Skip to content
2000
image of Optimization of Protocol for High-Quality γ-Oryzanol Extraction and Spray Drying from Rice Bran

Abstract

Background

γ-Oryzanol is present in rice bran, offering antioxidant and anti-inflammatory properties and helping reduce blood cholesterol levels.

Objective

This study aimed to optimize the extraction and enrichment of γ-oryzanol from rice bran, produce γ-oryzanol powder, and test its antioxidant and anti-diabetic activities, which serve as quality indicators of the powder.

Methods

γ-Oryzanol rich fraction (ORF) was extracted from Hom Mali rice bran using different extraction methods and three dewaxed-degummed protocols. Then, γ-oryzanol powder was produced using a spray dryer at different inlet temperatures of 150, 170, 190, and 210°C.

Results

Maceration with ethanol and protocol 1 of dewax-degum had the highest γ-oryzanol content, 1.83 mg/g of rice bran. The highest γ-oryzanol contents were observed at 150°C and 170°C, with no significant difference. Furthermore, powder produced at 150°C exhibited the best antioxidant activities, with the lowest IC of ABTS (812.75 µg/mL) and the highest ferric-reducing antioxidant power (9.16 µg TE/mg). In terms of anti-diabetic activity, γ-oryzanol powders at all inlet temperatures demonstrated good α-glucosidase inhibitory activity (IC = 1.13-1.56 mg/mL) and α-amylase inhibitory effect (IC = 130.50-145.86 µg/mL).

Conclusion

Therefore, maceration with ethanol for 7 days and protocol 1 of dewaxed-degummed, which uses acetone, methanol, and freezing, is the best method to obtain high γ-oryzanol content. Additionally, the spray dryer operating at 150°C can produce high-quality γ-oryzanol powders with elevated levels of γ-oryzanol, antioxidant activity, and anti-diabetic properties.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013412221250918115546
2025-10-01
2025-10-30
Loading full text...

Full text loading...

