Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

The prevalence of fungi infections has escalated in recent decades. Even though a large portion of fatalities caused by fungal infections are preventive, there is, however, an underappreciated subject for public health officials. Nanotechnology-based carriers have garnered considerable attention owing to their exceptional capabilities. The administration of antimycotic therapeutics with enhanced antifungal activity, bioavailability, localized action, and decreased cytotoxicity has been made possible by the use of nanoparticles (NPs) as effective drug delivery systems (DDS). This burgeoning field allows cross-disciplinary researchers to design and construct multifunctional NPs capable of targeting, diagnosing, and treating mycotic diseases. This research delves into an extensive exploration of various fungal infections and their therapeutic effectiveness through the utilization of a diverse range of cutting-edge nanocarrier-based technologies. These advanced technologies encompass transfersomes, ethosomes, transethosomes, niosomes, nanoemulsions, microemulsions, micelles, as well as distinct types of nanoparticles, including polymeric, inorganic, metal, solid lipid nanoparticles, dendrimers, and carbon nanotubes. The study examines the potential of these innovative delivery systems for combating fungal infections, shedding light on their efficacy and offering insights into their promising applications. By harnessing the distinctive properties and tailored characteristics of these nanocarriers, it becomes possible to optimize the delivery of antifungal agents, thus enhancing their therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615257633231128051924
2023-12-12
2025-09-08
Loading full text...

Full text loading...

References

  1. BseisoE. NasrM. Abd El GawadN.A. SammourO. Recent advances in topical formulation carriers of antifungal agents.Indian J. Dermatol. Venereol. Leprol.201581545746310.4103/0378‑6323.162328 26261140
    [Google Scholar]
  2. BongominF. GagoS. OladeleR. DenningD. Global and multi-national prevalence of fungal diseases—estimate precision.J. Fungi 2017345710.3390/jof3040057 29371573
    [Google Scholar]
  3. PianaltoK. AlspaughJ. New horizons in antifungal therapy.J. Fungi 2016242610.3390/jof2040026 29376943
    [Google Scholar]
  4. ChowJ.C. WatsonJ.G. SavageN. Nanoparticles and the environment.J. Air Waste Manag. Assoc.200555101411141710.1080/10473289.2005.10464743 16295265
    [Google Scholar]
  5. MohanrajVj ChenY. A Review Orchid Chemicals & Pharmaceuticals Limited, Chennai, India 2 School of Pharmacy. Chemicals & Pharmaceuticals Limited 2005
    [Google Scholar]
  6. DiasM.F.R.G. Quaresma-SantosM.V.P. Bernardes-FilhoF. AmorimA.G.F. SchechtmanR.C. AzulayD.R. Update on therapy for superficial mycoses: Review article part I.An. Bras. Dermatol.201388576477410.1590/abd1806‑4841.20131996 24173183
    [Google Scholar]
  7. TsuboiR. OgawaH. BramonoK. Pathogenesis of superficial mycoses.Med. Mycol.199432s1Suppl. 19110410.1080/02681219480000751 7722806
    [Google Scholar]
  8. GuptaA.K. BatraR. BluhmR. BoekhoutT. DawsonT.L.Jr Skin diseases associated with Malassezia species.J. Am. Acad. Dermatol.200451578579810.1016/j.jaad.2003.12.034 15523360
