Skip to content
2000
image of Antifungal Properties of Algerian Monofloral Honey Against Candida Species Isolated from Neonatal Oral Thrush Patients

Abstract

Introduction

Honey is widely known for its health benefits and is used as a remedy for many ailments and diseases. In this study, we aimed to identify phenolic compounds in two types of Algerian honey and to evaluate how these compounds affect the growth of three clinical strains of species isolated from a child suffering from oral candidiasis.

Methods

Identification of elements associated with antifungal effects, including the total amounts of phenolics and flavonoids, as well as the phenolic profile of honey samples, was performed using Reversed-Phase High-Pressure Liquid Chromatography equipped with a Photodiode Array Detector (RP-HPLC-PDA) and Fourier Transform Infrared (FTIR) methods. Sugar levels were measured using High-Performance Liquid Chromatography (HPLC). Additionally, the effects of honey samples from Eucalyptus () and Sidr, also known as jujube tree (), on the growth of clinical species isolated from a child were demonstrated for the first time using agar diffusion. The minimum fungicidal concentrations were also determined.

Results

RP-HPLC-PDA analysis allowed the identification of seven polyphenols. The main phenolic component in Tiaret honey was -OH benzoic acid (4.596 mg/g honey), while the main component in Bechar honey was chrysin (4.896 mg/g honey). Both types of Algerian honey showed strong antifungal activity, with a Minimum Fungicidal Concentration (MFC) of 2.5 mg/mL against the major clinical species tested, with the Eucalyptus honey from Tiaret exhibiting the highest antifungal activity.

Discussion

Variations in the amounts of phenolic compounds are influenced by the floral sources from which bees collect nectar and by the geographic origin of the honey. These compounds are recognized as key contributors to both pharmacological and antimicrobial properties.

Conclusion

Our findings indicate that Algerian honey is a valuable source of phenolic and flavonoid compounds, containing more than 144 GAE mg/100 g and 26 CE mg/100 g of honey, respectively, which may be beneficial in preventing and treating thrush in newborns.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013407368251205064008
2026-01-13
2026-02-01
Loading full text...

Full text loading...

