Skip to content
2000
image of Clinical Relevance of Heavy Metals Bioaccessibility in Leafy Vegetables: Implications for Dietary Risk Assessment Using an In vitro Digestion Model

Abstract

Introduction

The primary purpose of this research was to investigate the amount and human health risk (HHR) related to some heavy metals (HMs) in leafy vegetables based on the total concentration mode (TCM) and bioaccessible concentration mode (BCM).

Methods

Seven types of leafy vegetables were collected, and then, 105 raw and 35 human-digested leafy vegetable samples were selected. These samples were analyzed for HMs by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and HHR assessments were performed using the Monte Carlo simulation method.

Results

The bioaccessibility average of the HMs between leafy vegetables varied from 23.8 to 86.8%, with significant differences (>0.001). The estimated hazard index associated with the probabilistic non-carcinogenic risk (PNCR) for all HMs, based on the TCM (1.38), was higher than the acceptable level (1). The PNCR value based on the BCM (=0.59) was, in turn, significantly lower than the limit. This was also true for probabilistic carcinogenic risk (PCR), as the cancer risk values for the TCM and BCM were estimated to be 2.7×10 -3 and 8.4×10-4, respectively, indicating a difference between the two estimations.

Discussion

These findings highlight the importance of BCM-based risk assessments in dietary studies, as they offer more accurate and actionable insights into health risks. Relying on TCM for Human Health Risk Assessments (HHRA) may lead to overestimations that misguide regulatory decisions.

Conclusion

A HHRA based on the BCM is more realistic, and health decisions and protective measures are more accurate. It is, therefore, recommended that researchers use this method for HHRA of HMs in various foods.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013431532250929060020
2025-10-09
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cnf/10.2174/0115734013431532250929060020/BMS-CNF-2025-146.html?itemId=/content/journals/cnf/10.2174/0115734013431532250929060020&mimeType=html&fmt=ahah

