Skip to content
2000
image of Determination of Nutritional Quality of Marine Fish Based on Fatty Acids in The sn-2 Position of Triglycerides

Abstract

Introduction

Evaluation of the nutritional value of fish is critical because fish contain essential fatty acids. The hydrolysis process of fish oil is necessary to determine the fatty acids located at the sn-2 position on triglycerides. Essential fatty acids occupying the sn-2 position are very important to be identified because they are maximally absorbed in the digestive system. Research on the hydrolysis process of fish oil can be optimally conducted using Design Expert software to achieve a perfect hydrolysis percentage. This study aims to obtain optimal pH, temperature, and incubation time for % hydrolysis using Design Expert software. Furthermore, the marine fish should be evaluated based on the position of fatty acids.

Methods

Fish samples from the market included , , , , and sp.. The optimization of % hydrolysis was perfectly carried out using response surface methodology and Design Expert software. After obtaining the optimal pH, hydrolysis time, and temperature, hydrolysis was performed on marine fish samples. Analysis of fatty acid composition was conducted using gas chromatography.

Result

The optimal results of the hydrolysis process were achieved at pH 8, a temperature of 50°C, and a duration of 8 hours and 30 minutes, with a hydrolysis percentage of 65.357 ± 1.047%.

Discussion

The strong negative correlation between PUFA and both the ω6/ω3 ratio and thrombogenic index (TI) suggests that higher PUFA intake, particularly omega-3 fatty acids, may reduce inflammatory and thrombotic risks. Additionally, the positive association between PUFA and the P/S ratio supports the cardiovascular benefits of diets rich in polyunsaturated fats over saturated fats.

Conclusion

Evaluation of nutritional values based on fatty acids at the sn-2 position indicates that the marine fish with the best dietary levels are , , , sp., and based on the IQN index.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013389492250904092207
2025-09-18
2025-11-02
Loading full text...

Full text loading...