    [Google Scholar]
  9. TheelenB. CafarchiaC. GaitanisG. BassukasI.D. BoekhoutT. DawsonT.L.Jr Malassezia ecology, pathophysiology, and treatment.Med. Mycol.201856Suppl. 1S10S2510.1093/mmy/myx134 29538738
    [Google Scholar]
  10. PiresC.A.A. CruzN.F.S. LobatoA.M. SousaP.O. CarneiroF.R.O. MendesA.M.D. Clinical, epidemiological, and therapeutic profile of dermatophytosis.An. Bras. Dermatol.201489225926410.1590/abd1806‑4841.20142569 24770502
    [Google Scholar]
  11. GuptaA.K. CooperE.A. Update in antifungal therapy of dermatophytosis.Mycopathologia20081665-635336710.1007/s11046‑008‑9109‑0 18478357
    [Google Scholar]
  12. Invasive CandidiasisP.G. PappasM.S. MaikenC. ArendrupL. Invasive candidiasis.Nat. Rev. Dis. Primers20181118026
    [Google Scholar]
  13. RexJ.H. WalshT.J. SobelJ.D. Practice guidelines for the treatment of candidiasis.Clin. Infect. Dis.200030466267810.1086/313749 10770728
    [Google Scholar]
  14. ChakrabartiA. BonifazA. Gutierrez-GalhardoM.C. MochizukiT. LiS. Global epidemiology of sporotrichosis.Med. Mycol.201553131410.1093/mmy/myu062 25526781
    [Google Scholar]
  15. MahajanV.K. Sporotrichosis: an overview and therapeutic options.Dermatol. Res. Pract.2014201411310.1155/2014/272376 25614735
    [Google Scholar]
  16. SegalB.H. Aspergillosis.N. Engl. J. Med.2009360181870188410.1056/NEJMra0808853 19403905
    [Google Scholar]
  17. KoushaM. TadiR. SoubaniA.O. Pulmonary aspergillosis: A clinical review.Eur. Respir. Rev.20112012115617410.1183/09059180.00001011 21881144
    [Google Scholar]
  18. ChaiL.Y.A. HsuL.Y. Recent advances in invasive pulmonary aspergillosis.Curr. Opin. Pulm. Med.201117316016610.1097/MCP.0b013e328343eb49 21252677
    [Google Scholar]
  19. ZaragozaR. Sole-ViolanJ. CusackR. RodriguezA. ReyesL.F. Martin-LoechesI. Invasive pulmonary aspergillosis: Not only a disease affecting immunosuppressed patients.Diagnostics 202313344010.3390/diagnostics13030440 36766545
    [Google Scholar]
  20. AderF. Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: an emerging fungal disease.Curr. Infect. Dis. Rep.201012640941610.1007/s11908‑010‑0132‑1 21308548
    [Google Scholar]
  21. AyubI.I. VenkatramananP. High-attenuation mucus in allergic bronchopulmonary aspergillosis.Arch. Dis. Child.2023108210110210.1136/archdischild‑2022‑324674 36223979
    [Google Scholar]
  22. LinderK.A. KauffmanC.A. MiceliM.H. Blastomycosis: A review of mycological and clinical aspects.J. Fungi 20239111710.3390/jof9010117 36675937
    [Google Scholar]
  23. ToscaniniM.A. NusblatA.D. CuestasM.L. Diagnosis of histoplasmosis: Current status and perspectives.Appl. Microbiol. Biotechnol.202110551837185910.1007/s00253‑021‑11170‑9 33587157
    [Google Scholar]
  24. do CarmoF.N. de Camargo FenleyJ. GarciaM.T. Cryptococcus spp. and Cryptococcosis: Focusing on the infection in Brazil.Braz. J. Microbiol.20225331321133710.1007/s42770‑022‑00744‑y 35486354
    [Google Scholar]
  25. MaziarzE.K. PerfectJ.R. Cryptococcosis.Infect. Dis. Clin. North Am.201630117920610.1016/j.idc.2015.10.006 26897067
    [Google Scholar]
  26. IbrahimA.S. SpellbergB. WalshT.J. KontoyiannisD.P. Pathogenesis of mucormycosis.Clin. Infect. Dis.2012541162210.1093/cid/cir865
