Skip to content
2000
image of Plant-Based Milk Alternatives from Cereals: Sensory Properties and Consumer Preferences in Indonesia

Abstract

Introduction

The growing interest in plant-based milk alternatives has prompted the exploration of novel cereal-based ingredients for developing substitutes for dairy milk. This study aimed to investigate the sensory properties and consumer preferences of plant-based milk alternatives derived from cereals, including red rice, rice bran, and sorghum.

Methods

Four cereal-based milk alternatives were developed, including samples made from red rice, red sorghum, white sorghum, and rice bran. In addition, a commercially available rice milk was included as a reference sample. The study employed a cross-sectional study design with a total of 135 participants (mean age 29.8 ± 10.1 years) who participated to evaluate the sensory profiles of the cereal-based milk samples using CATA (Check-All-That-Apply). In addition, the acceptance of each sample was also assessed.

Results

The results indicate that all the cereal-based milk alternative samples exhibited distinct sensory profiles, which may influence consumers' acceptance. Among the samples, milk alternatives made from red rice and white sorghum were significantly preferred ( < 0.001), whereas the sample made from rice bran was the least preferred ( < 0.001).

Discussion

The sensory attributes of cooked rice aroma, nutty aroma, nutty taste, vanilla aroma, sweet aroma, sweet taste, and violet-like visual color of violet-like were associated with consumer liking. In contrast, attributes of rancid, uncooked taste, bran taste, bitter taste, and sandy texture may be associated with disliking.

Conclusion

This study highlights the potential of red rice and sorghum as promising ingredients for developing plant-based milk products, which serve as a foundation for further research and product development in the growing market of dairy alternatives.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013388505250818104328
2025-09-18
2025-10-31
Loading full text...

Full text loading...

