Skip to content
2000
image of Quercetin and Curcumin’s Potential Defenses Against Rotenone-induced Parkinson’s disease in Rats

Abstract

Introduction

Motor and behavioral impairments associated with Parkinson's disease (PD). The primary factors underlying the development of Parkinson's disease include mitochondrial impairment, increased oxidative stress, and the production of Lewy bodies due to protein misfolding. Antioxidants could help parkinsonism's symptoms get better and postpone neurodegeneration. We investigated the neuroprotective effects of curcumin, quercetin, and their combination in a rotenone-induced parkinsonism model.

Methods

Rats given rotenone 2 mg/kg/day for 14 days developed PD. Doses were selected based on preliminary work. Oral administrations of curcumin (100, 150, and 200 mg/kg), quercetin (30, 40, and 50 mg/kg), or their combination were administered simultaneously with rotenone and continued for a further 14 days. Histological studies as well as tests for assessment of locomotor activity, rota rod test (muscular coordination), Grid test and Open-field test were performed. on the 28th and 29th days.

Results

The higher doses of the used drugs; curcumin (200 mg/kg) and quercetin (50 mg/kg) enhanced locomotor activity, motor coordination, and mobility better than the lower doses. Furthermore, theysignicantly raised dopamine levels and helped minimize rotenone's produced neuronal damage.

Discussion

In this study, against parkinsonism both quercetin and curcumin exhibit neuroprotective properties.

Conclusion

Curcumin and quercetin used together has more positive results than each medicine taken by itself.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013378452251021013702
2026-01-26
2026-02-01
Loading full text...

Full text loading...

