  9. ZhuC. PengY. YangW. Modification strategies for metal-organic frameworks targeting at membrane-based gas separations.Green Chem Engin202121172610.1016/j.gce.2020.11.005
    [Google Scholar]
  10. Monsalve-BravoG. BhatiaS. Modeling permeation through mixed-matrix membranes: A review.Processes 20186917219910.3390/pr6090172
    [Google Scholar]
  11. YongW.F. ZhangH. Recent advances in polymer blend membranes for gas separation and pervaporation.Prog. Mater. Sci.202111610071310.1016/j.pmatsci.2020.100713
    [Google Scholar]
  12. LiangC.Z. ChungT.S. LaiJ.Y. A review of polymeric composite membranes for gas separation and energy production.Prog. Polym. Sci.20199710114110.1016/j.progpolymsci.2019.06.001
    [Google Scholar]
  13. DongG. LiH. ChenV. Challenges and opportunities for mixed-matrix membranes for gas separation.J. Mater. Chem. A Mater. Energy Sustain.2013115461010.1039/c3ta00927k
    [Google Scholar]
  14. LinY. SakaguchiT. HashimotoT. Imidazolium-based diphenylacetylene copolymers with excellent carbon dioxide/nitrogen and oxygen/nitrogen gas separation performance.J. Membr. Sci.202163711963810.1016/j.memsci.2021.119638
    [Google Scholar]
  15. AkbariB. LashanizadeganA. DarvishiP. PouranfardA. Preparation of hydrophobic flat sheet membranes from PVDF-HFP copolymer for enhancing the oxygen permeance in nitrogen/oxygen gas mixture.Chin. J. Chem. Eng.20202861566158110.1016/j.cjche.2020.02.018
    [Google Scholar]
  16. ChongK. LaiS. LauW. ThiamH. IsmailA. RoslanR. Preparation, characterization, and performance evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS coating for oxygen enhancement process.Polymers 201810212610.3390/polym10020126 30966162
    [Google Scholar]
  17. SandersD.F. SmithZ.P. GuoR. Energy-efficient polymeric gas separation membranes for a sustainable future: A review.Polymer 201354184729476110.1016/j.polymer.2013.05.075
    [Google Scholar]
  18. LaiS. ChongK. LauW. Nanocomposite Membranes for Water and Gas Separation.1st edAmsterdamElsevier2020
    [Google Scholar]
  19. IsmailA. KusworoT. MustafaA. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students.Regional Conference on Engineering Education RCEEJohor, Malaysia2005
    [Google Scholar]
  20. ZhaoC. HussainW. Chlib AlkaabyH.H. Polymeric nanocomposite membranes for gas separation: Performance, applications, restrictions and future perspectives.Case Stud. Therm. Eng.20223810232310.1016/j.csite.2022.102323
    [Google Scholar]
  21. GhaziF. AbbaspourM. RahimpourM. Transport phenomena in gas membrane separations Current Trends and Future Developments on (Bio-) Membranes.1st edAmsterdamElsevier2021
    [Google Scholar]
  22. AlqaheemY. AlomairA. VinobaM. PérezA. Polymeric gas-separation membranes for petroleum refining.Int. J. Polym. Sci.2017201711910.1155/2017/4250927
    [Google Scholar]
  23. ChongK. LaiS. ThiamH. Recent progress of oxygen/nitrogen separation using membrane technology.J Eng Sci Technol201611710161030
    [Google Scholar]
  24. ZengH. HeS. HosseiniS.S. ZhuB. ShaoL. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications.Adv Membr2022210001510.1016/j.advmem.2021.100015
    [Google Scholar]
  25. MaM. LuX. GuoY. WangL. LiangX. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites.Trends Analyt. Chem.202215711674110.1016/j.trac.2022.116741
    [Google Scholar]
  26. ZhouH.C. LongJ.R. YaghiO.M. Introduction to metal-organic frameworks.Chem. Rev.2012112267367410.1021/cr300014x 22280456
    [Google Scholar]
  27. HongW.Y. PereraS.P. BurrowsA.D. Comparison of MIL-101(Cr) metal-organic framework and 13X zeolite monoliths for CO2 capture.Microporous Mesoporous Mater.202030811052510.1016/j.micromeso.2020.110525
    [Google Scholar]
  28. LengK. SunY. LiX. SunS. XuW. Rapid synthesis of metal-organic frameworks MIL-101(Cr) without the addition of solvent and hydrofluoric acid.Cryst. Growth Des.20161631168117110.1021/acs.cgd.5b01696