References

  1. Haas R. Schnepps A. Pichler A. Meixner O. Cow milk versus plant-based milk substitutes: A comparison of product image and motivational structure of consumption. Sustainability 2019 11 18 5046 10.3390/su11185046
    [Google Scholar]
  2. Romulo A. Nutritional contents and processing of plant-based milk: A review. IOP Conf. Ser. Earth Environ. Sci. 2022 998 1 012054 10.1088/1755‑1315/998/1/012054
    [Google Scholar]
  3. Clune S. Crossin E. Verghese K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017 140 766 783 10.1016/j.jclepro.2016.04.082
    [Google Scholar]
  4. Mehany T. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit. Rev. Food Sci. Nutr. 2023 1 31
    [Google Scholar]
  5. Ercin A.E. Aldaya M.M. Hoekstra A.Y. The water footprint of soy milk and soy burger and equivalent animal products. Ecol. Indic. 2012 18 392 402 10.1016/j.ecolind.2011.12.009
    [Google Scholar]
  6. Sethi S. Tyagi S.K. Anurag R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016 53 9 3408 3423 10.1007/s13197‑016‑2328‑3 27777447
    [Google Scholar]
  7. Pointke M. Albrecht E.H. Geburt K. Gerken M. Traulsen I. Pawelzik E. A comparative analysis of plant-based milk alternatives part 1: Composition, sensory, and nutritional value. Sustainability 2022 14 13 7996 10.3390/su14137996
    [Google Scholar]
  8. Pérez-Rodríguez M.L. Serrano-Carretero A. García-Herrera P. Cámara-Hurtado M. Sánchez-Mata M.C. Plant-based beverages as milk alternatives? Nutritional and functional approach through food labelling. Food Res. Int. 2023 173 Pt 1 113244 10.1016/j.foodres.2023.113244 37803557
    [Google Scholar]
  9. Shafiee M. Longworth Z.L. Vatanparast H. Current trends and determinants of plant-based milk alternatives consumption. Plant-based milk alternatives and human health. Vatanparast H. Elsevier 2025 123 160 10.1016/B978‑0‑443‑21714‑2.00005‑5
    [Google Scholar]
  10. Izaguirre J.K. Barañano L. Castañón S. Alkorta I. Quirós L.M. Garbisu C. Optimization of the bioactivation of isoflavones in soymilk by lactic acid bacteria. Processes 2021 9 6 963 10.3390/pr9060963
    [Google Scholar]
  11. Mollakhalili-Meybodi N. Arab M. Zare L. Harmful compounds of soy milk: Characterization and reduction strategies. J. Food Sci. Technol. 2022 59 10 3723 3732 10.1007/s13197‑021‑05249‑4 36193379
    [Google Scholar]
  12. Jeske S. Zannini E. Arendt E.K. Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods Hum. Nutr. 2017 72 1 26 33 10.1007/s11130‑016‑0583‑0 27817089
    [Google Scholar]
  13. Goonathilaka P.D.S.A. Abeysundara P.D.A. Jayasinghe M.A. Development of a value added rice milk by utilizing selected traditional and improved rice varieties in Sri Lanka. Food Chem Adv 2023 2 100319 10.1016/j.focha.2023.100319
    [Google Scholar]
  14. da Silva L.R. Velasco J.I. Fakhouri F.M. Use of rice on the development of plant-based milk with antioxidant properties: From raw material to residue. Lebensm. Wiss. Technol. 2023 173 114271 10.1016/j.lwt.2022.114271
    [Google Scholar]
  15. Silva A.R.A. Silva M.M.N. Ribeiro B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020 131 108972 10.1016/j.foodres.2019.108972 32247441
    [Google Scholar]
  16. Mariyono J. Rice production in Indonesia: Policy and performance. Asia Pac. J. Public Adm. 2014 36 2 123 134 10.1080/23276665.2014.911489
    [Google Scholar]
  17. Pujiharti Y. Paturohman E. Ikhwani. Prospect of sorghum development as corn substitution in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022 978 1 012019 10.1088/1755‑1315/978/1/012019
    [Google Scholar]
  18. Wijaya C. Romulo A. Proximate analysis and antioxidant activity of red rice(Oryza sativa L.) Milk. J. Phys. Conf. Ser. 2021 2049 1 012012 10.1088/1742‑6596/2049/1/012012
    [Google Scholar]
  19. Alexi N. Nanou E. Lazo O. Guerrero L. Grigorakis K. Byrne D.V. Check-All-That-Apply (CATA) with semi-trained assessors: Sensory profiles closer to descriptive analysis or consumer elicited data? Food Qual. Prefer. 2018 64 11 20 10.1016/j.foodqual.2017.10.009
    [Google Scholar]
  20. Ares G. Jaeger S.R. Check-all-that-apply (CATA) questions with consumers in practice: Experimental considerations and impact on outcome. Rapid Sensory Profiling Techniques. Delarue J. Woodhead Publishing 2015 227 245 10.1533/9781782422587.2.227
