Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Celiac disease is an autoimmune disorder that can be triggered by the intake of a protein called gluten. Currently, a rigorous gluten-free diet is the only treatment available for celiac disease. However, recent research has shown that certain nutraceuticals may have potential in managing the symptoms of celiac disease. Nutraceuticals are food-derived products that provide health benefits beyond basic nutrition. This review investigates the functions of nutraceuticals in the management of celiac disease, including their potential for reducing inflammation, modulating the gut microbiota, and improving nutrient absorption. The potential benefits of various nutraceuticals, including probiotics, prebiotics, polyphenols, and enzymes, are discussed. Although further investigation is required to completely comprehend the effectiveness of nutraceuticals in the treatment of celiac illness, current evidence suggests that they may be a promising avenue for improving the quality of life for those with this condition. The management of celiac disease involves a multidisciplinary approach that includes diagnosis, education, and ongoing support. The key to successful management of celiac disease is early and accurate diagnosis, followed by education on the gluten-free diet and the avoidance of cross-contamination. This can be challenging, especially for those who are newly diagnosed, but with proper guidance and support, individuals with celiac disease can lead healthy and fulfilling lives. Sustained monitoring and follow-up treatment are also necessary to make sure the gluten-free diet is followed and to identify any possible issues.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013381075250829081219
2025-09-04
2026-01-08
Loading full text...

Full text loading...

References

  1. CaladoJ. Verdelho MachadoM. Celiac disease revisited.GE Port. J. Gastroenterol.202229211112410.1159/000514716 35497669
    [Google Scholar]
  2. LebwohlB. Rubio-TapiaA. Epidemiology, presentation, and diagnosis of celiac disease.Gastroenterology20211601637510.1053/j.gastro.2020.06.098 32950520
    [Google Scholar]
  3. CaioG. VoltaU. SaponeA. Celiac disease: A comprehensive current review.BMC Med.201917114210.1186/s12916‑019‑1380‑z 31331324
    [Google Scholar]
  4. MachadoM.V. New developments in celiac disease treatment.Int. J. Mol. Sci.202324294510.3390/ijms24020945 36674460
    [Google Scholar]
  5. Jansson-KnodellC.L. CeldirM.G. HujoelI.A. Relationship between gluten availability and celiac disease prevalence: A geo‐epidemiologic systematic review.J. Gastroenterol. Hepatol.202338101695170910.1111/jgh.16260 37332011
    [Google Scholar]
  6. GrecoL. TimponeL. AbkariA. Burden of celiac disease in the mediterranean area.World J. Gastroenterol.201117454971497810.3748/wjg.v17.i45.4971 22174546
    [Google Scholar]
  7. GreenP.H.R. PaskiS. KoC.W. Rubio-TapiaA. AGA clinical practice update on management of refractory celiac disease: Expert review.Gastroenterology202216351461146910.1053/j.gastro.2022.07.086 36137844
    [Google Scholar]
  8. AtlasyN. BujkoA. BækkevoldE.S. Single cell transcriptomic analysis of the immune cell compartment in the human small intestine and in celiac disease.Nat. Commun.2022131492010.1038/s41467‑022‑32691‑5 35995787
    [Google Scholar]
  9. HinterseherJ. HertlM. DidonaD. Autoimmune skin disorders and SARS‐CoV‐2 vaccination – a meta‐analysis.J. Dtsch. Dermatol. Ges.202321885386110.1111/ddg.15114 37218538
    [Google Scholar]
  10. KrögerS. KurppaK. RepoM. Severity of villous atrophy at diagnosis in childhood does not predict long‐term outcomes in celiac disease.J. Pediatr. Gastroenterol. Nutr.2020711717710.1097/MPG.0000000000002675 32097370
