Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

In today’s world, nanoparticles play a pivotal role in revolutionizing many industries. Their nano size enables novel applications that have the potential to address pressing global challenges. The paper reviews the major properties and their practical implementations of Zinc Oxide Nanoparticles (ZnO NPs). Different methods of ZnO NP synthesis produced a surface area ranging from 57m2g-1 to 83m2g-1. A precipitation and green synthesis of ZnO NPs demonstrated its catalytic behavior. ZnO doped with MnCO showed the highest catalytic activity. These properties have applications in wastewater treatment and dye removal processes in textile industries. ZnO NPs exhibit UV shielding and photocatalytic properties. ZnO NPs-coated cotton fabric is used in textile industries as it has more UV protection against uncoated cotton fabric. ZnO NPs are major semiconductors having a band gap of 3.34eV. This gives a range of applications in electrical and electronic industries. Biologically synthesized ZnO NP had better anti-microbial properties, which have a wide range of applications in the food industry, compared to chemically synthesized ZnO NP. The anti-cancer properties of ZnO NPs are due to their cytotoxicity making it a potential drug against cancer cells.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615292106240213064923
2024-02-22
2025-09-09
Loading full text...

Full text loading...

References

  1. KeerthanaP. VijayakumarS. VidhyaE. Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti -infection and growth promotion in plants.Ind. Crops Prod.202117010.1016/j.indcrop.2021.113762
    [Google Scholar]
  2. GuoD. WuC. JiangH. LiQ. WangX. ChenB. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation.J. Photochem. Photobiol. B200893311912610.1016/j.jphotobiol.2008.07.009 18774727
    [Google Scholar]
  3. SalehiR. AramiM. MahmoodiN.M. BahramiH. KhorramfarS. Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties.Colloids Surf. B Biointerfaces2010801869310.1016/j.colsurfb.2010.05.039 20566273
    [Google Scholar]
  4. LiL.H. DengJ.C. DengH.R. LiuZ.L. XinL. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes.Carbohydr. Res.2010345899499810.1016/j.carres.2010.03.019 20371037
    [Google Scholar]
  5. BuşilăM. MuşatV. TextorT. MahltigB. Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites.RSC Advances2015528215622157110.1039/C4RA13918F
    [Google Scholar]
  6. SridarR. RamananeU.U. RajasimmanM. ZnO nanoparticles - Synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater.Environ. Nanotechnol. Monit. Manag.20181038839310.1016/j.enmm.2018.09.003
    [Google Scholar]
  7. SikoraP. AugustyniakA. CendrowskiK. NawrotekP. MijowskaE. Antimicrobial activity of Al2O3, CuO, Fe3O4, and ZnO nanoparticles in scope of their further application in cement-based building materials.Nanomaterials 20188421210.3390/nano8040212 29614721
    [Google Scholar]
  8. AziziS. MohamadR. Mahdavi ShahriM. McPheeD.J. Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) schrad: Characterization and biomedical applications.Molecules201722230110.3390/molecules22020301 28212344
    [Google Scholar]
  9. KruisF.E. FissanH. PeledA. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review.J. Aerosol Sci.1998295-651153510.1016/S0021‑8502(97)10032‑5
    [Google Scholar]
  10. Bozİ. KaluzaS. BoroğluM.Ş. MuhlerM. Synthesis of high surface area ZnO powder by continuous precipitation.Mater. Res. Bull.20124751185119010.1016/j.materresbull.2012.02.005
    [Google Scholar]
  11. AroraA. DeviS. JaswalV. SinghJ. KingerM. GuptaV. Synthesis and characterization of ZnO nanoparticles.Orient. J. Chem.20143041671167910.13005/ojc/300427
    [Google Scholar]