    [Google Scholar]
  21. Marques C. Correia E. Dinis L.T. Vilela A. An overview of sensory characterization techniques: From classical descriptive analysis to the emergence of novel profiling methods. Foods 2022 11 3 255 10.3390/foods11030255 35159407
    [Google Scholar]
  22. Ruiz-Capillas C. Herrero A.M. Sensory analysis and consumer research in new product development. Foods 2021 10 3 582 10.3390/foods10030582 33802030
    [Google Scholar]
  23. Henrique N.A. Deliza R. Rosenthal A. Consumer sensory characterization of cooked ham using the check-all-that-apply (CATA) methodology. Food Eng. Rev. 2015 7 2 265 273 10.1007/s12393‑014‑9094‑7
    [Google Scholar]
  24. Piochi M. Cabrino G. Torri L. Check-All-That-Apply (CATA) test to investigate the consumers’ perception of olive oil sensory properties: Effect of Storage time and packaging material. Foods 2021 10 7 1551 10.3390/foods10071551 34359421
    [Google Scholar]
  25. Pramudya R.C. Lee J. Chapko M.J. Variations in U.S. consumers’ acceptability of commercially‐available rice‐based milk alternatives with respect to sensory attributes and food neophobia traits. J. Sens. Stud. 2019 34 3 e12496 10.1111/joss.12496
    [Google Scholar]
  26. Limpawattana M. Shewfelt R.L. Flavor lexicon for sensory descriptive profiling of different rice types. J. Food Sci. 2010 75 4 S199 S205 10.1111/j.1750‑3841.2010.01577.x 20546422
    [Google Scholar]
  27. Pimentel T.C. Gomes da Cruz A. Deliza R. Sensory evaluation: sensory rating and scoring methods. Encyclopedia of food and health. Oxford: Academic Press 2016 744 749 10.1016/B978‑0‑12‑384947‑2.00617‑6
    [Google Scholar]
  28. Tarancón P. Tárrega A. Aleza P. Besada C. Consumer description by check-all-that-apply questions (CATA) of the sensory profiles of commercial and new mandarins. identification of preference patterns and drivers of liking. Foods 2020 9 4 468 10.3390/foods9040468 32283774
    [Google Scholar]
  29. Ervina E. Almli V.L. Berget I. Spinelli S. Sick J. Dinnella C. Does responsiveness to basic tastes influence preadolescents’ food liking? investigating taste responsiveness segment on Bitter-Sour-Sweet and Salty-Umami Model Food samples. Nutrients 2021 13 8 2721 10.3390/nu13082721 34444881
    [Google Scholar]
  30. Najjar Z. Alkaabi M. Alketbi K. Stathopoulos C. Ranasinghe M. Physical chemical and textural characteristics and sensory evaluation of cookies formulated with date seed powder. Foods 2022 11 3 305 10.3390/foods11030305 35159461
    [Google Scholar]
  31. Popov-Raljic J. Mastilovic J. Lalicic-Petronijevic J. Kevresan Z. Demin M. Sensory and color properties of dietary cookies with different fiber sources during 180 days of storage. Hem. Ind. 2013 67 1 123 134 10.2298/HEMIND120327047P
    [Google Scholar]
  32. Galler M. Næs T. Almli V.L. Varela P. How children approach a CATA test influences the outcome. Insights on ticking styles from two case studies with 6–9-year old children. Food Qual. Prefer. 2020 86 104009 10.1016/j.foodqual.2020.104009
    [Google Scholar]
  33. Ares G. Dauber C. Fernández E. Giménez A. Varela P. Penalty analysis based on CATA questions to identify drivers of liking and directions for product reformulation. Food Qual. Prefer. 2014 32 65 76 10.1016/j.foodqual.2013.05.014
    [Google Scholar]
  34. Chen X.Q. Nagao N. Itani T. Irifune K. Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chem. 2012 135 4 2783 2788 10.1016/j.foodchem.2012.06.098 22980872
    [Google Scholar]
  35. Shakri A.N.A. Kasim K.F. Rukunudin I.B. Chemical compositions and physical properties of selected malaysian rice: A review. IOP Conf. Ser. Earth Environ. Sci. 2021 765 1 012024 10.1088/1755‑1315/765/1/012024
    [Google Scholar]
  36. Taylor J.R.N. Schober T.J. Bean S.R. Novel food and non-food uses for sorghum and millets. J. Cereal Sci. 2006 44 3 252 271 10.1016/j.jcs.2006.06.009
    [Google Scholar]
  37. Lee Y. Dias-Morse P.N. Meullenet J-F. Effect of rice variety and milling fraction on the starch gelatinization and rheological properties of rice milk. Food Sci. Technol. (Campinas) 2019 39 4 1047 1051 10.1590/fst.17118
    [Google Scholar]