    [Google Scholar]
  11. ElliL. BranchiF. SidhuR. Small bowel villous atrophy: Celiac disease and beyond.Expert Rev. Gastroenterol. Hepatol.201711212513810.1080/17474124.2017.1274231 28000520
    [Google Scholar]
  12. TommasiniA. NotT. KirenV. Mass screening for coeliac disease using antihuman transglutaminase antibody assay.Arch. Dis. Child.200489651251510.1136/adc.2003.029603 15155392
    [Google Scholar]
  13. SchuppanD. Current concepts of celiac disease pathogenesis.Gastroenterology2000119123424210.1053/gast.2000.8521 10889174
    [Google Scholar]
  14. MolbergØ. McadamS.N. KörnerR. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease.Nat. Med.19984671371710.1038/nm0698‑713 9623982
    [Google Scholar]
  15. van de WalY. KooyY. van VeelenP. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity.J. Immunol.199816141585158810.4049/jimmunol.161.4.1585 9712018
    [Google Scholar]
  16. AxelrodC.L. BrennanC.J. CresciG. UCC118 supplementation reduces exercise‐induced gastrointestinal permeability and remodels the gut microbiome in healthy humans.Physiol. Rep.2019722e1427610.14814/phy2.14276 31758610
    [Google Scholar]
  17. MahboubH.H. ElsheshtawyH.M. SheraibaN.I. Dietary black cumin (nigella sativa) improved hemato-biochemical, oxidative stress, gene expression, and immunological response of nile tilapia (oreochromis niloticus) infected by burkholderia cepacia.Aquacult. Rep.20222210094310.1016/j.aqrep.2021.100943
    [Google Scholar]
  18. KeijerJ. EscotéX. GalmésS. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies.Crit. Rev. Food Sci. Nutr.202464238279830710.1080/10408398.2023.2198605 37077157
    [Google Scholar]
  19. MohanM. OkeomaC.M. SestakK. Dietary gluten and neurodegeneration: A case for preclinical studies.Int. J. Mol. Sci.20202115540710.3390/ijms21155407 32751379
    [Google Scholar]
  20. SalleseM. LopetusoL.R. EfthymakisK. NeriM. Beyond the HLA genes in gluten-related disorders.Front. Nutr.2020757584410.3389/fnut.2020.575844 33262997
    [Google Scholar]
  21. VoisineJ. AbadieV. Interplay between gluten, HLA, innate and adaptive immunity orchestrates the development of coeliac disease.Front. Immunol.20211267431310.3389/fimmu.2021.674313 34149709
    [Google Scholar]
  22. SharmaN. BhatiaS. ChunduriV. Pathogenesis of celiac disease and other gluten-related disorders in wheat and strategies for mitigating them.Front. Nutr.20207610.3389/fnut.2020.00006 32118025
    [Google Scholar]
  23. HadithiM. von BlombergB.M.E. CrusiusJ.B.A. Accuracy of serologic tests and HLA-DQ typing for diagnosing celiac disease.Ann. Intern. Med.2007147529430210.7326/0003‑4819‑147‑5‑200709040‑00003 17785484
    [Google Scholar]
  24. LionettiE. CastellanetaS. FrancavillaR. PulvirentiA. CatassiC. Mode of delivery and risk of celiac disease: Risk of celiac disease and age at gluten introduction cohort study.J. Pediatr.20171848186.e210.1016/j.jpeds.2017.01.023 28196682
    [Google Scholar]
  25. DieterichW. EsslingerB. TrappD. Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease.Gut200655447848410.1136/gut.2005.069385 16188922
    [Google Scholar]
  26. HusbyS. KoletzkoS. Korponay-SzabóI.R. European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease.J. Pediatr. Gastroenterol. Nutr.201254113616010.1097/MPG.0b013e31821a23d0 22197856
    [Google Scholar]
  27. FasanoA. CatassiC. Celiac disease.N. Engl. J. Med.2012367252419242610.1056/NEJMcp1113994 23252527
    [Google Scholar]
  28. VoltaU. CaioG. StanghelliniV. De GiorgioR. The changing clinical profile of celiac disease: A 15-year experience (1998-2012) in an italian referral center.BMC Gastroenterol.201414119410.1186/s12876‑014‑0194‑x 25404189