    [Google Scholar]
  27. PetrikkosG. SkiadaA. LortholaryO. RoilidesE. WalshT.J. KontoyiannisD.P. Epidemiology and clinical manifestations of mucormycosis.Clin. Infect. Dis.2012541232410.1093/cid/cir866
    [Google Scholar]
  28. AshbeeH.R. EvansE.G.V. Immunology of diseases associated with Malassezia species.Clin. Microbiol. Rev.2002151215710.1128/CMR.15.1.21‑57.2002 11781265
    [Google Scholar]
  29. ErchigaV.C. FlorencioV.D. Malassezia species in skin diseases.Curr. Opin. Infect. Dis.200215213314210.1097/00001432‑200204000‑00006 11964913
    [Google Scholar]
  30. GuptaA.K. RichardsonM. PaquetM. Systematic review of oral treatments for seborrheic dermatitis.J. Eur. Acad. Dermatol. Venereol.2014281162610.1111/jdv.12197 23802806
    [Google Scholar]
  31. RovelliF. MercuriS.R. NaldiL. (Seborrheic dermatitis in clinical practice).Recenti Prog. Med.2011102312613310.1701/608.7069 21572485
    [Google Scholar]
  32. ClarkG.W. PopeS.M. JabooriK.A. Diagnosis and treatment of seborrheic dermatitis.Am. Fam. Physician2015913185190 25822272
    [Google Scholar]
  33. RubensteinR.M. MalerichS.A. Malassezia (pityrosporum) folliculitis.J. Clin. Aesthet. Dermatol.2014733741 24688625
    [Google Scholar]
  34. GreenM. KashetskyN. FeschukA. MaibachH. Pityrosporum folliculitis in immunocompromised populations: A systematic review.J. Am. Acad. Dermatol.202210.1016/j.jaad.2022.07.024 35868569
    [Google Scholar]
  35. VermoutS. TabartJ. BaldoA. MathyA. LossonB. MignonB. Pathogenesis of dermatophytosis.Mycopathologia20081665-626727510.1007/s11046‑008‑9104‑5 18478361
    [Google Scholar]
  36. KaurR. KashyapB. BhallaP. Onychomycosis--epidemiology, diagnosis and management.Indian J. Med. Microbiol.200826210811610.1016/S0255‑0857(21)01924‑1 18445944
    [Google Scholar]
  37. RobertsD.T. TaylorW.D. BoyleJ. Guidelines for treatment of onychomycosis.Br. J. Dermatol.2003148340241010.1046/j.1365‑2133.2003.05242.x 12653730
    [Google Scholar]
  38. AkpanA. MorganR. Oral candidiasis.Postgrad. Med. J.20027892245545910.1136/pmj.78.922.455 12185216
    [Google Scholar]
  39. PfiefferM.L. Recurrent Vulvovaginal Candidiasis.Advances in Family Practice Nursing20224111712910.1016/j.yfpn.2021.12.006
    [Google Scholar]
  40. GonçalvesB. FerreiraC. AlvesC.T. HenriquesM. AzeredoJ. SilvaS. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors.Crit. Rev. Microbiol.201642690592710.3109/1040841X.2015.1091805 26690853
    [Google Scholar]
  41. MahajanV. SharmaN. ShankerV. GuptaP. MardiK. Cutaneous sporotrichosis: Unusual clinical presentations.Indian J. Dermatol. Venereol. Leprol.201076327628010.4103/0378‑6323.62974 20445301
    [Google Scholar]
  42. AungA. SpelmanD. ThompsonP. Pulmonary sporotrichosis: An evolving clinical paradigm.Semin. Respir. Crit. Care Med.201536575676610.1055/s‑0035‑1562901 26398541
    [Google Scholar]
  43. CalditoE.G. AntiaC. Petronic-RosicV. Cutaneous blastomycosis.JAMA Dermatol.20221589106410.1001/jamadermatol.2022.3151 35947397
    [Google Scholar]
  44. KauffmanC.A. Histoplasmosis: A clinical and laboratory update.Clin. Microbiol. Rev.200720111513210.1128/CMR.00027‑06 17223625
    [Google Scholar]