  12. PalB. SharonM. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process.Mater. Chem. Phys.2002761828710.1016/S0254‑0584(01)00514‑4
    [Google Scholar]
  13. RabaniI. YooJ. BathulaC. HussainS. SeoY.S. The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.2021919115801159410.1039/D1TA01644J
    [Google Scholar]
  14. ChandrasekaranM. PanduranganM. In vitro selective anti-proliferative effect of zinc oxide nanoparticles against co-cultured C2C12 myoblastoma cancer and 3T3-L1 normal cells.Biol. Trace Elem. Res.2016172114815410.1007/s12011‑015‑0562‑6 26563419
    [Google Scholar]
  15. GhorbaniH. MehrF. PazokiH. RahmaniB. Synthesis of ZnO nanoparticles by precipitation method.Orient. J. Chem.20153121219122110.13005/ojc/310281
    [Google Scholar]
  16. AkinteluS.A. FolorunsoA.S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications.Bionanoscience202010484886310.1007/s12668‑020‑00774‑6
    [Google Scholar]
  17. Kolodziejczak-RadzimskaA. JesionowskiT. Zinc oxide-from synthesis to application: A review.Materials 2014742833288110.3390/ma7042833
    [Google Scholar]
  18. HongR.Y. LiJ.H. ChenL.L. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles.Powder Technol.2009189342643210.1016/j.powtec.2008.07.004
    [Google Scholar]
  19. KahouliM. BarhoumiA. BouzidA. Al-HajryA. GuermaziS. Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method.In: Superlattices and Microstructures.Academic Press201510.1016/j.spmi.2015.05.007
    [Google Scholar]
  20. FoudaA. EL-Din Hassan S, Salem SS, Shaheen TI. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications.Microb. Pathog.201812525226110.1016/j.micpath.2018.09.030 30240818
    [Google Scholar]
  21. BhuyanT. MishraK. KhanujaM. PrasadR. VarmaA. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for a ntibacterial and photocatalytic applications.Mater. Sci. Semicond. Pro.201532556110.1016/j.mssp.2014.12.053
    [Google Scholar]
  22. Hojjati-NajafabadiA. AygunA. TiriR.N.E. Bacillus thuringiensis Based Ruthenium/Nickel Co-Doped Zinc as a Green Nanocatalyst: Enhanced Photocatalytic Activity, Mechanism, and Efficient H2 Production from Sodium Borohydride Methanolysis.Ind. Eng. Chem. Res.202362114655466410.1021/acs.iecr.2c03833
    [Google Scholar]
  23. KumariP. MisraK.P. ChattopadhyayS. SamantaS. A brief review on transition metal ion doped ZnO nanoparticles and its optoelectronic applications.In: Materials Today: Proceedings.Elsevier Ltd20213297330210.1016/j.matpr.2021.02.299
    [Google Scholar]
  24. HaqueM.J. BellahM.M. HassanM.R. RahmanS. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties.Nano Express20201101000710.1088/2632‑959X/ab7a43
    [Google Scholar]
  25. SungkawornT. The effects of TiO2 nanoparticles on tumor cell colonies: Fractal dimension and morphological properties.2007Available from: https://api.semanticscholar.org/CorpusID:15729670
    [Google Scholar]
  26. GunalanS. SivarajR. RajendranV. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens.Prog. Nat. Sci.201222669370010.1016/j.pnsc.2012.11.015
    [Google Scholar]
  27. MahalakshmiS. HemaN. VijayaP.P. In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route- A comparative study.Bionanoscience202010111212110.1007/s12668‑019‑00698‑w
    [Google Scholar]
  28. EspitiaP.J.P. SoaresN.F.F. CoimbraJ.S.R. de AndradeN.J. CruzR.S. MedeirosE.A.A. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications.Food Bioprocess Technol.2012551447146410.1007/s11947‑012‑0797‑6
    [Google Scholar]
  29. AkbarS. An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential.In: Inorganic and Nano-Metal Chemistry.Taylor and Francis Inc202010.1080/24701556.2019.1711121
    [Google Scholar]
  30. DaiY. WangY. YangZ. In vitro antibacterial effect of nanomaterial calamine.Ferroelectrics2021580115917110.1080/00150193.2021.1905736