    [Google Scholar]
  29. VoltaU. CaioG. TovoliF. De GiorgioR. Non-celiac gluten sensitivity: Questions still to be answered despite increasing awareness.Cell. Mol. Immunol.201310538339210.1038/cmi.2013.28 23934026
    [Google Scholar]
  30. de LorgerilM. SalenP. Gluten and wheat intolerance today: Are modern wheat strains involved?Int. J. Food Sci. Nutr.201465557758110.3109/09637486.2014.886185 24524657
    [Google Scholar]
  31. van den BroeckH.C. de JongH.C. SalentijnE.M.J. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: Wheat breeding may have contributed to increased prevalence of celiac disease.Theor. Appl. Genet.201012181527153910.1007/s00122‑010‑1408‑4 20664999
    [Google Scholar]
  32. ChiuH.F. VenkatakrishnanK. GolovinskaiaO. WangC.K. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence.Molecules2021267209010.3390/molecules26072090 33917379
    [Google Scholar]
  33. DiasR. PereiraC.B. Pérez-GregorioR. MateusN. FreitasV. Recent advances on dietary polyphenol’s potential roles in celiac disease.Trends Food Sci. Technol.202110721322510.1016/j.tifs.2020.10.033
    [Google Scholar]
  34. GuptaK.B. ManthaA.K. DhimanM. Mitigation of gliadin-induced inflammation and cellular damage by curcumin in human intestinal cell lines.Inflammation202144387388910.1007/s10753‑020‑01383‑x 33394186
    [Google Scholar]
  35. ŽilićS. Wheat gluten: Composition and health effects. WalterD.B. Gluten.New York: Nova Science Publishers20137286
    [Google Scholar]
  36. RomanL. BelorioM. GomezM. Gluten‐free breads: The gap between research and commercial reality.Compr. Rev. Food Sci. Food Saf.201918369070210.1111/1541‑4337.12437 33336920
    [Google Scholar]
  37. CantrellK. LiN. MeyersC. AkersC. Misleading or informing? examining the effects of labeling design on consumers’ perception of gluten-free products and wheat safety.J. Appl. Commun.20201041210.4148/1051‑0834.2309
    [Google Scholar]
  38. HughesN.S. Rondinelli-HamiltonL. Gluten-free recipes for people with diabetes.Arlington, VAAmerican Diabetes Association2016160
    [Google Scholar]
  39. MirmoghtadaieL. Shojaee-AliabadiS. HosseiniS.M. SoltanizadehN. MirmoghtadaeeP. BanavandP. Gluten-free products in celiac disease: Nutritional and technological challenges and solutions.J. Res. Med. Sci.201823110910.4103/jrms.JRMS_666_18 30693044
    [Google Scholar]
  40. RybickaI. DobaK. BińczakO. Improving the sensory and nutritional value of gluten‐free bread.Int. J. Food Sci. Technol.20195492661266710.1111/ijfs.14190
    [Google Scholar]
  41. XuJ. ZhangY. WangW. LiY. Advanced properties of gluten-free cookies, cakes, and crackers: A review.Trends Food Sci. Technol.202010320021310.1016/j.tifs.2020.07.017
    [Google Scholar]
  42. RossiR.E. DispinzieriG. ElveviA. MassironiS. Interaction between gut microbiota and celiac disease: From pathogenesis to treatment.Cells202312682310.3390/cells12060823 36980164
    [Google Scholar]
  43. MossMelinda CaswellErin YearginAndrew Optimization of flour-replacing ingredients for low-carbohydrate, gluten-free muffins via a mixture design with complete sucrose substitution by d-allulose or d-tagatose.LWT202216711377910.1016/j.lwt.2022.113779
    [Google Scholar]
  44. GómezM. Gluten-free bakery products: Ingredients and processes.Adv. Food Nutr. Res.20229918923810.1016/bs.afnr.2021.11.005 35595394
    [Google Scholar]
  45. AgrawalR. Probiotics: An emerging food supplement with health benefits.Food Biotechnol.200519322724610.1080/08905430500316474
    [Google Scholar]
  46. KothariD. PatelS. KimS.K. Probiotic supplements might not be universally-effective and safe: A review.Biomed. Pharmacother.201911153754710.1016/j.biopha.2018.12.104 30597307