  45. KurowskiR. OstapchukM. Overview of histoplasmosis.Am. Fam. Physician2002661222472252 12507161
    [Google Scholar]
  46. CatañoJ. PorrasJ. Pulmonary histoplasmosis.Am. J. Trop. Med. Hyg.2023108223924010.4269/ajtmh.22‑0541 36623482
    [Google Scholar]
  47. ChayakulkeereeM. PerfectJ.R. Cryptococcosis.Infect. Dis. Clin. North Am.200620350754410.1016/j.idc.2006.07.001
    [Google Scholar]
  48. ReidG LynchJPIII FishbeinMC ClarkNM Mucormycosis. Semin Respir Crit Care Med 202041109911410.1055/s‑0039‑340199232000287
    [Google Scholar]
  49. HamilosG. SamonisG. KontoyiannisD. Pulmonary Mucormycosis.Semin. Respir. Crit. Care Med.201132669370210.1055/s‑0031‑1295717 22167397
    [Google Scholar]
  50. LinE. MouaT. LimperA.H. Pulmonary mucormycosis: Clinical features and outcomes.Infection201745444344810.1007/s15010‑017‑0991‑6 28220379
    [Google Scholar]
  51. RybakJ.M. RogersP.D. Mechanisms of action of antifungal agents.Practical Handbook of Microbiology.CRC Press202177778810.1201/9781003099277‑55
    [Google Scholar]
  52. OddsF.C. BrownA.J.P. GowN.A.R. Antifungal agents: mechanisms of action.Trends Microbiol.200311627227910.1016/S0966‑842X(03)00117‑3 12823944
    [Google Scholar]
  53. AhmedM.Z. RaoT. SaeedA. Antifungal drugs: Mechanism of action and resistance. In: Biochemistry of Drug Resistance.ChamSpringer International Publishing202114316510.1007/978‑3‑030‑76320‑6_5
    [Google Scholar]
  54. MishraV. SinghM. MishraY. Nanoarchitectures in management of fungal diseases: An overview.Appl. Sci. 20211115711910.3390/app11157119
    [Google Scholar]
  55. FrancesconiF. JalkhA.P. LupiO. KhalfeY. Mechanisms of antifungal drug resistance. In: Overcoming Antimicrobial Resistance of the Skin.ChamSpringer International Publishing202113314210.1007/978‑3‑030‑68321‑4_8
    [Google Scholar]
  56. PintoÂ.V. OliveiraJ.C. Costa de MedeirosC.A. SilvaS.L. PereiraF.O. Potentiation of antifungal activity of terbinafine by dihydrojasmone and terpinolene against dermatophytes.Lett. Appl. Microbiol.202172329229810.1111/lam.13371 32790923
    [Google Scholar]
  57. LindsayJ. TehB.W. MicklethwaiteK. SlavinM. Azole antifungals and new targeted therapies for hematological malignancy.Curr. Opin. Infect. Dis.201932653854510.1097/QCO.0000000000000611 31688198
    [Google Scholar]
  58. ShabalinD.A. CampJ.E. Recent advances in the synthesis of imidazoles.Org. Biomol. Chem.202018213950396410.1039/D0OB00350F 32419000
    [Google Scholar]
  59. ChoiF.D. JuhaszM.L.W. Atanaskova MesinkovskaN. Topical ketoconazole: A systematic review of current dermatological applications and future developments.J. Dermatolog. Treat.201930876077110.1080/09546634.2019.1573309 30668185
    [Google Scholar]
  60. MijaljicaD. SpadaF. HarrisonI.P. Emerging trends in the use of topical antifungal-corticosteroid combinations.J. Fungi 20228881210.3390/jof8080812 36012800
    [Google Scholar]
  61. FothergillA.W. Miconazole: A historical perspective.Expert Rev. Anti Infect. Ther.20064217117510.1586/14787210.4.2.171 16597199
    [Google Scholar]
  62. CrowleyP.D. GallagherH.C. Clotrimazole as a pharmaceutical: Past, present and future.J. Appl. Microbiol.2014117361161710.1111/jam.12554 24863842
    [Google Scholar]