    [Google Scholar]
  31. PuspasariV. RidhovaA. HermawanA. AmalM.I. KhanM.M. ZnO-based antimicrobial coatings for biomedical applications.In: Bioprocess and Biosystems Engineering.Springer202210.1007/s00449‑022‑02733‑9
    [Google Scholar]
  32. SivakumarP. LeeM. KimY.S. ShimM.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles.J. Mater. Chem. B Mater. Biol. Med.20186304852487110.1039/C8TB00948A 32255062
    [Google Scholar]
  33. AnjumS. HashimM. MalikS.A. Recent advances in zinc oxide nanoparticles (ZnOnps) for cancer diagnosis, target drug delivery, and treatment.Cancers 20211318457010.3390/cancers13184570 34572797
    [Google Scholar]
  34. JiangJ. PiJ. CaiJ. The advancing of zinc oxide nanoparticles for biomedical applications.Bioinorganic Chemistry and Applications.Hindawi Limited201810.1155/2018/1062562
    [Google Scholar]
  35. HanleyC. LayneJ. PunnooseA. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles.Nanotechnology2008192929510310.1088/0957‑4484/19/29/295103 18836572
    [Google Scholar]
  36. MousaA.B. MoawadR. AbdallahY. Abdel-RasheedM. ZaherA.M.A. Zinc oxide nanoparticles promise anticancer and antibacterial activity in ovarian cancer.Pharm. Res.202340102281229010.1007/s11095‑023‑03505‑0 37016170
    [Google Scholar]
  37. KhashanK.S. SulaimanG.M. HussainS.A. MarzoogT.R. JabirM.S. Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles.J. Inorg. Organomet. Polym. Mater.20203093677369310.1007/s10904‑020‑01522‑9
    [Google Scholar]
  38. Al-AjmiM.F. HussainA. AhmedF. Novel synthesis of ZnO nanoparticles and their enhanced anticancer activity: Role of ZnO as a drug carrier.Ceram. Int.20164234462446910.1016/j.ceramint.2015.11.133
    [Google Scholar]
  39. YuvakkumarR. SureshJ. SaravanakumarB. Joseph NathanaelA. HongS.I. RajendranV. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513725025810.1016/j.saa.2014.08.022 25228035
    [Google Scholar]
  40. HuangX. ZhengX. XuZ. YiC. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies.Int. J. Pharmaceut.20175341-219019410.1016/j.ijpharm.2017.10.008
    [Google Scholar]
  41. PrasannaA.P.S. VenkataprasannaK.S. PannerselvamB. AsokanV. JenifferR.S. VenkatasubbuG.D. Multifunctional ZnO/SiO2 core/shell nanoparticles for bioimaging and drug delivery application.J. Fluoresc.20203051075108310.1007/s10895‑020‑02578‑z 32621092
    [Google Scholar]
  42. ZhangZ.Y. XiongH.M. Photoluminescent ZnO nanoparticles and their biological applications.Materials 2015863101312710.3390/ma8063101
    [Google Scholar]
  43. OngC.B. NgL.Y. MohammadA.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications.In: Renewable and Sustainable Energy Reviews.Elsevier Ltd2018Vol. 8153655110.1016/j.rser.2017.08.020
    [Google Scholar]
  44. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.201920510.3390/ijms20051033
    [Google Scholar]
  45. RodriguesF.C. Anil KumarN.V. ThakurG. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review.Eur. J. Med. Chem.20191777610410.1016/j.ejmech.2019.04.058
    [Google Scholar]
  46. R N, M K, J P, et al. Enhanced wound healing by PVA/Chitosan/ Curcumin patches: In vitro and in vivo study. Colloids Surf B Biointerfaces 201918211033910.1016/j.colsurfb.2019.06.06831284147
    [Google Scholar]
  47. MomeniS.S. NasrollahzadehM. RustaiyanA. Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity.J. Colloid Interface Sci.201647217317910.1016/j.jcis.2016.03.042 27038280
    [Google Scholar]
  48. RupaE.J. AnandapadmanabanG. MathiyalaganR. YangD.C. Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye.Optik 20181721179118610.1016/j.ijleo.2018.07.115
    [Google Scholar]
  49. Hojjati-NajafabadiA. Nasr EsfahaniP. DavarF. AminabhaviT.M. VasseghianY. Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites.Chem. Eng. J.202347114448510.1016/j.cej.2023.144485