    [Google Scholar]
  47. ZhangZ. LvJ. PanL. ZhangY. Roles and applications of probiotic lactobacillus strains.Appl. Microbiol. Biotechnol.2018102198135814310.1007/s00253‑018‑9217‑9 30032432
    [Google Scholar]
  48. SharmaR. BhaskarB. SanodiyaB.S. Probiotic Efficacy and Potential of Streptococcus thermophilus modulating human health: A synoptic review.IOSR J. Pharm. Biol. Sci.20149525810.9790/3008‑09325258
    [Google Scholar]
  49. RahimM.A. SaeedF. KhalidW. HussainM. AnjumF.M. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: A review.Int. J. Food Prop.20212411588160210.1080/10942912.2021.1986520
    [Google Scholar]
  50. BambaceM.F. AlvarezM.V. MoreiraM.R. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings.Food Res. Int.201912265366010.1016/j.foodres.2019.01.040 31229124
    [Google Scholar]
  51. KrishnareddyS. StierK. RecanatiM. LebwohlB. GreenP.H.R. Commercially available glutenases: A potential hazard in coeliac disease.Therap. Adv. Gastroenterol.201710647348110.1177/1756283X17690991 28567117
    [Google Scholar]
  52. WeiG. HelmerhorstE.J. DarwishG. BlumenkranzG. SchuppanD. Gluten degrading enzymes for treatment of celiac disease.Nutrients2020127209510.3390/nu12072095 32679754
    [Google Scholar]
  53. YuT. HuS. MinF. Wheat amylase trypsin inhibitors aggravate intestinal inflammation associated with celiac disease mediated by gliadin in BALB/c mice.Foods20221111155910.3390/foods11111559 35681310
    [Google Scholar]
  54. CalderP.C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.Am. J. Clin. Nutr.20068361505S1519S10.1093/ajcn/83.6.1505S 16841861
    [Google Scholar]
  55. MachucaJ. WirkusJ. EadA.S. Dietary ω-3 fatty acids mitigate intestinal barrier integrity alterations in mice fed a high-fat diet: Implications for pancreatic carcinogenesis.J. Nutr.2025155119721010.1016/j.tjnut.2024.10.054 39510504
    [Google Scholar]
  56. MaggioA. OrecchioS. Fatty acid composition of gluten-free food (bakery products) for celiac people.Foods2018769510.3390/foods7060095 29925768
    [Google Scholar]
  57. CatassiC. RätschI.M. FabianiE. High prevalence of undiagnosed coeliae disease in 5280 Italian students screened by antigliadin antibodies.Acta Paediatr.199584667267610.1111/j.1651‑2227.1995.tb13725.x 7670254
    [Google Scholar]
  58. CatassiC. FabianiE. RätschI.M. The coeliac iceberg in Italy. A multicentre antigliadin antibodies screening for coeliac disease in school‐age subjects.Acta Paediatr.199685s412293510.1111/j.1651‑2227.1996.tb14244.x 8783752
    [Google Scholar]
  59. AscherH. KrantzI. KristianssonB. Increasing incidence of coeliac disease in Sweden.Arch. Dis. Child.199166560861110.1136/adc.66.5.608 2039251
    [Google Scholar]
  60. CavellB. StenhammarL. AscherH. Increasing incidence of childhood coeliac disease in Sweden. results of a national study.Acta Paediatr.199281858959210.1111/j.1651‑2227.1992.tb12306.x 1392381
    [Google Scholar]
  61. GrodzinskyE. FranzenL. HedJ. StrömM. High prevalence of celiac disease in healthy adults revealed by antigliadin antibodies.Ann. Allergy19926916670 1626762
    [Google Scholar]
  62. Health hazard assessment for gluten exposure in individuals with celiac disease: Determination of tolerable daily intake levels and levels of concern for gluten. 2012.U.S. Food and Drug Administration.Retrieved from: https://www.fda.gov/media/86315/download
  63. Guidance for industry: Questions and answers regarding food allergen labeling (Edition 5). 2023.U.S. Food and Drug Administration.Retrieved from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-questions-and-answers-regarding-food-allergen-labeling-edition-5