  63. PeytonL.R. GallagherS. HashemzadehM. Triazole antifungals: A review.Drugs Today 2015511270571810.1358/dot.2015.51.12.2421058 26798851
    [Google Scholar]
  64. JuraS.E. HillenbrandK. Fluconazole.Pediatr. Rev.200627415815910.1542/pir.27.4.158 16581959
    [Google Scholar]
  65. JohnsonL.B. KauffmanC.A. Voriconazole: A new triazole antifungal agent.Clin. Infect. Dis.200336563063710.1086/367933 12594645
    [Google Scholar]
  66. LiY. TheuretzbacherU. ClancyC.J. NguyenM.H. DerendorfH. Pharmacokinetic/pharmacodynamic profile of posaconazole.Clin. Pharmacokinet.201049637939610.2165/11319340‑000000000‑00000 20481649
    [Google Scholar]
  67. EliasB. EchinocandinsH.E. The newest class of antifungals allana j sucher.Antifungals Allana J Sucher200910
    [Google Scholar]
  68. Letscher-BruV. HerbrechtR. Caspofungin: The first representative of a new antifungal class.J. Antimicrob. Chemother.200351351352110.1093/jac/dkg117 12615851
    [Google Scholar]
  69. VazquezJ.A. SobelJ.D. Anidulafungin: A novel echinocandin.Clin. Infect. Dis.200643221522210.1086/505204 16779750
    [Google Scholar]
  70. ChandrasekarP.H. SobelJ.D. Micafungin: A new echinocandin.Clin. Infect. Dis.20064281171117810.1086/501020 16575738
    [Google Scholar]
  71. SawyerP.R. BrogdenR.N. PinderR.M. SpeightT.M. AveryG.S. Miconazole.Drugs19759640642310.2165/00003495‑197509060‑00002 1149649
    [Google Scholar]
  72. GuptaA.K. KatzH.I. ShearN.H. Drug interactions with itraconazole, fluconazole, and terbinafine and their management.J. Am. Acad. Dermatol.199941223724910.1016/S0190‑9622(99)70055‑1 10426895
    [Google Scholar]
  73. PiérardG.E. ArreseJ.E. Piérard-FranchimontC. Itraconazole.Expert Opin. Pharmacother.20001228730410.1517/14656566.1.2.287 11249550
    [Google Scholar]
  74. EpaulardO. LecciaM.T. BlancheS. Phototoxicity and photocarcinogenesis associated with voriconazole.Med. Mal. Infect.2011411263964510.1016/j.medmal.2011.09.016 22055586
    [Google Scholar]
  75. NagappanV. DeresinskiS. Reviews of anti-infective agents: Posaconazole: A broad-spectrum triazole antifungal agent.Clin. Infect. Dis.200745121610161710.1086/523576 18190324
    [Google Scholar]
  76. Van DaeleR. SprietI. WautersJ. Antifungal drugs: What brings the future?Med. Mycol.201957Suppl. 3S328S34310.1093/mmy/myz012 31292663
    [Google Scholar]
  77. GoldH.S. MoelleringR.C.Jr Antimicrobial-drug resistance.N. Engl. J. Med.1996335191445145310.1056/NEJM199611073351907 8875923
    [Google Scholar]
  78. DesoizeB. JardillierJ. Multicellular resistance: A paradigm for clinical resistance?Crit. Rev. Oncol. Hematol.2000362-319320710.1016/S1040‑8428(00)00086‑X 11033306
    [Google Scholar]
  79. LoefflerJ. StevensD.A. Antifungal drug resistance.Clin. Infect. Dis.200336S31S4110.1086/344658 12516028
    [Google Scholar]
  80. KontoyiannisD.P. LewisR.E. Antifungal drug resistance of pathogenic fungi.Lancet200235993121135114410.1016/S0140‑6736(02)08162‑X 11943280
    [Google Scholar]
  81. BhattacharyaS. Sae-TiaS. FriesB.C. Candidiasis and mechanisms of antifungal resistance.Antibiotics 20209631210.3390/antibiotics9060312 32526921
    [Google Scholar]
  82. PfallerM.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment.Am. J. Med.20121251Suppl.S3S1310.1016/j.amjmed.2011.11.001 22196207