    [Google Scholar]
  29. CôtéA.P. BeninA.I. OckwigN.W. O’KeeffeM. MatzgerA.J. YaghiO.M. Porous, crystalline, covalent organic frameworks.Science200531057511166117010.1126/science.1120411 16293756
    [Google Scholar]
  30. WangS. WeiX. LiZ. Recent advances in developing mixed matrix membranes based on covalent organic frameworks.Separ. Purif. Tech.202230112200410.1016/j.seppur.2022.122004
    [Google Scholar]
  31. YangD.A. ChoH.Y. KimJ. YangS.T. AhnW.S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method.Energy Environ. Sci.2012546465647310.1039/C1EE02234B
    [Google Scholar]
  32. KangZ. FanL. SunD. Recent advances and challenges of metal–organic framework membranes for gas separation.J. Mater. Chem. A Mater. Energy Sustain.2017521100731009110.1039/C7TA01142C
    [Google Scholar]
  33. FarhaO.K. EryaziciI. JeongN.C. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?J. Am. Chem. Soc.201213436150161502110.1021/ja3055639 22906112
    [Google Scholar]
  34. GuanX. ChenF. FangQ. QiuS. Design and applications of three dimensional covalent organic frameworks.Chem. Soc. Rev.20204951357138410.1039/C9CS00911F 32067000
    [Google Scholar]
  35. Al-MaythalonyB.A. Advanced Nanomaterials for Membrane Synthesis and its Applications.1st edAmsterdamElsevier2019
    [Google Scholar]
  36. ChenY. MuX. LesterE. WuT. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity.Prog. Nat. Sci.201828558458910.1016/j.pnsc.2018.08.002
    [Google Scholar]
  37. FurukawaH. GándaraF. ZhangY.B. Water adsorption in porous metal-organic frameworks and related materials.J. Am. Chem. Soc.2014136114369438110.1021/ja500330a 24588307
    [Google Scholar]
  38. KandambethS. MallickA. LukoseB. ManeM.V. HeineT. BanerjeeR. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route.J. Am. Chem. Soc.201213448195241952710.1021/ja308278w 23153356
    [Google Scholar]
  39. BenzaquiM. PillaiR.S. SabetghadamA. Revisiting the aluminum trimesate-based MOF (MIL-96): From structure determination to the processing of mixed matrix membranes for CO2 capture.Chem. Mater.20172924103261033810.1021/acs.chemmater.7b03203
    [Google Scholar]
  40. FangY. YangZ. LiH. LiuX. MIL-100(Fe) and its derivatives: From synthesis to application for wastewater decontamination.Environ. Sci. Pollut. Res. Int.20202754703472410.1007/s11356‑019‑07318‑w 31919822
    [Google Scholar]
  41. GueshK. CaiubyC.A.D. MayoralÁ. Díaz-GarcíaM. DíazI. Sanchez-SanchezM. Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water.Cryst. Growth Des.20171741806181310.1021/acs.cgd.6b01776
    [Google Scholar]
  42. FéreyG. Mellot-DraznieksC. SerreC. A chromium terephthalate-based solid with unusually large pore volumes and surface area.Science200530957432040204210.1126/science.1116275 16179475
    [Google Scholar]
  43. ZhaoT. LiS.H. ShenL. WangY. YangX-Y. The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property.Inorg. Chem. Commun.201896475110.1016/j.inoche.2018.07.036
    [Google Scholar]
  44. LoS.H. Senthil RajaD. ChenC.W. KangY.H. ChenJ.J. LinC.H. Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr).Dalton Trans.201645239565957310.1039/C6DT01282E 27198203
    [Google Scholar]
  45. LiuN. ShiL. MengX. Tuning the adsorption properties of UiO-66 via acetic acid modulation.J. Chem. Sci.201913165010.1007/s12039‑019‑1628‑3
    [Google Scholar]
  46. LuanY. QiY. GaoH. AndriamitantsoaR.S. ZhengN. WangG. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction.J. Mater. Chem. A Mater. Energy Sustain.2015333173201733110.1039/C5TA00816F
    [Google Scholar]
  47. IslamogluT. AtilganA. MoonS.Y. Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent.Chem. Mater.20172972672267510.1021/acs.chemmater.6b04835
    [Google Scholar]
  48. HanL. ZhangJ. MaoY. ZhouW. XuW. SunY. Facile and green synthesis of MIL-53(Cr) and its excellent adsorptive desulfurization performance.Ind. Eng. Chem. Res.20195834154891549610.1021/acs.iecr.9b02223