References

  1. Attavanich W. Did the Thai rice-pledging programme improve the economic performance and viability of rice farming? Appl. Econ. 2016 48 24 2253 2265 10.1080/00036846.2015.1117049
    [Google Scholar]
  2. Daifullah A.A.M. Girgis B.S. Gad H.M.H. Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater. Lett. 2003 57 11 1723 1731 10.1016/S0167‑577X(02)01058‑3
    [Google Scholar]
  3. Ravichanthiran K. Ma Z.F. Zhang H. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants 2018 7 6 71 10.3390/antiox7060071 29789516
    [Google Scholar]
  4. Xia X. Lin H. Luo F. Oryzanol ameliorates dss-stimulated gut barrier damage via targeting the gut microbiota accompanied by the TLR4/NF-κB/NLRP3 cascade response in vivo. J. Agric. Food Chem. 2022 70 50 15747 15762 10.1021/acs.jafc.2c04354 36474430
    [Google Scholar]
  5. Alwadani A.H. Almasri S.A. Aloud A.A. Albadr N.A. Alshammari G.M. Yahya M.A. The synergistic protective effect of γ-Oryzanol (OZ) and N-Acetylcysteine (NAC) against experimentally induced NAFLD in rats entails hypoglycemic, antioxidant, and PPARα stimulatory effects. Nutrients 2022 15 1 106 10.3390/nu15010106 36615764
    [Google Scholar]
  6. Yan S. Chen J. Zhu L. Oryzanol attenuates high fat and cholesterol diet-induced hyperlipidemia by regulating the gut microbiome and amino acid metabolism. J. Agric. Food Chem. 2022 70 21 6429 6443 10.1021/acs.jafc.2c00885 35587527
    [Google Scholar]
  7. Mattei L. Francisqueti-Ferron F.V. Garcia J.L. Antioxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol. Cell. Endocrinol. 2021 537 111423 10.1016/j.mce.2021.111423 34400258
    [Google Scholar]
  8. Shiwakoti S. Gong D. Sharma K. γ-Oryzanol ameliorates fine dust-induced premature endothelial senescence and dysfunction via attenuating oxidative stress. Food Chem. Toxicol. 2023 179 113981 10.1016/j.fct.2023.113981 37549806
    [Google Scholar]
  9. Francisqueti-Ferron F.V. Ferron A.J.T. Altomare A. Gamma-oryzanol reduces renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to high sugar-fat diet. J. Bras. Nefrol. 2021 43 4 460 469 10.1590/2175‑8239‑jbn‑2021‑0002 34174064
    [Google Scholar]
  10. Fan Z. Zhan W. Cai J. Effect of intrathecal injection of γ-Oryzanol on motor function in mice after spinal cord injury. Interdiscip. Neurosurg. 2023 34 101845 10.1016/j.inat.2023.101845
    [Google Scholar]
  11. Kim M. Yoon M. Cho S. Lee C. Um M.Y. γ‐Oryzanol ameliorates depressive behavior in ovariectomized mice by regulating hippocampal nitric oxide synthase: A potential therapy for menopausal depression. Mol. Nutr. Food Res. 2024 68 3 2300253 10.1002/mnfr.202300253 38054627
    [Google Scholar]
  12. Eisalou M.Y. Farahpour M.R. Effectiveness of gamma oryzanol on prevention of surgical induced endometriosis development in rat model. Sci. Rep. 2022 12 1 2816 10.1038/s41598‑022‑06883‑4 35181729
    [Google Scholar]
  13. Patel M. Naik S.N. Gamma-oryzanol from rice bran oil – A review. J. Sci. Ind. Res. 2004 2004 63 569 578
    [Google Scholar]
  14. Xu H. Dai Z.H. He G.L. Gamma-oryzanol alleviates intervertebral disc degeneration development by intercepting the IL-1β/NLRP3 inflammasome positive cycle. Phytomedicine 2022 102 154176 10.1016/j.phymed.2022.154176 35660354
    [Google Scholar]
  15. Panyathep A. Punturee K. Chewonarin T. Effect of gamma oryzanol-rich fraction from purple rice extract against lipopolysaccharide-induced vascular endothelial growth factor C production of human colon cancer cells and angiogenesis of human umbilical vein endothelial cells. Agric. Nat. Resour. 2022 56 3 557 568
    [Google Scholar]
  16. Francisqueti-Ferron F.V. Garcia J.L. Ferron A.J.T. Gamma-oryzanol as a potential modulator of oxidative stress and inflammation via PPAR-y in adipose tissue: A hypothetical therapeutic for cytokine storm in COVID-19? Mol. Cell. Endocrinol. 2021 520 111095 10.1016/j.mce.2020.111095 33253762
    [Google Scholar]
  17. Nugrahani R.A. Hendrawati T.Y. Hasyim U.H. Sari F. Ramadhan A.I. Kinetic parameter for scale-up and γ-oryzanol content of rice bran oil as antioxidant: Comparison of maceration, ultrasonication, pneumatic press extraction. Heliyon 2024 10 10 e30880 10.1016/j.heliyon.2024.e30880 38770285
    [Google Scholar]
  18. Reis N. Castanho A. Lageiro M. Pereira C. Brites C.M. Vaz-Velho M. Rice bran stabilisation and oil extraction using the microwave-assisted method and its effects on GABA and gamma-oryzanol compounds. Foods 2022 11 7 912 10.3390/foods11070912 35406999
    [Google Scholar]
  19. Leardkamolkarn V. Thongthep W. Suttiarporn P. Kongkachuichai R. Wongpornchai S. Wanavijitr A. Chemopreventive properties of the bran extracted from a newly-developed thai rice: The riceberry. Food Chem. 2011 125 3 978 985 10.1016/j.foodchem.2010.09.093