    [Google Scholar]
  83. BalaP.S.N.S. KhanP.A.R. UddinS.A. MuskanM. BegumH. Nanoparticles – for drug delivery systems.Int. J. Pharm. Sci. Rev. Res.2022208–21120821110.47583/ijpsrr.2022.v74i01.031
    [Google Scholar]
  84. MohanrajV.J. ChenY. Nanoparticles - A review.Trop. J. Pharm. Res.20075110.4314/tjpr.v5i1.14634
    [Google Scholar]
  85. ŠnejdrováE. MartiškaJ. LoskotJ. PLGA based film forming systems for superficial fungal infections treatment.Eur. J. Pharm. Sci.202116310585510585510.1016/j.ejps.2021.105855 33872699
    [Google Scholar]
  86. LiuY. YangG. JinS. XuL. ZhaoC.X. Development of high‐drug‐loading nanoparticles.ChemPlusChem20208592143215710.1002/cplu.202000496 32864902
    [Google Scholar]
  87. TiwariG. TiwariR. BannerjeeS.K. Drug delivery systems: An updated review.Int. J. Pharm. Investig.20122121110.4103/2230‑973X.96920 23071954
    [Google Scholar]
  88. KayserO. LemkeA. The impact of nanobiotechnology on the development of new drug delivery systems.Curr. Pharm. Biotechnol.20056135
    [Google Scholar]
  89. MiriA. MahdinejadN. EbrahimyO. KhatamiM. SaraniM. Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity.Mater. Sci. Eng. C201910410998110998110.1016/j.msec.2019.109981 31500056
    [Google Scholar]
  90. PrucekR. TučekJ. KilianováM. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles.Biomaterials201132214704471310.1016/j.biomaterials.2011.03.039 21507482
    [Google Scholar]
  91. KhanM.A.R. MamunM.S.A. AraM.H. Review on platinum nanoparticles: Synthesis, characterization, and applications.Microchem. J.202117110684010684010.1016/j.microc.2021.106840
    [Google Scholar]
  92. XuJ.L. LuoY.X. YuanS.H. LiL.W. LiuN.N. Antifungal nanomaterials: Current progress and future directions.Innovations in Digital Health, Diagnostics, and Biomarkers2021113710.36401/IDDB‑20‑03
    [Google Scholar]
  93. AhmadT. WaniI.A. LoneI.H. Antifungal activity of gold nanoparticles prepared by solvothermal method.Mater. Res. Bull.2013481122010.1016/j.materresbull.2012.09.069
    [Google Scholar]
  94. DerbalahA. ShenashenM. HamzaA. MohamedA. El SaftyS. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato.Egyptian Journal of Basic and Applied Sciences20185214515010.1016/j.ejbas.2018.05.002
    [Google Scholar]
  95. LingX. HuangZ. WangJ. Development of an itraconazole encapsulated polymeric nanoparticle platform for effective antifungal therapy.J. Mater. Chem. B Mater. Biol. Med.20164101787179610.1039/C5TB02453F 32263056
    [Google Scholar]
  96. IngL.Y. ZinN.M. SarwarA. KatasH. Antifungal activity of chitosan nanoparticles and correlation with their physical properties.Int. J. Biomater.201220121910.1155/2012/632698 22829829
    [Google Scholar]
  97. Zare-ZardiniH. AmiriA. ShanbediM. Memarpoor-YazdiM. AsoodehA. Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique.Surf. Interface Anal.201345375175510.1002/sia.5152
    [Google Scholar]
  98. WinnickaK. WroblewskaM. Hydrogel of ketoconazole and PAMAM dendrimers: Formulation and antifungal activity.Molecules200517446124624
    [Google Scholar]
  99. AlmawashS. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs.Saudi Pharm. J.20233171167118010.1016/j.jsps.2023.05.011 37273269
    [Google Scholar]