    [Google Scholar]
  49. LiZ. HeT. GongY. JiangD. Covalent organic frameworks: Pore design and interface engineering.Acc. Chem. Res.20205381672168510.1021/acs.accounts.0c00386 32786335
    [Google Scholar]
  50. NguyenH.T. Thuy NguyenL.H. Le Hoang DoanT. TranP.H. A mild and efficient method for the synthesis of pyrroles using MIL-53(Al) as a catalyst under solvent-free sonication.RSC Advances20199169093909810.1039/C9RA01071H 35517685
    [Google Scholar]
  51. KamaliK. JosephB. NarayanaC. Stability of zeolitic imidazolate frameworks (ZIF-7) under high pressures and its implications on storage applications of ZIFs.J. Solid State Chem.202230912297310.1016/j.jssc.2022.122973
    [Google Scholar]
  52. ThorntonA.W. DubbeldamD. LiuM.S. LadewigB.P. HillA.J. HillM.R. Feasibility of zeolitic imidazolate framework membranes for clean energy applications.Energy Environ. Sci.2012567637764610.1039/c2ee21743k
    [Google Scholar]
  53. QianQ. AsingerP.A. LeeM.J. MOF-based membranes for gas separations.Chem. Rev.2020120168161826610.1021/acs.chemrev.0c00119 32608973
    [Google Scholar]
  54. ZhangJ.P. ZhangY.B. LinJ.B. ChenX.M. Metal azolate frameworks: From crystal engineering to functional materials.Chem. Rev.201211221001103310.1021/cr200139g 21939178
    [Google Scholar]
  55. ZhaoH. LiQ. WangZ. WuT. ZhangM. Synthesis of MIL-101(Cr) and its water adsorption performance.Microporous Mesoporous Mater.202029711004410.1016/j.micromeso.2020.110044
    [Google Scholar]
  56. ParkK.S. NiZ. CôtéA.P. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc. Natl. Acad. Sci. 200610327101861019110.1073/pnas.0602439103 16798880
    [Google Scholar]
  57. FengD. GuZ.Y. LiJ.R. JiangH.L. WeiZ. ZhouH.C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts.Angew. Chem. Int. Ed.20125141103071031010.1002/anie.201204475 22907870
    [Google Scholar]
  58. LoiseauT. SerreC. HuguenardC. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration.Chemistry20041061373138210.1002/chem.200305413 15034882
    [Google Scholar]
  59. NguyenJ.G. CohenS.M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification.J. Am. Chem. Soc.2010132134560456110.1021/ja100900c 20232871
    [Google Scholar]
  60. JiaoL. SeowJ.Y.R. SkinnerW.S. WangZ.U. JiangH-L. Metal–organic frameworks: Structures and functional applications.Mater. Today201927436810.1016/j.mattod.2018.10.038
    [Google Scholar]
  61. LiZ. ZhangY. XiaH. MuY. LiuX. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions.Chem. Commun. 201652396613661610.1039/C6CC01476C 27114234
    [Google Scholar]
  62. YangJ. YanX. XueT. LiuY. Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework.RSC Advances2016660552665527110.1039/C6RA09350G
    [Google Scholar]
  63. PolyakovV.A. ButovaV.V. ErofeevaE.A. TereshchenkoA.A. SoldatovA.V. MW synthesis of ZIF-7: The effect of solvent on particle size and hydrogen sorption properties.Energies20201323630610.3390/en13236306
    [Google Scholar]
  64. LeeY.R. KimJ. AhnW.S. Synthesis of metal-organic frameworks: A mini review.Korean J. Chem. Eng.20133091667168010.1007/s11814‑013‑0140‑6
    [Google Scholar]
  65. ShenJ. ZhangR. SuY. Polydopamine-modulated covalent organic framework membranes for molecular separation.J. Mater. Chem. A Mater. Energy Sustain.2019730180631807110.1039/C9TA05040J
    [Google Scholar]
  66. ParkesM.V. DemirH. Teich-McGoldrickS.L. ShollD.S. GreathouseJ.A. AllendorfM.D. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8.Microporous Mesoporous Mater.201419419019910.1016/j.micromeso.2014.03.027
    [Google Scholar]
  67. ChengY. KondoA. NoguchiH. Reversible structural change of Cu-MOF on exposure to water and its CO2 adsorptivity.Langmuir20092584510451310.1021/la803818p 19271756
    [Google Scholar]
  68. FanH. MundstockA. FeldhoffA. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation.J. Am. Chem. Soc.201814032100941009810.1021/jacs.8b05136 30021065
    [Google Scholar]