    [Google Scholar]
  64. Approaches to establish thresholds for major food allergens and gluten in food. 2023.U.S. Food and Drug Administration.Retrieved from: https://www.fda.gov/food/nutrition-food-labeling-and-critical-foods/approaches-establish-thresholds-major-food-allergens-and-gluten-food
  65. CeldirM.G. Jansson-KnodellC.L. HujoelI.A. Latitude and celiac disease prevalence: A meta-analysis and meta-regression.Clin. Gastroenterol. Hepatol.2022206e1231e123910.1016/j.cgh.2020.09.052 33007509
    [Google Scholar]
  66. KvammeJ.M. SørbyeS. FlorholmenJ. HalstensenT.S. Population-based screening for celiac disease reveals that the majority of patients are undiagnosed and improve on a gluten-free diet.Sci. Rep.20221211264710.1038/s41598‑022‑16705‑2 35879335
    [Google Scholar]
  67. LudvigssonJ.F. Rubio-TapiaA. van DykeC.T. Increasing incidence of celiac disease in a North American population.Am. J. Gastroenterol.2013108581882410.1038/ajg.2013.60 23511460
    [Google Scholar]
  68. DurazzoA. LucariniM. SantiniA. Nutraceuticals in human health.Foods20209337010.3390/foods9030370
    [Google Scholar]
  69. SharmaD.R. KumarS. KumarV. ThakurA. Comprehensive review on nutraceutical significance of phytochemicals as functional food ingredients for human health management.J. Pharmacogn. Phytochem.20198538539510.22271/phyto.2019.v8.i5h.9589
    [Google Scholar]
  70. CristoforiF. DargenioV.N. DargenioC. MinielloV.L. BaroneM. FrancavillaR. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A Door to the Body.Front. Immunol.20211257838610.3389/fimmu.2021.578386 33717063
    [Google Scholar]
  71. CristoforiF. IndrioF. MinielloV.L. De AngelisM. FrancavillaR. Probiotics in celiac disease.Nutrients20181012182410.3390/nu10121824
    [Google Scholar]
  72. DahiyaD. NigamP.S. The gut microbiota influenced by the intake of probiotics and functional foods with prebiotics can sustain wellness and alleviate certain ailments like gut-inflammation and colon-cancer.Microorganisms202210366510.3390/microorganisms10030665
    [Google Scholar]
  73. ValituttiF. CucchiaraS. FasanoA. Celiac disease and the microbiome.Nutrients20191110240310.3390/nu11102403
    [Google Scholar]
  74. WaghS.K. LammersK.M. PadulM.V. Rodriguez-HerreraA. DoderoV.I. Celiac disease and possible dietary interventions: From enzymes and probiotics to postbiotics and viruses.Int. J. Mol. Sci.202223191174810.3390/ijms231911748
    [Google Scholar]
  75. TannerG.J. Relative rates of gluten digestion by nine commercial dietary digestive supplements.Front. Nutr.2021878485010.3389/fnut.2021.784850 34950690
    [Google Scholar]
  76. Moreno AmadorM.L. Arévalo-RodríguezM. DuránE.M. Martínez ReyesJ.C. Sousa MartínC. A new microbial gluten-degrading prolyl endopeptidase: Potential application in celiac disease to reduce gluten immunogenic peptides.PLoS One2019146e021834610.1371/journal.pone.0218346 31246975
    [Google Scholar]
  77. VermaA.K. QuattriniS. SerinY. Unauthentic information about celiac disease on social networking pages: Is it a matter of concern in celiac disease management?Dig. Dis. Sci.202469103650366010.1007/s10620‑024‑08486‑7 38816597
    [Google Scholar]
  78. AsriN. Rezaei-TaviraniM. Rostami-NejadM. Jahani-SherafatS. EsmaeiliS. KhodadoostM. Gut healing natural resource’s role in management of celiac disease, a brief review.Res J Pharmacogn2021849110010.22127/RJP.2021.295436.1745
    [Google Scholar]
  79. TheethiraT.G. DennisM. Celiac disease and the gluten-free diet: Consequences and recommendations for improvement.Dig. Dis.201533217518210.1159/000369504 25925920
    [Google Scholar]