  100. SinghT.A. DasJ. SilP.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks.Adv. Colloid Interface Sci.202028610231710231710.1016/j.cis.2020.102317 33212389
    [Google Scholar]
  101. PearceA.K. O’ReillyR.K. Polymers for biomedical applications: The importance of hydrophobicity in directing biological interactions and application efficacy.Biomacromolecules202122114459446910.1021/acs.biomac.1c00434 34495643
    [Google Scholar]
  102. RozhinA. BatashevaS. KruychkovaM. CherednichenkoY. RozhinaE. FakhrullinR. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents.Micromachines 20211212148010.3390/mi12121480 34945330
    [Google Scholar]
  103. PatilT. GambhirR. VibhuteA. TiwariA.P. Gold nanoparticles: Synthesis methods, functionalization and biological applications.J. Cluster Sci.202334270572510.1007/s10876‑022‑02287‑6
    [Google Scholar]
  104. SpirescuV.A. ChircovC. GrumezescuA.M. AndronescuE. Polymeric nanoparticles for antimicrobial therapies: an up-to-date overview.Polymers 202113572410.3390/polym13050724 33673451
    [Google Scholar]
  105. AnzarN. Carbon Nanotube-A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science.Sensors. International .20201
    [Google Scholar]
  106. ArseneaultM. WaferC. MorinJ.F. Recent advances in click chemistry applied to dendrimer synthesis.Molecules20152059263929410.3390/molecules20059263 26007183
    [Google Scholar]
  107. LasicD. Novel applications of liposomes.Trends Biotechnol.199816730732110.1016/S0167‑7799(98)01220‑7 9675915
    [Google Scholar]
  108. RajanR. JoseS. MukundV.P.B. VasudevanD.T. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.85524
    [Google Scholar]
  109. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.72415 22247858
    [Google Scholar]
  110. ChenZ.X. LiB. LiuT. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.Eur. J. Pharm. Sci.20179924024510.1016/j.ejps.2016.12.026 28039091
    [Google Scholar]
  111. RajeraR. NagpalK. SinghS.K. MishraD.N. Niosomes: A controlled and novel drug delivery system.Biol. Pharm. Bull.201134794595310.1248/bpb.34.945 21719996
    [Google Scholar]
  112. HeY. ZhangW. XiaoQ. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment.Asian Journal of Pharmaceutical Sciences202217681783710.1016/j.ajps.2022.11.002 36415834
    [Google Scholar]
  113. AkramM.W. JamshaidH. RehmanF.U. ZaeemM. KhanJ. ZebA. Transfersomes: a revolutionary nanosystem for efficient transdermal drug delivery.AAPS PharmSciTech2021231710.1208/s12249‑021‑02166‑9 34853906
    [Google Scholar]
  114. Paiva-SantosA.C. SilvaA.L. GuerraC. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  115. OsanlooM. AssadpourS. MehravaranA. AbastabarM. AkhtariJ. Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review.Curr. Med. Mycol.201944313610.18502/cmm.4.4.384 30815615
    [Google Scholar]
  116. MasonT.G. WilkingJ.N. MelesonK. ChangC.B. GravesS.M. Nanoemulsions: Formation, structure, and physical properties.J. Phys. Condens. Matter200719707900110.1088/0953‑8984/19/7/079001
    [Google Scholar]
  117. LovelynC. AttamaA.A. Current state of nanoemulsions in drug delivery.J. Biomater. Nanobiotechnol.20112562663910.4236/jbnb.2011.225075
    [Google Scholar]