References

  1. Uusiku N.P. Oelofse A. Duodu K.G. Bester M.J. Faber M. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. J. Food Compos. Anal. 2010 23 6 499 509 10.1016/j.jfca.2010.05.002
    [Google Scholar]
  2. Vereecken C. Pedersen T.P. Ojala K. Fruit and vegetable consumption trends among adolescents from 2002 to 2010 in 33 countries. Eur. J. Public Health 2015 25 Suppl. 2 16 19 10.1093/eurpub/ckv012 25805780
    [Google Scholar]
  3. Randhawa M.A. Khan A.A. Javed M.S. Sajid M.W. Green leafy vegetables: A health promoting source. In: Watson RR, Ed. Handbook of Fertility Academic Press 2015 10.1016/B978‑0‑12‑800872‑0.00018‑4 pp 205-20
    [Google Scholar]
  4. Kiani A. Sharafi K. Omer A.K. Accumulation and human health risk assessment of nitrate in vegetables irrigated with different irrigation water sources- transfer evaluation of nitrate from soil to vegetables. Environ. Res. 2022 205 1 112527 10.1016/j.envres.2021.112527 34890596
    [Google Scholar]
  5. Najmi A. Albratty M. Al-Rajab A.J Heavy metal contamination in leafy vegetables grown in Jazan region of Saudi Arabia: Assessment of possible human health hazards. Int. J. Environ. Res. Public Health 2023 20 4 2984 10.3390/ijerph20042984 36833679
    [Google Scholar]
  6. Asiri H.F. Idris A.M. Said T.O Monitoring and health risk assessment of some pesticides and organic pollutants in fruit and vegetables consumed in Asir Region, Saudi Arabia. Fresenius Environ. Bull. 2020 29 1 615 625
    [Google Scholar]
  7. Martín-León V, Rubio C Rodríguez-Hernández Á Evaluation of essential, toxic and potentially toxic elements in leafy vegetables grown in the Canary Islands Toxics 2023 11 (5) 442 10.3390/toxics11050442 37235256
    [Google Scholar]
  8. Salem M.A. Bedade D.K. Al-Ethawi L. Al-waleed S.M. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020 6 10 e05224 10.1016/j.heliyon.2020.e05224 33102850
    [Google Scholar]
  9. Sharafi K. Omer A.K. Mansouri B, et al Transfer of heavy metals from soil to vegetables: A comparative assessment of different irrigation water sources. Heliyon 2024 10 11 e32575 10.1016/j.heliyon.2024.e32575 38961928
    [Google Scholar]
  10. Ahmadi-Jouibari T. Ahmadi Jouybari H. Sharafi K. Heydari M. Fattahi N. Assessment of potentially toxic elements in vegetables and soil samples irrigated with treated sewage and human health risk assessment. Int. J. Environ. Anal. Chem. 2023 103 10 2351 2367 10.1080/03067319.2021.1893704
    [Google Scholar]
  11. Nti C.A. Hagan J. Bagina F. Seglah M. Knowledge of nutrition and health benefits and frequency of consumption of fruits and vegetables among Ghanaian homemakers. Afr. J. Food Sci. 2011 5 6 333 339
    [Google Scholar]
  12. Sharafi K. Nodehi R.N. Mahvi A.H, et al Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model - Comparison of calculated human health risk from raw, cooked and digested rice. Food Chem. 2019 299 125126 10.1016/j.foodchem.2019.125126 31284243
    [Google Scholar]
  13. Omar N.A. Praveena S.M. Aris A.Z. Hashim Z. Bioavailability of heavy metal in rice using in vitro digestion model. Int. Food Res. J. 2013 20 6 2979
    [Google Scholar]
  14. Wang C. Duan H.Y. Teng J.W. Assessment of microwave cooking on the bioaccessibility of cadmium from various food matrices using an in vitro digestion model. Biol. Trace Elem. Res. 2014 160 2 276 284 10.1007/s12011‑014‑0047‑z 24958019
    [Google Scholar]
  15. Oliveira A.P. Mateَ BSO, Fioroto AM, Oliveira PV, Naozuka J. Effect of cooking on the bioaccessibility of essential elements in different varieties of beans (Phaseolus vulgaris L.). J. Food Compos. Anal. 2018 67 135 140 10.1016/j.jfca.2018.01.012
    [Google Scholar]
  16. Hu J. Wu F. Wu S. Cao Z. Lin X. Wong M.H. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere 2013 91 4 455 461 10.1016/j.chemosphere.2012.11.066 23273879
    [Google Scholar]