    [Google Scholar]
  20. Chithra P.K. Jayalekshmy A. Helen A. Petroleum ether extract of njavara rice (Oryza sativa) bran upregulates the JAK2–STAT3-mediated anti-inflammatory profile in macrophages and aortic endothelial cells promoting regression of atherosclerosis. Biochem. Cell Biol. 2017 95 6 652 662 10.1139/bcb‑2017‑0090 28700834
    [Google Scholar]
  21. Paknahad M. Mcintosh C. Hoorfar M. Selective detection of volatile organic compounds in microfluidic gas detectors based on “like dissolves like”. Sci. Rep. 2019 9 1 161 10.1038/s41598‑018‑36615‑6 30655569
    [Google Scholar]
  22. Rashid S. Majeed L.R. Nisar B. Nisar H. Bhat A.A. Ganai B.A. Phytomedicines: Diversity, extraction, and conservation strategies. In:Phytomedicine. Cambridge, MA Academic Press 2021 1 33
    [Google Scholar]
  23. Richter B.E. Jones B.A. Ezzell J.L. Porter N.L. Avdalovic N. Pohl C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996 68 6 1033 1039 10.1021/ac9508199
    [Google Scholar]
  24. Giergielewicz-Możajska H. Dąbrowski Ł. Namieśnik J. Accelerated solvent extraction (ASE) in the analysis of environmental solid samples—some aspects of theory and practice. Crit. Rev. Anal. Chem. 2001 31 3 149 165 10.1080/20014091076712
    [Google Scholar]
  25. Xiaoyang S. Shaojun T. Lifen Z. Jianchun X. Effect of phospholipase A 1 -catalyzed degumming on oryzanol, tocopherols, and tocotrienols of dewaxed rice bran Oil. J. Chem. 2019 2019 1 1 8 10.1155/2019/1608750
    [Google Scholar]
  26. Mishra A. Gopalakrishna A.G. Prabhakar J.V. Factors affecting refining losses in rice (Oryza sativa L.) bran oil. J. Am. Oil Chem. Soc. 1988 65 10 1605 1609 10.1007/BF02912563
    [Google Scholar]
  27. De B.K. Patel J.D. Effect of different degumming processes and some nontraditional neutralizing agent on refining of RBO. J. Oleo Sci. 2010 59 3 121 125 10.5650/jos.59.121 20124753
    [Google Scholar]
  28. Wangdee K. Decker E.A. Onsaard E. Characterization of encapsulated γ-oryzanol powder by spray drying using whey protein and maltodextrin as wall materials. J. Food Sci. Technol. 2022 59 1 355 365 10.1007/s13197‑021‑05021‑8 35068579
    [Google Scholar]
  29. To N.P.M. Ha T.T. Nguyen V.M. Tran T.T. Production of instant pomelo peel powder by spray drying: Optimization of wall material composition to microencapsulate phenolic compounds. Food Sci Technol 2022 42 e102621 10.1590/fst.102621
    [Google Scholar]
  30. Alhajj N. O’Reilly N.J. Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov. Today 2021 26 10 2384 2396 10.1016/j.drudis.2021.04.009 33872799
    [Google Scholar]
  31. Ribeiro A. Ruphuy G. Lopes J.C. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chem. 2015 188 612 618 10.1016/j.foodchem.2015.05.061 26041238
    [Google Scholar]
  32. Stevanović M. Polymeric micro-and nanoparticles for controlled and targeted drug delivery. In:Nanostructures for Drug Delivery. Elsevier 2017 355 378 10.1016/B978‑0‑323‑46143‑6.00011‑7
    [Google Scholar]
  33. Chegini G.R. Ghobadian B. Spray dryer parameters for fruit juice drying. World J. Agric. Sci. 2007 3 2 230 236
    [Google Scholar]
  34. Zullaikah S. Melwita E. Ju Y.H. Isolation of oryzanol from crude rice bran oil. Bioresour. Technol. 2009 100 1 299 302 10.1016/j.biortech.2008.06.008 18644715
    [Google Scholar]
  35. Rajam L. Soban Kumar D.R. Sundaresan A. Arumughan C. A novel process for physically refining rice bran oil through simultaneous degumming and dewaxing. J. Am. Oil Chem. Soc. 2005 82 3 213 220 10.1007/s11746‑005‑5174‑4
    [Google Scholar]
  36. Jung T.D. Shin G.H. Kim J.M. Comparative analysis of γ-Oryzanol, β-Glucan, total phenolic content and antioxidant activity in fermented rice bran of different varieties. Nutrients 2017 9 6 571 10.3390/nu9060571 28587204
    [Google Scholar]
  37. Sarabandi K. Jafari S.M. Mahoonak A.S. Mohammadi A. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int. J. Biol. Macromol. 2019 140 59 68 10.1016/j.ijbiomac.2019.08.133 31422189
    [Google Scholar]
  38. Khlifi D. Sghaier R.M. Amouri S. Laouini D. Hamdi M. Bouajila J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013 55 202 208 10.1016/j.fct.2013.01.004 23333573
    [Google Scholar]
  39. Ferreres F. Andrade C. Gomes N.G.M. Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chem. 2021 342 128323 10.1016/j.foodchem.2020.128323 33069534
    [Google Scholar]
  40. Gullón B. Eibes G. Moreira M.T. Dávila I. Labidi J. Gullón P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind. Crops Prod. 2017 107 105 113 10.1016/j.indcrop.2017.05.034
    [Google Scholar]
  41. Apostolidis E. Kwon Y.I. Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 2007 8 1 46 54 10.1016/j.ifset.2006.06.001
    [Google Scholar]