  118. AraújoG.M.F. AraújoG.M.F. BarrosA.R.A. Nanoemulsions loaded with amphotericin b: development, characterization and leishmanicidal activity.Curr. Pharm. Des.201925141616162210.2174/1381612825666190705202030 31298163
    [Google Scholar]
  119. ButaniD. YewaleC. MisraA. AmphotericinB. Topical: Formulation, characterization and evaluation.Colloids Surf. B Biointerfaces201411635135810.1016/j.colsurfb.2014.01.014 24521698
    [Google Scholar]
  120. FiroozA. NamdarR. NafisiS. MaibachH.I. Nano-sized technologies for miconazole skin delivery.Curr. Pharm. Biotechnol.201617652453110.2174/1389201017666160301102459 26927217
    [Google Scholar]
  121. WennerströmH. Physical chemistry of surfactant association. micelles. physical chemistry of surfactant association.Phys. Rep.197952118610.1016/0370‑1573(79)90087‑5
    [Google Scholar]
  122. BachhavY.G. MondonK. KaliaY.N. GurnyR. MöllerM. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.J. Control. Release2011153212613210.1016/j.jconrel.2011.03.003 21397643
    [Google Scholar]
  123. AliM.A. GouldM.L. Polymeric micelles in dermal and transdermal drug delivery. In: Polymeric Micelles for Drug Delivery.Elsevier202214717410.1016/B978‑0‑323‑89868‑3.00009‑4
    [Google Scholar]
  124. MussinJ.E. RoldánM.V. RojasF. SosaM.Á. PellegriN. GiusianoG. Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur.AMB Express20199113110.1186/s13568‑019‑0857‑7 31432275
    [Google Scholar]
  125. NileS.H. ThombreD. ShelarA. Antifungal properties of biogenic selenium nanoparticles functionalized with nystatin for the inhibition of candida albicans biofilm formation.Molecules2023284183610.3390/molecules28041836 36838823
    [Google Scholar]
  126. MontazeriM. Razzaghi-AbyanehM. NasrollahiS.A. MaibachH. NafisiS. Enhanced topical econazole antifungal efficacy by amine-functionalized silica nanoparticles.Bull. Mater. Sci.20204311310.1007/s12034‑019‑1974‑2
    [Google Scholar]
  127. Heras-MozosR. HernándezR. GavaraR. Hernández-MuñozP. Dynamic covalent chemistry of imines for the development of stimuli-responsive chitosan films as carriers of sustainable antifungal volatiles.Food Hydrocoll.202212510732610732610.1016/j.foodhyd.2021.107326
    [Google Scholar]
  128. FabioG.B. MartinB.A. DalmolinL.F. LopezR.F.V. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles.J. Drug Deliv. Sci. Technol.20238010414710414710.1016/j.jddst.2022.104147
    [Google Scholar]
  129. KodedováM. LiškaV. MosingerJ. SychrováH. Light-induced antifungal activity of nanoparticles with an encapsulated porphyrin photosensitizer.Microbiol. Res.202326912730312730310.1016/j.micres.2023.127303 36641862
    [Google Scholar]
  130. Rodríguez-CerdeiraC. Martínez-HerreraE. FabbrociniG. New applications of photodynamic therapy in the management of candidiasis.J. Fungi 2021712102510.3390/jof7121025 34947007
    [Google Scholar]
  131. TehriN. VashishthA. GahlautA. HoodaV. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: Current progress and future prospects.Inorganic and Nano-Metal Chemistry202011910.1080/24701556.2020.1862212
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615257633231128051924
Loading
/content/journals/cnm/10.2174/0124054615257633231128051924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test