    [Google Scholar]
  50. RajuP. DeivatamilD. Martin MarkJ.A. JesurajJ.P. Antibacterial and catalytic activity of Cu doped ZnO nanoparticles: Structural, optical, and morphological study.J. Indian Chem. Soc.202219386187210.1007/s13738‑021‑02352‑3
    [Google Scholar]
  51. AssalM.E. KuniyilM. ShaikM.R. Synthesis, characterization, and relative study on the catalytic activity of zinc oxide nanoparticles doped MnCO3, -MnO2, and -Mn2O3 nanocomposites for aerial oxidation of alcohols.J. Chem.2017201711710.1155/2017/2937108
    [Google Scholar]
  52. JogiJ.K. SinghalS.K. TannaA. SinghM. MishraP. 6 - Synthesis of ZnO nanostructures and their medical applications. In: Kumar P, Kandasamy G, Singh JP, Maurya PK, Eds. Oxides for Medical Applications. Woodhead Publishing 20231476510.1016/B978‑0‑323‑90538‑1.00012‑1
    [Google Scholar]
  53. OzgurÜ. HofstetterD. MorkoçH. ZnO devices and applications: A review of current status and future prospects.Proc. IEEE20109871255126810.1109/JPROC.2010.2044550
    [Google Scholar]
  54. UikeyP. VishwakarmaK. Review of zinc oxide (ZNO) nanoparticles applications and properties.IJETCSE201621214
    [Google Scholar]
  55. DjuriićA.B. NgA.M.C. ChenX.Y. ZnO nanostructures for optoelectronics: Material properties and device applications. In: Progress in Quantum Electronics.Elsevier201010.1016/j.pquantelec.2010.04.001
    [Google Scholar]
  56. DjurišićA.B. ChenX. LeungY.H. Man Ching NgA. ZnO nanostructures: Growth, properties and applications.J. Mater. Chem.201222146526653510.1039/c2jm15548f
    [Google Scholar]
  57. NguyenT.V. DaoP.H. DuongK.L. Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating.Prog. Org. Coat.201711011412110.1016/j.porgcoat.2017.02.017
    [Google Scholar]
  58. YousefiF. MousaviS.B. HerisS.Z. Naghash-HamedS. UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: A comprehensive evaluation.Sci. Rep.2023131711610.1038/s41598‑023‑34120‑z 37130903
    [Google Scholar]
  59. NohynekG.J. DufourE.K. RobertsM.S. Nanotechnology, cosmetics and the skin: Is there a health risk?Skin Pharmacol. Physiol.200821313614910.1159/000131078
    [Google Scholar]
  60. SubramaniamV.D. Health hazards of nanoparticles: Understanding the toxicity mechanism of nanosized ZnO in cosmetic products. In: Drug and Chemical Toxicology.Taylor and Francis Ltd201910.1080/01480545.2018.1491987
    [Google Scholar]
  61. ZhuL.P. LiaoG.H. HuangW.Y. Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes.Mater. Sci. Eng. B2009163319419810.1016/j.mseb.2009.05.021
    [Google Scholar]
  62. KumarS. ThakurA. RangraV.S. SharmaS. Synthesis and use of low-band-gap ZnO nanoparticles for water treatment.Arab. J. Sci. Eng.20164172393239810.1007/s13369‑015‑1852‑1
    [Google Scholar]
  63. HosseiniS.M. SarsariI.A. KameliP. SalamatiH. Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles.J. Alloys Compd.201564040841510.1016/j.jallcom.2015.03.136
    [Google Scholar]
  64. AhmadK.S. JaffriS.B. Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators.Open Chem.201816155657010.1515/chem‑2018‑0060
    [Google Scholar]
  65. KathirveluS. D’souzaL. DhuraiB. UV protection finishing of textiles using ZnO nanoparticles.Indian J. Fibre Textile. Res.2009343267273
    [Google Scholar]
  66. HuangR. ZhangS. ZhangW. YangX. Progress of zinc oxide‐based nanocomposites in the textile industry.IET Collab. Intell. Manuf.20213328128910.1049/cim2.12029
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615292106240213064923
Loading
/content/journals/cnm/10.2174/0124054615292106240213064923
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; antimicrobial; nanoparticle; semiconductor; UV shielding; zinc oxide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test