  42. Vinholes J. Grosso C. Andrade P.B. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of spergularia rubra. Food Chem. 2011 129 2 454 462 10.1016/j.foodchem.2011.04.098 30634251
    [Google Scholar]
  43. Figueiredo-González M. Valentão P. Andrade P.B. Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Ind. Crops Prod. 2016 94 621 629 10.1016/j.indcrop.2016.09.036
    [Google Scholar]
  44. Subramanian P. Anandharamakrishnan C. Extraction of bioactive compounds. In industrial application of functional foods, ingredients and nutraceutical. Academic Press 2023 45 87 10.1016/B978‑0‑12‑824312‑1.00002‑9
    [Google Scholar]
  45. Bruscatto H.M. Otero M.D. Pestana-Bauer R.V. Lorini A. Mendonça R.B.C. Zambiazi C.R. Study of the thermal stability of γ ‐oryzanol present in rice bran oil over time. J. Sci. Food Agric. 2021 101 13 5715 5720 10.1002/jsfa.11179 33682139
    [Google Scholar]
  46. Ahmad R. Ahmad N. Al-Anaki W.S. Ismail F.A. Al-Jishi F. Solvent and temperature effect of accelerated solvent extraction (ASE) coupled with ultra-high-pressure liquid chromatography (UHPLC-PDA) for the determination of methyl xanthines in commercial tea and coffee. Food Chem. 2020 311 126021 10.1016/j.foodchem.2019.126021 31864182
    [Google Scholar]
  47. Bruce J.H. The technological challenges of reducing the saturated fat content of foods. Nutr. Bull. 2020 45 3 315 320 10.1111/nbu.12452
    [Google Scholar]
  48. Both E.M. Boom R.M. Schutyser M.A.I. Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technol. 2020 363 519 524 10.1016/j.powtec.2020.01.001
    [Google Scholar]
  49. Sawisit A. Rodpon P. Duangsa B. Khongla C. Musika S. Rattanajun P. Impact of encapsulation on gamma oryzanol content and physicochemical properties of jasmine rice bran oil powder derived from rice dough stage. Asian J. Plant Sci. 2025 24 1 27 37 10.3923/ajps.2025.27.37
    [Google Scholar]
  50. Qadri T. Naik H.R. Hussain S.Z. Impact of spray drying conditions on the reconstitution, efficiency and flow properties of spray dried apple powder-optimization, sensorial and rheological assessment. Heliyon 2023 9 8 e18527 10.1016/j.heliyon.2023.e18527 37520989
    [Google Scholar]
  51. Gharsallaoui A. Roudaut G. Chambin O. Voilley A. Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007 40 9 1107 1121 10.1016/j.foodres.2007.07.004
    [Google Scholar]
  52. Ruen-ngam D. Thawai C. Sukonthamut S. Nokkoul R. Tadtong S. Evaluation of nutrient content and antioxidant, neuritogenic, and neuroprotective activities of upland rice bran oil. Sci. Asia 2018 44 4 257 267 10.2306/scienceasia1513‑1874.2018.44.257
    [Google Scholar]
  53. Pansiri S. Trigueros E. Gomes N.G.M. Andrade P.B. Duangsrisai S. Oliveira A.P. Cell-free and cell-based antidiabetic effects and chemical characterization of rice bran from Thai cultivars. Food Res. Int. 2024 196 115023 10.1016/j.foodres.2024.115023 39614475
    [Google Scholar]
  54. Hansakul P. Junmarkho K. Thai pigmented rice bran extracts inhibit production of superoxide, nitric oxide radicals and inducible nitric oxide synthase in cellular models. Asian Pac. J. Trop. Biomed. 2019 9 7 291 298 10.4103/2221‑1691.261809
    [Google Scholar]
  55. Surin S. You S. Seesuriyachan P. Optimization of ultrasonic-assisted extraction of polysaccharides from purple glutinous rice bran (Oryza sativa L.) and their antioxidant activities. Sci. Rep. 2020 10 1 10410 10.1038/s41598‑020‑67266‑1 32591579
    [Google Scholar]
  56. Mingyai S. Kettawan A. Srikaeo K. Singanusong R. Physicochemical and antioxidant properties of rice bran oils produced from colored rice using different extraction methods. J. Oleo Sci. 2017 66 6 565 572 10.5650/jos.ess17014 28515384
    [Google Scholar]
  57. Bendary E. Francis R.R. Ali H.M.G. Sarwat M.I. El Hady S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann. Agric. Sci. 2013 58 2 173 181 10.1016/j.aoas.2013.07.002
    [Google Scholar]
  58. Sima A.A.F. Chakrabarti S. Long-term suppression of postprandial hyperglycaemia with acarbose retards the development of neuropathies in the BB/W-rat. Diabetologia 1992 35 4 325 330 10.1007/BF00401199 1516760
    [Google Scholar]
  59. Balfour J.A. McTavish D. Acarbose. Drugs 1993 46 6 1025 1054 10.2165/00003495‑199346060‑00007 7510610
    [Google Scholar]
  60. Sobhy R. Eid M. Zhan F. Liang H. Li B. Toward understanding the in vitro anti-amylolytic effects of three structurally different phytosterols in an aqueous medium using multispectral and molecular docking studies. J. Mol. Liq. 2019 283 225 234 10.1016/j.molliq.2019.03.098
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013412221250918115546
Loading
/content/journals/cnf/10.2174/0115734013412221250918115546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test