References

  1. World Health Organizations World Health Organizations. Safety evaluation of certain contaminants in food: Prepared by the ninetieth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2023 Available from: https://iris.who.int/handle/10665/371103
  2. Lauritzen L. Brambilla P. Mazzocchi A. Harsløf L. Ciappolino V. Agostoni C. Harsløf LBS. Ciappolino V. Agostoni C. DHA effects in brain development and function. Nutrients 2016 8 1 6 10.3390/nu8010006 26742060
    [Google Scholar]
  3. Watson R.R. De Meester F. Handbook of Lipids ln Human Function. Academic Press and AOCS Press 2016
    [Google Scholar]
  4. EFSA panel on contaminants in the food chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012 10 12 2985 10.2903/j.efsa.2012.2985
    [Google Scholar]
  5. Roy V.C. Park J.S. Ho T.C. Chun B.S. Lipid indexes and quality evaluation of omega-3 rich oil from the waste of japanese spanish mackerel extracted by supercritical CO2. Mar. Drugs 2022 20 1 70 10.3390/md20010070 35049925
    [Google Scholar]
  6. Hou Y. An Z. Hou X. Guan Y. Song G. A bibliometric analysis and visualization of literature on non-fasting lipid research from 2012 to 2022. Front. Endocrinol. 2023 14 1136048 10.3389/fendo.2023.1136048 37152935
    [Google Scholar]
  7. Wang Z. Yang Y. Tang F. Wu M. Recent applications and prospects of omega-3 fatty acids: A bibliometric study and visualization analysis in 2014–2023. Prostaglandins Leukot. Essent. Fatty Acids 2024 201 102615 10.1016/j.plefa.2024.102615 38772049
    [Google Scholar]
  8. Zyoud S.H. Shakhshir M. Abushanab A.S. Bibliometric mapping of the landscape and structure of nutrition and depression research: Visualization analysis. J. Health Popul. Nutr. 2023 42 1 33 10.1186/s41043‑023‑00378‑2 37061731
    [Google Scholar]
  9. Chen C. Zhang C. Zhang Q. Ju X. Wang Z. He R. Study of monoglycerides enriched with unsaturated fatty acids at sn-2 position as oleogelators for oleogel preparation. Food Chem. 2021 354 129534 10.1016/j.foodchem.2021.129534 33752116
    [Google Scholar]
  10. Zhang H. Zhao H. Zhang Y. Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. BioMed Res. Int. 2018 2018 1 10 10.1155/2018/3529682 30112380
    [Google Scholar]
  11. Lewis J.R. Radavelli-Bagatini S. Rejnmark L. The effects of calcium supplementation on verified coronary heart disease hospitalization and death in postmenopausal women: A collaborative meta-analysis of randomized controlled trials. J. Bone Miner. Res. 2015 30 1 165 175 10.1002/jbmr.2311 25042841
    [Google Scholar]
  12. Park I. Xun P. Tsinovoi C.L. Klemmer P. Liu K. He K. Intakes of long-chain omega-3 polyunsaturated fatty acids and non-fried fish in relation to incidence of chronic kidney disease in young adults: A 25-year follow-up. Eur. J. Nutr. 2020 59 1 399 407 10.1007/s00394‑019‑02022‑4 31175412
    [Google Scholar]
  13. Barbosa M.S. Freire C.C.C. Almeida L.C. Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Biotechnol. Appl. Biochem. 2019 66 5 823 832 10.1002/bab.1793 31206795
    [Google Scholar]
  14. Hu Z. Chin Y. Liu J. Optimization of fish oil extraction from Lophius litulon liver and fatty acid composition analysis. Fish. Aquatic Sci. 2022 25 2 76 89 10.47853/FAS.2022.e8
    [Google Scholar]
  15. Sun S Liu J Li X. A novel and rapid method for fatty acid preparation by the lipase-catalyzed hydrolysis of Phoenix tree seeds. 3 Biotech 2018 08 09 0 10.1007/s13205‑018‑1426‑5 302211162018
    [Google Scholar]
  16. Budimir K. Mozzon M. Toderi M. Di Ottavio O. Trombetta M.F. Effect of breed on fatty acid composition of meat and subcutaneous adipose tissue of light lambs. Animals 2020 1 11 10.3390/ani10030533 32210212
    [Google Scholar]
  17. Silalahi Y Masfria M Sinaga SM Siburian R The nutritional lipid profiles of marine fish from Medan, Indonesia Open Access Maced J Med Sci 2023 11 E 104 9 10.3889/oamjms.2023.11376
    [Google Scholar]
  18. Vahid F. Rahmani W. Davoodi S.H. Bohn T. The micronutrient content of the diet is correlated with serum glucose biomarkers and lipid profile and is associated with the odds of being overweight/obese—a case-control study. Front. Nutr. 2023 10 1148183 10.3389/fnut.2023.1148183 37457985
    [Google Scholar]
  19. Petenuci M.E. Rocha I.N.A. de Sousa S.C. Schneider V.V.A. da Costa L.A.M.A. Visentainer J.V. Seasonal variations in lipid content, fatty acid composition and nutritional profiles of five freshwater fish from the amazon basin. J. Am. Oil Chem. Soc. 2016 93 10 1373 1381 10.1007/s11746‑016‑2884‑8
    [Google Scholar]
  20. Lobo C.M. Torrezan R. De Furtado A.A. Development and nutritional and sensory evaluation of the cachapinta (Pseudoplatystoma sp.) pâté. Food Science and Nutrition 2015 3 1 10 16 10.1002/fsn3.183
    [Google Scholar]
  21. Ciriminna R. Meneguzzo F. Delisi R. Pagliaro M. Enhancing and improving the extraction of omega-3 from fish oil. Sustain. Chem. Pharm. 2017 5 March 54 59 10.1016/j.scp.2017.03.001
    [Google Scholar]
  22. Ciriminna R. Lino C. Pagliaro M. Omeg@Silica: Entrapment and stabilization of sustainably sourced fish oil. ChemistryOpen 2021 10 5 581 586 10.1002/open.202100038 33945233
    [Google Scholar]