  38. Drewnowski A. Perspective: Identifying ultra-processed plant-based milk alternatives in the usda branded food products database. Adv. Nutr. 2021 12 6 2068 2075 10.1093/advances/nmab089 34291276
    [Google Scholar]
  39. Ervina E. Tenadi A. Renata G. Aurelia S. Does consumer knowledge of sorghum impact their liking? Investigating consumers preferences on sorghum biscuits using JAR (Just-About-Right) scale. IOP Conf. Ser. Earth Environ. Sci. 2023 1169 1 012088 10.1088/1755‑1315/1169/1/012088
    [Google Scholar]
  40. Ari Akin P. Demirkesen I. Bean S.R. Aramouni F. Boyaci I.H. Sorghum flour application in bread: Technological challenges and opportunities. Foods 2022 11 16 2466 10.3390/foods11162466 36010465
    [Google Scholar]
  41. de Morais Cardoso L. Pinheiro S.S. Martino H.S.D. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017 57 2 372 390 10.1080/10408398.2014.887057 25875451
    [Google Scholar]
  42. Mohammed Z.S. Mabudi A.H. Murtala Y. Jibrin S. Sulaiman S. Salihu J. Nutritional analysis of three commonly consumed varieties of Sorghum (Sorghum bicolor L.) in Bauchi State, Nigeria. J. Appl. Sci. Environ. Manag. 2019 23 7 1329 10.4314/jasem.v23i7.21
    [Google Scholar]
  43. Appleton K.M. Tuorila H. Bertenshaw E.J. de Graaf C. Mela D.J. Sweet taste exposure and the subsequent acceptance and preference for sweet taste in the diet: Systematic review of the published literature. Am. J. Clin. Nutr. 2018 107 3 405 419 10.1093/ajcn/nqx031 29566187
    [Google Scholar]
  44. Bertelsen A.S. Zeng Y. Mielby L.A. Sun Y-X. Byrne D.V. Kidmose U. Cross-modal effect of vanilla aroma on sweetness of different sweeteners among chinese and danish consumers. Food Qual. Prefer. 2021 87 104036 10.1016/j.foodqual.2020.104036
    [Google Scholar]
  45. Cheetangdee V. Chaiseri S. Free amino acid and reducing sugar composition of Pandan (Pandanus amaryllifolius) leaves. Agric. Nat. Resour. 2006 40 6 67 74
    [Google Scholar]
  46. Wilianto V. Ervina E. Evaluating consumer preferences based on the total antioxidant activity of the Indonesian herbal drink “Bandrek”. IOP Conf. Ser. Earth Environ. Sci. 2023 1169 1 012090 10.1088/1755‑1315/1169/1/012090
    [Google Scholar]
  47. Mennella JA Bobowski NK The sweetness and bitterness of childhood: Insights from basic research on taste preferences. Physiol Behav 2015 152 Pt B 502 507 10.1016/j.physbeh.2015.05.015 26002822
    [Google Scholar]
  48. Reineccius G. Off‐flavors in foods. Crit. Rev. Food Sci. Nutr. 1991 29 6 381 402 10.1080/10408399109527534 2039596
    [Google Scholar]
  49. Priya R.T.S. Nelson E.A.R.L. Ravichandran K. Antony U. Nutritional and functional properties of coloured rice varieties of South India: A review. J Ethnic Foods 2019 6 1 11 10.1186/s42779‑019‑0017‑3
    [Google Scholar]
  50. Wu X. Li F. Wu W. Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein. Lebensm. Wiss. Technol. 2020 120 108943 10.1016/j.lwt.2019.108943
    [Google Scholar]
  51. Brooker P.G. Anastasiou K. Smith B.P.C. Tan R. Cleanthous X. Riley M.D. Nutrient composition of milk and plant-based milk alternatives: A cross-sectional study of products sold in Australia and Singapore. Food Res. Int. 2023 173 Pt 2 113475 10.1016/j.foodres.2023.113475 37803798
    [Google Scholar]
  52. Cardello A.V. Llobell F. Giacalone D. Roigard C.M. Jaeger S.R. Plant-based alternatives vs dairy milk: Consumer segments and their sensory, emotional, cognitive and situational use responses to tasted products. Food Qual. Prefer. 2022 100 104599 10.1016/j.foodqual.2022.104599
    [Google Scholar]
  53. Drewnowski A. Most plant-based milk alternatives in the usda branded food products database do not meet proposed nutrient standards or score well on nutrient density metrics. Nutrients 2022 14 22 4767 10.3390/nu14224767 36432454
    [Google Scholar]
  54. Hu X. Lu L. Guo Z. Zhu Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020 97 136 146 10.1016/j.tifs.2020.01.003
    [Google Scholar]
  55. Muthayya S. Sugimoto J.D. Montgomery S. Maberly G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014 1324 1 7 14 10.1111/nyas.12540 25224455
    [Google Scholar]
  56. Bhat F.M. Sommano S.R. Riar C.S. Seesuriyachan P. Chaiyaso T. Prom-u-Thai C. Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance. Agronomy 2020 10 11 1817 10.3390/agronomy10111817