References

  1. Calabrese V.P. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007 69 2 223 224 10.1212/01.wnl.0000271777.50910.73 17620562
    [Google Scholar]
  2. Jost W.H. Reichmann H. “An essay on the shaking palsy” 200 years old. J. Neural Transm. 2017 124 8 899 900 10.1007/s00702‑017‑1684‑0 28155132
    [Google Scholar]
  3. Dorsey E.R. Elbaz A. Nichols E. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018 17 11 939 953 10.1016/S1474‑4422(18)30295‑3 30287051
    [Google Scholar]
  4. Maserejian N. Vinikoor-Imler L. Dilley A. Estimation of the 2020 global population of Parkinson’s disease (PD). Movement Disorders. Hoboken, New Jersey Wiley Online Library 2020
    [Google Scholar]
  5. Simon D.K. Tanner C.M. Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  6. Blauwendraat C. Reed X. Krohn L. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain 2020 143 1 234 248 10.1093/brain/awz350 31755958
    [Google Scholar]
  7. Meng L. Shen L. Ji H.F. Impact of infection on risk of Parkinson’s disease: A quantitative assessment of case-control and cohort studies. J. Neurovirol. 2019 25 2 221 228 10.1007/s13365‑018‑0707‑4 30632012
    [Google Scholar]
  8. Brundin P. Nath A. Beckham J.D. Is COVID-19 a perfect storm for Parkinson’s disease? Trends Neurosci. 2020 43 12 931 933 10.1016/j.tins.2020.10.009 33158605
    [Google Scholar]
  9. Qian E. Huang Y. Subtyping of Parkinson’s disease-where are we up to? Aging Dis. 2019 10 5 1130 1139 10.14336/AD.2019.0112 31595207
    [Google Scholar]
  10. Fereshtehnejad S.M. Yao C. Pelletier A. Montplaisir J.Y. Gagnon J.F. Postuma R.B. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: A prospective study. Brain 2019 142 7 2051 2067 10.1093/brain/awz111 31111143
    [Google Scholar]
  11. Postuma R.B. Berg D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 2016 12 11 622 634 10.1038/nrneurol.2016.152 27786242
    [Google Scholar]
  12. Thangaleela S. Sivamaruthi B.S. Kesika P. Neurological insights into sleep disorders in parkinson’s disease. Brain Sci. 2023 13 8 1202 10.3390/brainsci13081202
    [Google Scholar]
  13. Fearnley J.M. Lees A.J. Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 1991 114 5 2283 2301 10.1093/brain/114.5.2283
    [Google Scholar]
  14. Buddhala C. Loftin S.K. Kuley B.M. Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann. Clin. Transl. Neurol. 2015 2 10 949 959 10.1002/acn3.246 26478895
    [Google Scholar]
  15. Hawkes C.H. Del Tredici K. Braak H. Parkinson’s disease: A dual‐hit hypothesis. Neuropathol. Appl. Neurobiol. 2007 33 6 599 614 10.1111/j.1365‑2990.2007.00874.x 17961138
    [Google Scholar]
  16. Braak H. Tredici K.D. Rüb U. de Vos R.A.I. Steur J.E.N.H. Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003 24 2 197 211 10.1016/S0197‑4580(02)00065‑9 12498954
    [Google Scholar]
  17. Dodet P. Houot M. Leu-Semenescu S. Sleep disorders in Parkinson’s disease, an early and multiple problem. NPJ Parkinsons Dis. 2024 10 1 46 10.1038/s41531‑024‑00642‑0 38424131
    [Google Scholar]
  18. Chao Y.X. Gulam M.Y. Chia N.S.J. Feng L. Rotzschke O. Tan E.K. Gut–brain axis: Potential factors involved in the pathogenesis of parkinson’s disease. Front. Neurol. 2020 11 849 10.3389/fneur.2020.00849 32982910
    [Google Scholar]
  19. Winklhofer K.F. Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 29 44 10.1016/j.bbadis.2009.08.013 19733240
    [Google Scholar]
  20. Del Tredici K. Braak H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov. Disord. 2012 27 5 597 607 10.1002/mds.24921 22508278
    [Google Scholar]
  21. Takahashi H. Wakabayashi K. The cellular pathology of Parkinson’s disease. Neuropathology 2001 21 4 315 322 10.1046/j.1440‑1789.2001.00403.x 11837539
    [Google Scholar]
  22. Ebrahimi-Fakhari D. Wahlster L. McLean P.J. Protein degradation pathways in Parkinson’s disease: Curse or blessing. Acta Neuropathol. 2012 124 2 153 172 10.1007/s00401‑012‑1004‑6 22744791
    [Google Scholar]
  23. Blandini F. Armentero M.T. Dopamine receptor agonists for Parkinson’s disease. Expert Opin. Investig. Drugs 2014 23 3 387 410 10.1517/13543784.2014.869209 24313341
    [Google Scholar]
  24. Malar D.S. Prasanth M.I. Brimson J.M. Neuroprotective properties of Green Tea (Camellia sinensis) in Parkinson’s disease: A review. Molecules 2020 25 17 3926 10.3390/molecules25173926 32867388
    [Google Scholar]
  25. Jang E.M. Choi M.S. Jung U.J. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism 2008 57 11 1576 1583 10.1016/j.metabol.2008.06.014 18940397
    [Google Scholar]
  26. Ishita C. Kaushik B. Uday B. Ranajit B.K. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci. 2003 87 1
    [Google Scholar]
  27. Lim G.P. Chu T. Yang F. Beech W. Frautschy S.A. Cole G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001 21 21 8370 8377 10.1523/JNEUROSCI.21‑21‑08370.2001 11606625
    [Google Scholar]
  28. Thiyagarajan M. Sharma S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004 74 8 969 985 10.1016/j.lfs.2003.06.042 14672754
    [Google Scholar]
  29. Yavarpour-Bali H. Ghasemi-Kasman M. Pirzadeh M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine 2019 14 4449 4460 10.2147/IJN.S208332 31417253
    [Google Scholar]
  30. Yang Y. Liu X. Wu T. Quercetin attenuates AZT-induced neuroinflammation in the CNS. Sci. Rep. 2018 8 1 6194 10.1038/s41598‑018‑24618‑2 29670213
    [Google Scholar]
  31. Khan A. Ali T. Rehman S.U. Neuroprotective effect of quercetin against the detrimental effects of lps in the adult mouse brain. Front. Pharmacol. 2018 9 1383 10.3389/fphar.2018.01383 30618732
    [Google Scholar]
  32. Blesa J. Phani S. Jackson-Lewis V. Przedborski S. Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol. 2012 2012 1 10 10.1155/2012/845618 22536024
    [Google Scholar]
  33. Ahmad B. Lapidus L.J. Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate. J. Biol. Chem. 2012 287 12 9193 9199 10.1074/jbc.M111.325548 22267729
    [Google Scholar]