  69. YuanS. LiX. ZhuJ. ZhangG. Van PuyveldeP. Van der BruggenB. Covalent organic frameworks for membrane separation.Chem. Soc. Rev.201948102665268110.1039/C8CS00919H 31025660
    [Google Scholar]
  70. KandambethS. ShindeD.B. PandaM.K. LukoseB. HeineT. BanerjeeR. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds.Angew. Chem. Int. Ed.20135249130521305610.1002/anie.201306775 24127339
    [Google Scholar]
  71. YangC.X. LiuC. CaoY.M. YanX.P. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.Chem. Commun. 20155161122541225710.1039/C5CC03413B 26134742
    [Google Scholar]
  72. AhmadiM. JanakiramS. DaiZ. AnsaloniL. DengL. Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review.Membranes2018835010.3390/membranes8030050 30060592
    [Google Scholar]
  73. LiC. LiS. TianL. ZhangJ. SuB. HuM.Z. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN).J. Membr. Sci.201957252053110.1016/j.memsci.2018.11.005
    [Google Scholar]
  74. Uribe-RomoF.J. HuntJ.R. FurukawaH. KlöckC. O’KeeffeM. YaghiO.M. A crystalline imine-linked 3-D porous covalent organic framework.J. Am. Chem. Soc.2009131134570457110.1021/ja8096256 19281246
    [Google Scholar]
  75. DingS.Y. GaoJ. WangQ. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction.J. Am. Chem. Soc.201113349198161982210.1021/ja206846p 22026454
    [Google Scholar]
  76. WangY. LiuY. LiH. Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering.J. Am. Chem. Soc.202014283736374110.1021/jacs.0c00560 32050755
    [Google Scholar]
  77. LiZ. FengX. ZouY. A 2D azine-linked covalent organic framework for gas storage applications.Chem. Commun. 20145089138251382810.1039/C4CC05665E 25253410
    [Google Scholar]
  78. KuhnP. AntoniettiM. ThomasA. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis.Angew. Chem. Int. Ed.200847183450345310.1002/anie.200705710 18330878
    [Google Scholar]
  79. SaputraE. PrawiranegaraB.A. SugestiH. NugrahaM.W. UtamaP.S. Covalent triazine framework: Water treatment application.J. Water Process Eng.20224810287410.1016/j.jwpe.2022.102874
    [Google Scholar]
  80. OzdemirJ. MoslehI. AbolhassaniM. GreenleeL.F. BeitleR.R.Jr BeyzaviM.H. Covalent organic frameworks for the capture, fixation, or reduction of CO2.Front. Energy Res.201977710.3389/fenrg.2019.00077
    [Google Scholar]
  81. XuH. GaoJ. JiangD. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts.Nat. Chem.201571190591210.1038/nchem.2352 26492011
    [Google Scholar]
  82. GengK. HeT. LiuR. Covalent organic frameworks: Design, synthesis, and functions.Chem. Rev.2020120168814893310.1021/acs.chemrev.9b00550 31967791
    [Google Scholar]
  83. KumarS. AbdulhamidM.A. Dinga WonankeA.D. AddicoatM.A. SzekelyG. Norbornane-based covalent organic frameworks for gas separation.Nanoscale20221462475248110.1039/D1NR07593D 35103279
    [Google Scholar]
  84. ShevateR. ShafferD.L. Large-area 2D covalent organic framework membranes with tunable single-digit nanopores for predictable mass transport.ACS Nano20221622407241810.1021/acsnano.1c08804 35135189
    [Google Scholar]
  85. ManoranjanN. ZhangF. WangZ. A single-walled carbon nanotube/covalent organic framework nanocomposite ultrathin membrane with high organic solvent resistance for molecule separation.ACS Appl. Mater. Interfaces20201247530965310310.1021/acsami.0c14825 33169985
    [Google Scholar]
  86. LiY. WuQ. GuoX. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving.Nat. Commun.202011159910.1038/s41467‑019‑14056‑7 32001683
    [Google Scholar]
  87. LiuJ. HanG. ZhaoD. LuK. GaoJ. ChungT.S. Self-standing and flexible Covalent Organic Framework (COF) membranes for molecular separation.Sci. Adv.2020641eabb111010.1126/sciadv.abb1110 33028518
    [Google Scholar]
  88. ShindeD.B. ShengG. LiX. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration.J. Am. Chem. Soc.201814043143421434910.1021/jacs.8b08788 30289708
    [Google Scholar]
  89. XiongS LiL DongL Covalent-organic frameworks (COFs)-based membranes for CO2 separation. J CO2 Util 2020;41101224