References

  1. Contaldo M. Di Stasio D. Romano A. Oral candidiasis and novel therapeutic strategies: Antifungals, phytotherapy, probiotics, and photodynamic therapy. Curr. Drug Deliv. 2023 20 5 441 456 10.2174/1567201819666220418104042 35440307
    [Google Scholar]
  2. Akpan A. Morgan R. Oral candidiasis. Postgrad. Med. J. 2002 78 922 455 459 10.1136/pmj.78.922.455 12185216
    [Google Scholar]
  3. Baley J.E. Neonatal candidiasis: The current challenge. Clin. Perinatol. 1991 18 2 263 280 10.1016/S0095‑5108(18)30523‑2 1879108
    [Google Scholar]
  4. Bohner F. Papp C. Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res. 2022 22 1 foac019 10.1093/femsyr/foac019 35325128
    [Google Scholar]
  5. Giacobbe D.R. Maraolo A.E. Simeon V. Changes in the relative prevalence of candidaemia due to non‐ albicans Candida species in adult in‐patients: A systematic review, meta‐analysis and meta‐regression. Mycoses 2020 63 4 334 342 10.1111/myc.13054 31997414
    [Google Scholar]
  6. Nami S. Aghebati-Maleki A. Morovati H. Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharmacother. 2019 110 857 868 10.1016/j.biopha.2018.12.009 30557835
    [Google Scholar]
  7. Moussa A. Noureddine D. Abdelmelek M. Saad A. Antibacterial activity of various honey types of Algeria against Pathogenic Gram–Negative Bacilli: Escherichia coli and Pseudomonas aeruginosa. Asian Pac. J. Trop. Dis. 2012 2 3 211 214 10.1016/S2222‑1808(12)60048‑6
    [Google Scholar]
  8. Guenaoui N. Mouhoubi-Tafinine Z. Amessis-Ouchemoukh N. Pollen profiles, physico-chemical parameters, in vitro antioxidant and anti-inflammatory activities of honeys and anti-browning effect of honeys on apple. Med. J. Nutrition Metab. 2024 17 1 15 33 10.3233/MNM‑230037
    [Google Scholar]
  9. Samarghandian S. Farkhondeh T. Samini F. Honey and health: A review of recent clinical research. Pharmacognosy Res. 2017 9 2 121 127 10.4103/0974‑8490.204647 28539734
    [Google Scholar]
  10. Zaidi H. Ouchemoukh S. Amessis-Ouchemoukh N. Biological properties of phenolic compound extracts in selected Algerian honeys—The inhibition of acetylcholinesterase and α-glucosidase activities. Eur. J. Integr. Med. 2019 25 77 84 10.1016/j.eujim.2018.11.008
    [Google Scholar]
  11. da Silva P.M. Gauche C. Gonzaga L.V. Costa A.C.O. Fett R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016 196 309 323 10.1016/j.foodchem.2015.09.051 26593496
    [Google Scholar]
  12. Bobis O. Moise A.R. Ballesteros I. Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chem. 2020 325 126870 10.1016/j.foodchem.2020.126870
    [Google Scholar]
  13. Al-Ghamdi A.A. Ansari M.J. Biological and therapeutic roles of Saudi Arabian honey: A comparative review. J. King Saud Univ. Sci. 2021 33 2 101329 10.1016/j.jksus.2020.101329
    [Google Scholar]
  14. Louveaux J. Maurizio A. Vorwohl G. Methods of melissopalynology. Bee World 2021 59 4 139 157 10.1080/0005772X.1978.11097714
    [Google Scholar]
  15. Dżugan M. Tomczyk M. Sowa P. Grabek-Lejko D. Antioxidant activity as biomarker of honey variety. Molecules 2018 23 8 2069 10.3390/molecules23082069 30126199
    [Google Scholar]
  16. Kara Y. Can Z. Kolaylı S. Applicability of phenolic profile analysis method developed with RP-HPLC-PDA to some bee product. Braz. Arch. Biol. Technol. 2022 65 22210384 10.1590/1678‑4324‑2022210384
    [Google Scholar]
  17. Hussein S.Z. Yusoff K.M. Makpol S. Yusof Y.A.M. Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey. Molecules 2011 16 8 6378 6395 10.3390/molecules16086378 21796076
    [Google Scholar]
  18. Bogdanov S. Harmonised methods of the international honey commission. Inter Hon Comm World Net Hon Sci 2009 5 1 62
    [Google Scholar]
  19. Rivera-Yañez C.R. Ruiz-Hurtado P.A. Reyes-Reali J. Antifungal activity of mexican propolis on clinical isolates of Candida species. Molecules 2022 27 17 5651 10.3390/molecules27175651 36080417
    [Google Scholar]
  20. Antimicrobial susceptibility testing standards. USA: CLSI-Publishes 2009
    [Google Scholar]
  21. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast. 4th Ed. Wayne, PA, USA: Clinical and Laboratory Standards Institute 2017
    [Google Scholar]
  22. Guillen M.D. Cabo N. Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J. Sci. Food Agric. 2000 80 2028 2036 10.1002/1097‑0010(200011)80:14<2028:AID‑JSFA713>3.0.CO;2‑4
    [Google Scholar]
  23. Anjos O. Campos M.G. Ruiz P.C. Antunes P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015 169 218 223 10.1016/j.foodchem.2014.07.138 25236219
    [Google Scholar]
  24. Boussaid A. Chouaibi M. Rezig L. Hellal R. Donsì F. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018 11 2 265 274 10.1016/j.arabjc.2014.08.011
    [Google Scholar]
  25. Bouyahya A. Dakka N. Talbaoui A. Moussaoui N.E. Abrini J. Bakri Y. Phenolic contents and antiradical capacity of vegetable oil from Pistacia lentiscus (L). J. Mater. Environ. Sci. 2018 9 1518 1524 10.26872/jmes.2018.9.5.167
    [Google Scholar]
  26. Bakchiche B. Habati M. Benmebarek A. Gherib A. Physicochemical characteristics, concentrations of phenolic compounds and antioxidant power of four local honey varieties (Algeria). Vét 2018 6 118 123