    [Google Scholar]
  57. Adiamo O Q Fawale O S Olawoye B Recent trends in the formulation of gluten-free sorghum products. J Culin Sci Technol 2018 16 4 311 325 10.1080/15428052.2017.1388896
    [Google Scholar]
  58. World Sorghum Production United States: FAO 2021
  59. Winarti C. Arif A.B. Budiyanto A. Richana N. Sorghum development for staple food and industrial raw materials in East Nusa Tenggara, Indonesia: A review. IOP Conf. Ser. Earth Environ. Sci. 2020 443 1 012055 10.1088/1755‑1315/443/1/012055
    [Google Scholar]
  60. Cayres C.A. Ascheri R.J.L. Couto P.G.M.A. Almeida E.L. Melo L. Consumers’ acceptance of optimized gluten-free sorghum-based cakes and their drivers of liking and disliking. J. Cereal Sci. 2020 93 102938 10.1016/j.jcs.2020.102938
    [Google Scholar]
  61. Fadly D. Tulaseket F. Rahmawati R. Soy – Sorghum milk as a functional drink source of antioxidants. Int. J. Nutr. Pharmacol. Neurol. Dis. 2021 11 3 194 198 10.4103/ijnpnd.ijnpnd_15_21
    [Google Scholar]
  62. Friedman M. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. J. Agric. Food Chem. 2013 61 45 10626 10641 10.1021/jf403635v 24175575
    [Google Scholar]
  63. Faccin G.L. Miotto L.A. Vieira L d N, Barreto P L M, Amante E R. Chemical, sensorial and rheological properties of a new organic rice bran beverage. Rice Sci. 2009 16 3 226 234 10.1016/S1672‑6308(08)60083‑9
    [Google Scholar]
  64. Vázquez-Araújo L. Chambers E. Funk D.B. References for “musty” odor notes in sensory analysis of grain sorghum. J. Cereal Sci. 2011 54 3 460 466 10.1016/j.jcs.2011.08.012
    [Google Scholar]
  65. Arsa S. Theerakulkait C. Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate. J. Sci. Food Agric. 2018 98 12 4479 4487 10.1002/jsfa.8972 29457850
    [Google Scholar]
  66. Arwanto V. Buschle-Diller G. Mukti Y.P. The state of plant-based food development and its prospects in the Indonesia market. Heliyon 2022 8 10 e11062 10.1016/j.heliyon.2022.e11062
    [Google Scholar]
  67. Vanga S.K. Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018 55 1 10 20 10.1007/s13197‑017‑2915‑y 29358791
    [Google Scholar]
  68. Katz K.A. Mahlberg M.H. Honig P.J. Yan A.C. Rice nightmare: Kwashiorkor in 2 Philadelphia-area infants fed Rice Dream beverage. J. Am. Acad. Dermatol. 2005 52 5 S69 S72 10.1016/j.jaad.2004.07.056 15858513
    [Google Scholar]
  69. Hamid A.S. Farroh K.Y. Wagdy S.M. Akl E.M. “Rice milk fortification using calcium hydroxyl phosphate nanoparticles and hydrolyzed peanut protein Fractions,” (in en). Egypt. J. Chem. 2020 63 6 2301 2318 10.21608/ejchem.2019.17039.2043
    [Google Scholar]
  70. Atwaa E. Elmaadawy A. Awaad E. Production of fruit flavored probiotic rice milk beverage. J Food Dairy Sciences 2019 10 12 453 458 10.21608/jfds.2019.71360
    [Google Scholar]
  71. Basinskiene L. Cizeikiene D. Cereal-based nonalcoholic beverages. Trends in non-alcoholic beverages. Galanakis C.M. Academic Press 2020 63 99 10.1016/B978‑0‑12‑816938‑4.00003‑3
    [Google Scholar]
  72. Tangyu M. Muller J. Bolten C.J. Wittmann C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019 103 23-24 9263 9275 10.1007/s00253‑019‑10175‑9 31686143
    [Google Scholar]
  73. Sulistyaningtyas A.R. Lunggani A.T. Kusdiyantini E. Kefir produced from red rice milk by Lactobacillus bulgaricus and Candida kefir starter. IOP Conf. Ser. Earth Environ. Sci. 2019 292 1 012038 10.1088/1755‑1315/292/1/012038
    [Google Scholar]
  74. Hozzein W.N. Hisham S.M. Alkhalifah D.H.M. A sustainable method: Production of the fermented rice milk yogurt by using three efficient lactic acid bacteria. Appl. Sci. 2023 13 2 907 10.3390/app13020907
    [Google Scholar]
  75. Amini R. Islam M. Kitamura Y. Kokawa M. Utilization of fermented rice milk as a novel coagulant for development of paneer (soft cheese). Foods 2019 8 8 339 10.3390/foods8080339 31408978
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013388505250818104328
Loading
/content/journals/cnf/10.2174/0115734013388505250818104328
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: plant-based ; Rice milk ; cereals ; beverages ; sorghum ; CATA (Check-All-That-Apply)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test