  34. Kimpel F. Schmitt J.J. Review: Milk proteins as nanocarrier systems for hydrophobic nutraceuticals. J. Food Sci. 2015 80 11 R2361 R2366 10.1111/1750‑3841.13096 26467442
    [Google Scholar]
  35. Cho J.Y. Kim I.S. Jang Y.H. Kim A.R. Lee S.R. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci. Lett. 2006 404 3 330 335 10.1016/j.neulet.2006.06.010 16806698
    [Google Scholar]
  36. El-Horany H.E. El-latif R.N.A. ElBatsh M.M. Emam M.N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of parkinson’s disease: Modulating autophagy (Quercetin on Experimental Parkinson’s Disease). J. Biochem. Mol. Toxicol. 2016 30 7 360 369 10.1002/jbt.21821 27252111
    [Google Scholar]
  37. Wrangel C. Schwabe K. John N. Krauss J.K. Alam M. The rotenone-induced rat model of Parkinson’s disease: Behavioral and electrophysiological findings. Behav. Brain Res. 2015 279 52 61 10.1016/j.bbr.2014.11.002 25446762
    [Google Scholar]
  38. Kim S.T. Son H.J. Choi J.H. Ji I.J. Hwang O. Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson’s disease. Brain Res. 2010 1306 176 183 10.1016/j.brainres.2009.09.103 19804765
    [Google Scholar]
  39. Fikry H. Saleh L.A. Abdel Gawad S. Neuroprotective effects of curcumin on the cerebellum in a rotenone‐induced Parkinson’s Disease Model. CNS Neurosci. Ther. 2022 28 5 732 748 10.1111/cns.13805 35068069
    [Google Scholar]
  40. Rajeswari A. Sabesan M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 2008 16 2 96 99 10.1007/s10787‑007‑1614‑0 18408903
    [Google Scholar]
  41. Balakrishnan R. Azam S. Cho D.Y. Su-Kim I. Choi D.K. Natural phytochemicals as novel therapeutic strategies to prevent and treat parkinson’s disease: Current knowledge and future perspectives. Oxid. Med. Cell. Longev. 2021 2021 1 6680935 10.1155/2021/6680935 34122727
    [Google Scholar]
  42. Sharma S. Raj K. Singh S. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement–induced parkinson’s disease in experimental rats. Neurotox. Res. 2020 37 1 198 209 10.1007/s12640‑019‑00120‑z 31654381
    [Google Scholar]
  43. Rahimmi A. Khosrobakhsh F. Izadpanah E. Hassanzadeh K. Induction of Parkinson’s disease model in rat by rotenone. Majallah-i Danishkadah-i Pizishki-i Isfahan 2014 32 1250 1258
    [Google Scholar]
  44. Natale G. Pasquali L. Ruggieri S. Paparelli A. Fornai F. Parkinson’s disease and the gut: A well known clinical association in need of an effective cure and explanation. Neurogastroenterol. Motil. 2008 20 7 741 749 10.1111/j.1365‑2982.2008.01162.x 18557892
    [Google Scholar]
  45. Abbott R.D. Petrovitch H. White L.R. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 2001 57 3 456 462 10.1212/WNL.57.3.456 11502913
    [Google Scholar]
  46. Greene J.G. Noorian A.R. Srinivasan S. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp. Neurol. 2009 218 1 154 161 10.1016/j.expneurol.2009.04.023 19409896
    [Google Scholar]
  47. Jayaraj R.L. Beiram R. Azimullah S. Lycopodium attenuates loss of dopaminergic neurons by suppressing oxidative stress and neuroinflammation in a rat model of Parkinson’s disease. Molecules 2019 24 11 2182 10.3390/molecules24112182 31185705
    [Google Scholar]
  48. Bandookwala M. Sahu A.K. Thakkar D. Sharma M. Khairnar A. Sengupta P. Edaravone-caffeine combination for the effective management of rotenone induced Parkinson’s disease in rats: An evidence based affirmative from a comparative analysis of behavior and biomarker expression. Neurosci. Lett. 2019 711 134438 10.1016/j.neulet.2019.134438 31422100
    [Google Scholar]
  49. Palle S. Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease. Naunyn Schmiedebergs Arch. Pharmacol. 2018 391 4 445 453 10.1007/s00210‑018‑1474‑8 29411055
    [Google Scholar]
  50. Yu L. Wang X. Chen H. Yan Z. Wang M. Li Y. Neurochemical and behavior deficits in rats with iron and rotenone co-treatment: Role of redox imbalance and neuroprotection by biochanin A. Front. Neurosci. 2017 11 657 10.3389/fnins.2017.00657 29217997
    [Google Scholar]
  51. Radad K. Rausch W.D. Gille G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 2006 49 4 379 386 10.1016/j.neuint.2006.02.003 16580092
    [Google Scholar]
  52. Sherer T.B. Betarbet R. Kim J.H. Greenamyre J.T. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci. Lett. 2003 341 2 87 90 10.1016/S0304‑3940(03)00172‑1 12686372
    [Google Scholar]
  53. Sherer T.B. Betarbet R. Testa C.M. Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 2003 23 34 10756 10764 10.1523/JNEUROSCI.23‑34‑10756.2003 14645467
    [Google Scholar]
  54. Cobb C.A. Cole M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis. 2015 84 4 21 10.1016/j.nbd.2015.04.020 26024962
    [Google Scholar]
  55. Spillantini M.G. Schmidt M.L. Lee V.M.Y. Trojanowski J.Q. Jakes R. Goedert M. α-Synuclein in lewy bodies. Nature 1997 388 6645 839 840 10.1038/42166 9278044
    [Google Scholar]
  56. Yu S. Zheng W. Xin N. Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res. 2010 13 1 55 64 10.1089/rej.2009.0908 20230279
    [Google Scholar]
  57. Patel A. Olang C.A. Lewis G. Mandalaneni K. Anand N. Gorantla V.R. An overview of parkinson’s disease: Curcumin as a possible alternative treatment. Cureus 2022 14 5 25032 10.7759/cureus.25032 35719816
    [Google Scholar]
  58. Heo H.J. Lee C.Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem. 2004 52 25 7514 7517 10.1021/jf049243r 15675797
    [Google Scholar]
  59. Zhu M. Han S. Fink A.L. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 4 2872 2881 10.1016/j.bbagen.2012.12.027 23295967
    [Google Scholar]
  60. Suganthy N. Devi K.P. Nabavi S.F. Braidy N. Nabavi S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016 84 892 908 10.1016/j.biopha.2016.10.011 27756054
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013378452251021013702
Loading
/content/journals/cnf/10.2174/0115734013378452251021013702
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: dopamine ; Parkinson’s disease ; quercetin ; curcumin ; behavioral activity ; motor activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test