    [Google Scholar]
  27. Habib H.M. Al Meqbali F.T. Kamal H. Souka U.D. Ibrahim W.H. Physicochemical and biochemical properties of honeys from arid regions. Food Chem. 2014 153 35 43 10.1016/j.foodchem.2013.12.048 24491697
    [Google Scholar]
  28. Benhamou N. Rey P. Stimulateurs des défenses naturelles des plantes: Une nouvelle stratégie phytosanitaire dans un contexte d’écoproduction durable. Phytoprotection 2012 92 1 1 23 10.7202/1012399ar
    [Google Scholar]
  29. Kolayli S. Kazaz G. Özkök A. The phenolic composition, aroma compounds, physicochemical and antimicrobial properties of Nigella sativa L. (black cumin) honey. Eur. Food Res. Technol. 2023 249 3 653 664 10.1007/s00217‑022‑04160‑2
    [Google Scholar]
  30. Lachman J. Hejtmánková A. Sýkora J. Karban J. Orsák M. Rygerová B. Contents of major phenolic and flavonoid antioxidants in selected Czech honey. Czech J. Food Sci. 2010 28 5 412 426 10.17221/202/2009‑CJFS
    [Google Scholar]
  31. Mateo R. Bosch-Reig F. Classification of Spanish unifloral honeys by discriminant analysis of electrical conductivity, color, water content, sugars and pH. J. Agric. Food Chem. 1998 46 2 393 400 10.1021/jf970574w 10554252
    [Google Scholar]
  32. El Sohaimy S.A. Masry S.H.D. Shehata M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015 60 2 279 287 10.1016/j.aoas.2015.10.015
    [Google Scholar]
  33. Ojeda de Rodríguez G. Sulbarán de Ferrer B. Ferrer A. Rodríguez B. Characterization of honey produced in Venezuela. Food Chem. 2004 84 4 499 502 10.1016/S0308‑8146(02)00517‑4
    [Google Scholar]
  34. Mateo R. Bosch-Reig F. Sugar profiles of Spanish unifloral honeys. Food Chem. 1997 60 1 33 41 10.1016/S0308‑8146(96)00297‑X
    [Google Scholar]
  35. Da Costa Leite J.M. Trugo L.C. Costa L.S.M. Determination of oligosaccharides in Brazilian honeys of different botanical origin. Food Chem. 2000 70 1 93 98 10.1016/S0956‑7135(99)00115‑2
    [Google Scholar]
  36. Vardi A. Barzilay Z. Linder N. Cohen H.A. Paret G. Barzilai A. Local application of honey for treatment of neonatal postoperative wound infection. Acta Paediatr. 1998 87 4 429 432 10.1111/j.1651‑2227.1998.tb01473.x 9628301
    [Google Scholar]
  37. Ahmed S. Othman N.H. The anti-cancer effects of Tualang honey in modulating breast carcinogenesis: An experimental animal study. BMC Complement. Altern. Med. 2017 17 1 208 10.1186/s12906‑017‑1721‑4 28399853
    [Google Scholar]
  38. Matsumoto H. Nagao J. Cho T. Kodama J. Evaluation of pathogenicity of Candida albicans in germination-ready states using a silkworm infection model. Med. Mycol. J. 2013 54 2 131 140 10.3314/mmj.54.131 23760077
    [Google Scholar]
  39. Khan M.S.A. Ahmad I. Cameotra S.S. Botha F. Sub-MICs of Carum copticum and Thymus vulgaris influence virulence factors and biofilm formation in Candida spp. BMC Complement. Altern. Med. 2014 14 1 337 10.1186/1472‑6882‑14‑337 25220750
    [Google Scholar]
  40. Abdelkader B. Zahra O.K. Brahim G. Ali B. Noureddine G. The impact of floral sources and geographical locations of honey bees on enzymatic properties and antimicrobial activities following the optimization of pH, temperature and time treatment parameters. J. Indian Chem. Soc. 2025 102 102032 10.1016/j.jics.2025.102032
    [Google Scholar]
  41. Rusko J. Vainovska P. Vilne B. Bartkevics V. Phenolic profiles of raw mono- and polyfloral honeys from Latvia. J. Food Compos. Anal. 2021 98 103813 10.1016/j.jfca.2021.103813
    [Google Scholar]
  42. Eteraf-Oskouei T. Najafi M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013 16 6 731 742 10.22038/lJBMS.2013.988 23997898
    [Google Scholar]
  43. Bertoncelj J. Doberšek U. Jamnik M. Golob T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007 105 2 822 828 10.1016/j.foodchem.2007.01.060
    [Google Scholar]
  44. Khalil M.I. Sulaiman S.A. Alam N. Gamma irradiation increases the antioxidant properties of Tualang honey stored under different conditions. Molecules 2012 17 1 674 687 10.3390/molecules17010674 22237682
    [Google Scholar]
  45. Becerril-Sánchez A.L. Quintero-Salazar B. Dublán-García O. Escalona-Buendía H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021 10 11 1700 10.3390/antiox10111700 34829570
    [Google Scholar]
  46. Sanchez-Martin V. Plaza-Calonge M.C. Soriano-Lerma A. Gallic acid: A natural phenolic compound exerting antitumoral activities in colorectal cancer via interaction with G-quadruplexes. Cancers 2022 14 11 2648 10.3390/cancers14112648 35681628
    [Google Scholar]
  47. Puścion-Jakubik A. Karpińska E. Moskwa J. Socha K. Content of phenolic acids as a marker of polish honey varieties and relationship with selected honey-quality-influencing variables. Antioxidants 2022 11 7 1312 10.3390/antiox11071312 35883803
    [Google Scholar]
  48. Dżugan M. Grabek-Lejko D. Swacha S. Tomczyk M. Bednarska S. Kapusta I. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Biosci. 2020 34 100538 10.1016/j.fbio.2020.100538
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013407368251205064008
Loading
/content/journals/cnf/10.2174/0115734013407368251205064008
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test