  17. Li T. Song Y. Yuan X, et al Incorporating bioaccessibility into human health risk assessment of heavy metals in rice (Oryza sativa L.): A probabilistic-based analysis. J. Agric. Food Chem. 2018 66 22 5683 5690 10.1021/acs.jafc.8b01525 29749235
    [Google Scholar]
  18. Yang L.S. Zhang X.W. Li Y.H. Li H.R. Wang Y. Wang W.Y. Bioaccessibility and risk assessment of cadmium from uncooked rice using an in vitro digestion model. Biol. Trace Elem. Res. 2012 145 1 81 86 10.1007/s12011‑011‑9159‑x 21805099
    [Google Scholar]
  19. Liu J. Zhang A. Chen Y. Zhou X. Zhou A. Cao H. Bioaccessibility, source impact and probabilistic health risk of the toxic metals in PM2.5 based on lung fluids test and Monte Carlo simulations. J. Clean. Prod. 2021 283 124667 10.1016/j.jclepro.2020.124667
    [Google Scholar]
  20. Konwuruk N. Borquaye L.S. Darko G. Dodd M. Distribution, bioaccessibility and human health risks of toxic metals in peri-urban topsoils of the Kumasi Metropolis. Sci. Am. 2021 11 e00701
    [Google Scholar]
  21. Okorie A. Entwistle J. Dean J.R. Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 2012 86 5 460 467 10.1016/j.chemosphere.2011.09.047 22024094
    [Google Scholar]
  22. Frimpong E. Ankapong E. Boakye K.O, et al Uptake and in vitro bioaccessibility of toxic metals in cocoa beans: Human health risks. Environ. Geochem. Health 2025 47 2 33 10.1007/s10653‑024‑02345‑0 39718643
    [Google Scholar]
  23. Gao S. Wang W.X. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration. Ecotoxicol. Environ. Saf. 2014 110 261 268 10.1016/j.ecoenv.2014.09.013 25265028
    [Google Scholar]
  24. He M. Ke C.H. Tian L. Li H.B. Bioaccessibility and health risk assessment of Cu, Cd, and Zn in “colored” oysters. Arch. Environ. Contam. Toxicol. 2016 70 3 595 606 10.1007/s00244‑015‑0194‑z 26215542
    [Google Scholar]
  25. Zhou L. Wang S. Hao Q, et al Bioaccessibility and risk assessment of heavy metals, and analysis of arsenic speciation in Cordyceps sinensis. Chin. Med. 2018 13 1 40 10.1186/s13020‑018‑0196‑7 30083223
    [Google Scholar]
  26. Sundhar S. Jeya Shakila R. Shalini R, et al Bioaccessibility of toxic heavy metals/metalloids in edible seaweeds: Exposure and health risk assessment. Food Res. Int. 2024 182 114135 10.1016/j.foodres.2024.114135 38519158
    [Google Scholar]
  27. ASTM International. Standard guide for preparation of biological samples for inorganic chemical analysis. 1999 84 89
    [Google Scholar]
  28. Versantvoort C.H.M. Oomen A.G. Van de Kamp E. Rompelberg C.J.M. Sips A.J.A.M. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem. Toxicol. 2005 43 1 31 40 10.1016/j.fct.2004.08.007 15582193
    [Google Scholar]
  29. Praveena S.M. Omar N.A. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis. Food Chem. 2017 235 203 211 10.1016/j.foodchem.2017.05.049 28554627
    [Google Scholar]
  30. Al-Hazzaa H.M. Abahussain N.A. Al-Sobayel H.I. Qahwaji D.M. Musaiger A.O. Physical activity, sedentary behaviors and dietary habits among Saudi adolescents relative to age, gender and region. Int. J. Behav. Nutr. Phys. Act. 2011 8 1 140 10.1186/1479‑5868‑8‑140 22188825
    [Google Scholar]
  31. Al-Hazzaa H. Al-Nakeeb Y. Duncan M, et al A cross-cultural comparison of health behaviors between Saudi and British adolescents living in urban areas: Gender by country analyses. Int. J. Environ. Res. Public Health 2013 10 12 6701 6720 10.3390/ijerph10126701 24300072
    [Google Scholar]
  32. Zeidan W. Taweel H. Shalash A. Husseini A. Consumption of fruits and vegetables among adolescents in Arab Countries: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2023 20 1 3 10.1186/s12966‑022‑01398‑7 36624455
    [Google Scholar]
  33. EFSA Scientific Committee Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012 10 3 2579
    [Google Scholar]
  34. U.S. EPA. Exposure Factors Handbook 2011 Edition (Final Report). Washington, DC: U.S. Environmental Protection Agency 2011
    [Google Scholar]