    [Google Scholar]
  90. ChandraS. KandambethS. BiswalB.P. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination.J. Am. Chem. Soc.201313547178531786110.1021/ja408121p 24168521
    [Google Scholar]
  91. SeokM.Y. JunH.P. BartoszA.G. Large-area, freestanding MOF films of planar, curvilinear, or micropatterned topographies.Angew. Chem. Int. Ed.201756112713210.1002/anie.201607927
    [Google Scholar]
  92. BrowerL.J. GentryL.K. NapierA.L. AndersonM.E. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth.Beilstein J. Nanotechnol.201782307231410.3762/bjnano.8.230 29181287
    [Google Scholar]
  93. WangZ. WöllC. Fabrication of metal-organic framework thin films using programmed layer-by-layer assembly techniques.Adv. Mater. Technol.201945180041310.1002/admt.201800413
    [Google Scholar]
  94. SamarasingheS.A.S.C. ChuahC.Y. KarahanH.E. SethungaG.S.M.D.P. BaeT.H. Enhanced O2/N2 separation of mixed-matrix membrane filled with pluronic-compatibilized cobalt phthalocyanine particles.Membranes20201047510.3390/membranes10040075 32325765
    [Google Scholar]
  95. JaramilloD.E. JaffeA. SnyderB.E.R. Metal–organic frameworks as O 2 -selective adsorbents for air separations.Chem. Sci. 20221335102161023710.1039/D2SC03577D 36277628
    [Google Scholar]
  96. HuangY. TaoC. ChenR. ShengL. WangJ. Comparison of fabrication methods of metal-organic framework optical thin films.Nanomaterials 20188967610.3390/nano8090676 30200197
    [Google Scholar]
  97. BushellA.F. AttfieldM.P. MasonC.R. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8.J. Membr. Sci.2013427486210.1016/j.memsci.2012.09.035
    [Google Scholar]
  98. HaoL. LiaoK.S. ChungT.S. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance.J. Mater. Chem. A Mater. Energy Sustain.2015333172731728110.1039/C5TA03776J
    [Google Scholar]
  99. JeazetH.B.T. StaudtC. JaniakC. A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone.Chem. Commun. 201248152140214210.1039/c2cc16628c 22245981
    [Google Scholar]
  100. RodriguesM.A. RibeiroJ.S. CostaE.S. MirandaJ.L. FerrazH.C. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation.Separ. Purif. Tech.201819249150010.1016/j.seppur.2017.10.024
    [Google Scholar]
  101. YuanX. WangY. DengG. ZongX. ZhangC. XueS. Mixed matrix membrane comprising polyimide with crystalline porous imide-linked covalent organic framework for N2/O2 separation.Polym. Adv. Technol.201930241742410.1002/pat.4479
    [Google Scholar]
  102. YuanX. WuQ. ZhangY. A melamine-based polyimide as filler in P84 mixed matrix membrane for increasing permeability in O2/N2 separation.J. Membr. Sci. Technol.20199216
    [Google Scholar]
  103. ChangC.S. NiS.H. YangH.S. ChouC-T. Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber.J. Taiwan Inst. Chem. Eng.2021120677610.1016/j.jtice.2021.03.027
    [Google Scholar]
  104. BulfinB. ButtsworthL. LidorA. SteinfeldA. High-purity nitrogen production from air by pressure swing adsorption combined with SrFeO 3 redox chemical looping.Chem. Eng. J.2021421212773410.1016/j.cej.2020.127734
    [Google Scholar]
  105. ZhiX. HuS. GuC. QiY. QiuL. Influence of structured packing geometric parameters on flow and mass transfer performance of liquid nitrogen and oxygen for cryogenic distillation.Cryogenics202313010364710.1016/j.cryogenics.2023.103647
    [Google Scholar]
  106. NgW.W. ThiamH.S. PangY.L. ChongK.C. LaiS.O. A state-of-art on the development of nafion-based membrane for performance improvement in direct methanol fuel cells.Membranes202212550610.3390/membranes12050506 35629832
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230505093626
Loading
/content/journals/cnm/10.2174/2405461508666230505093626
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COF; gas separation; mixed matrix membrane; MOF; Nanocomposite; nitrogen; oxygen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test