  23. Sun C. Chen Y. Zhang H. Zhu L. Li X. Liang S. Preparation of glycerides enriched with n-3 long-chain polyunsaturated fatty acids by Thermomyces lanuginosus lipase-catalyzed hydrolysis of tuna oil. Lebensm. Wiss. Technol. 2023 182 114875 10.1016/j.lwt.2023.114875
    [Google Scholar]
  24. Hiratsuka S. Kitagawa T. Yamagishi K. Wada S. Phospholipase A 1 activity of crude enzyme extracted from the ovaries of skipjack tuna. Fish. Sci. 2008 74 1 146 152 10.1111/j.1444‑2906.2007.01504.x
    [Google Scholar]
  25. Mota D.A. Rajan D. Heinzl G.C. Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresour. Technol. 2020 307 123223 10.1016/j.biortech.2020.123223 32220818
    [Google Scholar]
  26. Beppu F. Yasuda K. Okada A. Hirosaki Y. Okazaki M. Gotoh N. Comparison of the distribution of unsaturated fatty acids at the Sn-2 position of phospholipids and triacylglycerols in marine fishes and mammals. J. Oleo Sci. 2017 66 11 1217 1227 10.5650/jos.ess17132 29021496
    [Google Scholar]
  27. Wang Y. Zhang T. Liu R. Reviews of medium- and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Res. Int. 2022 155 111058 10.1016/j.foodres.2022.111058 35400436
    [Google Scholar]
  28. de Souza A.F.L. Petenuci M.E. Camparim R. Visentainer J.V. da Silva A.J.I. Effect of seasonal variations on fatty acid composition and nutritional profiles of siluriformes fish species from the amazon basin. Food Res. Int. 2020 132 109051 10.1016/j.foodres.2020.109051 32331683
    [Google Scholar]
  29. Khalili Tilami S. Sampels S. Zajíc T. Krejsa J. Másílko J. Mráz J. Nutritional value of several commercially important river fish species from the Czech Republic. PeerJ 2018 6 10 e5729 10.7717/peerj.5729
    [Google Scholar]
  30. Pope C. Mays N. Qualitative Research in Health Care. 4th ed Wiley-Blackwell 2020 10.1002/9781119410867
    [Google Scholar]
  31. Fernandes C.E. Vasconcelos M.A.S. de Almeida Ribeiro M. Sarubbo L.A. Andrade S.A.C. Filho A.B.M. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014 160 67 71 10.1016/j.foodchem.2014.03.055 24799210
    [Google Scholar]
  32. Zhang T. Sun R. Ding M. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem. 2020 328 127114 10.1016/j.foodchem.2020.127114 32473491
    [Google Scholar]
  33. Rivero-Pino F. Padial-Dominguez M. Guadix E.M. Morales-Medina R. Novozyme 435 and lipozyme RM IM preferably esterify polyunsaturated fatty acids at the sn‐2 position. Eur. J. Lipid Sci. Technol. 2020 122 10 2000115 10.1002/ejlt.202000115
    [Google Scholar]
  34. Skałecki P. Kaliniak-Dziura A. Domaradzki P. Florek M. Poleszak E. Dmoch M. Effect of pork meat replacement by fish products on fatty acid content, physicochemical, and sensory properties of pork pâtés. Appl. Sci. 2020 11 1 188 10.3390/app11010188
    [Google Scholar]
  35. Cui J. Jiang X. Zhang W. Li C. Cao J. Positional characterization of DHA/EPA in triacylglycerol and phospholipid and production of DHA/EPA-rich phospholipid. J. Food Compos. Anal. 2024 129 106085 10.1016/j.jfca.2024.106085
    [Google Scholar]
  36. Wayne L.L. Gachotte D.J. Graupner P.R. Plant and algal lysophosphatidic acid acyltransferases increase docosahexaenoic acid accumulation at the sn-2 position of triacylglycerol in transgenic Arabidopsis seed oil. PLoS One 2021 16 8 10.1371/journal.pone.0256625 34432852
    [Google Scholar]
  37. Yu J. Wei W. Wang F. Yu R. Jin Q. Wang X. Evaluation of total, sn-2 fatty acid, and triacylglycerol composition in commercial infant formulas on the Chinese market: A comparative study of preterm and term formulas. Food Chem. 2022 384 132477 10.1016/j.foodchem.2022.132477 35219236
    [Google Scholar]
  38. Chen Y. Li J. Le D. Zhang Y. Liao Z. A mediation analysis of the role of total free fatty acids on pertinence of gut microbiota composition and cognitive function in late life depression. Lipids Health Dis. 2024 23 1 64 10.1186/s12944‑024‑02056‑6 38424549
    [Google Scholar]
  39. Wang Y. Xu H. Liu X. Wei W. Jin Q. Wang X. The structure of triglycerides impacts the digestibility and bioaccessibility of nutritional lipids during in vitro simulated digestion. Food Chem. 2023 418 135947 10.1016/j.foodchem.2023.135947 36996650
    [Google Scholar]
  40. Wei F. Zhou J. Pan L. Integrative microbiomics, proteomics and lipidomics studies unraveled the preventive mechanism of Shouhui Tongbian Capsules on cerebral ischemic stroke injury. J. Ethnopharmacol. 2025 337 Pt 2 118874 10.1016/j.jep.2024.118874 39362332
    [Google Scholar]
  41. Chen J. Liu H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020 21 16 5695 10.3390/ijms21165695 32784511
    [Google Scholar]
  42. Mekonnen M.F. Desta D.T. Alemayehu F.R. Kelikay G.N. Daba A.K. Evaluation of fatty acid‐related nutritional quality indices in fried and raw nile tilapia, (Oreochromis Niloticus), fish muscles. Food Sci. Nutr. 2020 8 9 4814 4821 10.1002/fsn3.1760 32994943
    [Google Scholar]
  43. Jacob J.P. Mathew S. Effect Of lipases from Candida cylinderacea on enrichment of pufa in marine microalgae. J. Food Process. Preserv. 2016 00 1 9 10.1111/jfpp.12928
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013389492250904092207
Loading
/content/journals/cnf/10.2174/0115734013389492250904092207
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nutrition ; response surface methodology ; design expert ; sn-2 ; fatty acid ; IQN ; marine fish
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test