  35. Integrated Risk Information System Available from: https://www.epa.gov/iris
  36. Finley B.L. Monnot A.D. Paustenbach D.J. Gaffney S.H. Derivation of a chronic oral reference dose for cobalt. Regul. Toxicol. Pharmacol. 2012 64 3 491 503 10.1016/j.yrtph.2012.08.022 22982439
    [Google Scholar]
  37. Kusin F.M. Azani N.N.M. Hasan S.N.M.S. Sulong N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018 165 454 464 10.1016/j.catena.2018.02.029
    [Google Scholar]
  38. Zeng F. Wei W. Li M. Huang R. Yang F. Duan Y. Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. Int. J. Environ. Res. Public Health 2015 12 12 15584 15593 10.3390/ijerph121215005 26670240
    [Google Scholar]
  39. Evaluation of certain food additives and contaminants: Sixty-first report of the Joint FAO/WHO expert committee on food additives 2004 Available from: https://www.who.int/publications/i/item/9241209224
  40. Sharafi K. Mansouri B. Omer A.K. Investigation of health risk assessment and the effect of various irrigation water on the accumulation of toxic metals in the most widely consumed vegetables in Iran. Sci. Rep. 2022 12 1 20806 10.1038/s41598‑022‑25101‑9 36460691
    [Google Scholar]
  41. Pandey J. Pandey U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ. Monit. Assess. 2009 148 1-4 61 74 10.1007/s10661‑007‑0139‑8 18202901
    [Google Scholar]
  42. Golia E.E. Dimirkou A. Mitsios I.K. Influence of some soil parameters on heavy metals accumulation by vegetables grown in agricultural soils of different soil orders. Bull. Environ. Contam. Toxicol. 2008 81 1 80 84 10.1007/s00128‑008‑9416‑7 18431523
    [Google Scholar]
  43. Ni W.Z. Yang X.E. Long X.X. Differences of cadmium absorption and accumulation in selected vegetable crops. J. Environ. Sci. 2002 14 3 399 405 12211993
    [Google Scholar]
  44. Singh S. Zacharias M. Kalpana S. Mishra S. Heavy metals accumulation and distribution pattern in different vegetable crops. J Environ Chem Ecotoxicol 2012 4 10 170 177 10.5897/JECE11.076
    [Google Scholar]
  45. Bagdatlioglu N. Nergiz C. Ergonul P.G. Heavy metal levels in leafy vegetables and some selected fruits. J. Verbraucherschutz Lebensmsicherh. 2010 5 3-4 421 428 10.1007/s00003‑010‑0594‑y
    [Google Scholar]
  46. Sulaiman F.R. Ibrahim N.H. Syed Ismail S.N. Heavy metal (As, Cd, and Pb) concentration in selected leafy vegetables from Jengka, Malaysia, and potential health risks. SN Applied Sciences 2020 2 8 1430 10.1007/s42452‑020‑03231‑x
    [Google Scholar]
  47. Adedokun A.H. Njoku K.L. Akinola M.O. Adesuyi A.A. Jolaoso A.O. Potential human health risk assessment of heavy metals intake via consumption of some leafy vegetables obtained from four market in Lagos Metropolis, Nigeria. J. Appl. Sci. Environ. Manag. 2016 20 3 530 539 10.4314/jasem.v20i3.6
    [Google Scholar]
  48. Gupta S. Jena V. Jena S. Assessment of heavy metal contents of green leafy vegetables. Croat. J. Food Sci. Technol. 2013 5 2 53 60
    [Google Scholar]
  49. Kong Y. Liu J. Chen M. Accumulation and risk assessment of heavy metals in different varieties of leafy vegetables. Environ. Geochem. Health 2024 46 12 527 10.1007/s10653‑024‑02314‑7 39585483
    [Google Scholar]
  50. Hur S.J. Lim B.O. Decker E.A. McClements D.J. In vitro human digestion models for food applications. Food Chem. 2011 125 1 1 12 10.1016/j.foodchem.2010.08.036
    [Google Scholar]
  51. Lucas-González R R Viuda-Martos M, Pérez-Alvarez JA, Fernلndez-Lَpez J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res. Int. 2018 107 423 436 10.1016/j.foodres.2018.02.055 29580504
    [Google Scholar]
  52. Sultana M.S. Rana S. Yamazaki S. Aono T. Yoshida S. Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environ. Sci. 2017 3 1 1291107 10.1080/23311843.2017.1291107
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013431532250929060020
Loading
/content/journals/cnf/10.2174/0115734013431532250929060020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test