  80. CholewskiM. TomczykowaM. TomczykM. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids.Nutrients20181011166210.3390/nu10111662
    [Google Scholar]
  81. Lorente-CebriánS. CostaA.G.V. Navas-CarreteroS. ZabalaM. MartínezJ.A. Moreno-AliagaM.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: A review of the evidence.J. Physiol. Biochem.201369363365110.1007/s13105‑013‑0265‑4 23794360
    [Google Scholar]
  82. SkorackaK. HryhorowiczS. RychterA.M. Why are western diet and western lifestyle pro-inflammatory risk factors of celiac disease?Front. Nutr.20239105408910.3389/fnut.2022.1054089 36742009
    [Google Scholar]
  83. ElliL. BarisaniD. VairaV. How to manage celiac disease and gluten-free diet during the COVID-19 era: Proposals from a tertiary referral center in a high-incidence scenario.BMC Gastroenterol.202020138710.1186/s12876‑020‑01524‑4 33213379
    [Google Scholar]
  84. ZyskW. GłabskaD. GuzekD. Role of front-of-package gluten-free product labeling in a pair-matched study in women with and without celiac disease on a gluten-free diet.Nutrients201911239810.3390/nu11020398 30769829
    [Google Scholar]
  85. Suárez-GonzálezM. Bousoño GarcíaC. Jiménez TreviñoS. Iglesias CaboT. Díaz MartínJ.J. Influence of nutrition education in paediatric coeliac disease: impact of the role of the registered dietitian: A prospective, single‐arm intervention study.J. Hum. Nutr. Diet.202033677578510.1111/jhn.12800 32790023
    [Google Scholar]
  86. WarbeckC. DowdA.J. KronlundL. Feasibility and effects on the gut microbiota of a 12-week high-intensity interval training plus lifestyle education intervention on inactive adults with celiac disease.Appl. Physiol. Nutr. Metab.202146432533610.1139/apnm‑2020‑0459 32961065
    [Google Scholar]
  87. HakeemS. The relationship between gluten-free diet adherence, maternal stress, and quality of life in children diagnosed with celiac disease: A review.J Saudi Soc Food Nutr20231616069
    [Google Scholar]
  88. TabibianJ.H. Initial approaches: Lifestyle and dietary modifications.Digestive problems solved.ChamSpringer2023859510.1007/978‑3‑031‑16317‑3_12
    [Google Scholar]
  89. YuT. XieY. YuanJ. The nutritional intervention of resveratrol can effectively alleviate the intestinal inflammation associated with celiac disease induced by wheat gluten.Front. Immunol.20221387818610.3389/fimmu.2022.878186 35450077
    [Google Scholar]
  90. WilliamsonC.B. PizanoJ.M. A nutritional genomics approach to epigenetic influences on chronic disease. NolandD. DriskoJ. WagnerL. Integrative and functional medical nutrition therapy.Cham: Humana 20201710.1007/978‑3‑030‑30730‑1_17
    [Google Scholar]
  91. Escudero-HernándezC. MartínÁ. de Pedro AndrésR. Circulating dendritic cells from celiac disease patients display a gut‐homing profile and are differentially modulated by different gliadin‐derived peptides.Mol. Nutr. Food Res.2020646190098910.1002/mnfr.201900989 31970917
    [Google Scholar]
  92. KaragüzelE.Ö. ArslanF.C. UysalE.K. Blood levels of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha and cognitive functions in patients with obsessive compulsive disorder.Compr. Psychiatry201989616610.1016/j.comppsych.2018.11.013 30594753
    [Google Scholar]
  93. LiuW. RenJ. WuH. ZhangX. HanL. GuR. Inhibitory effects and action mechanism of five antioxidant peptides derived from wheat gluten on cells oxidative stress injury.Food Biosci.20235610323610.1016/j.fbio.2023.103236
    [Google Scholar]
  94. AbediE. PourmohammadiK. The effect of redox agents on conformation and structure characterization of gluten protein: An extensive review.Food Sci. Nutr.20208126301631910.1002/fsn3.1937 33312518
    [Google Scholar]
  95. Diaz-CastroJ. Muriel-NeyraC. Martin-MasotR. Moreno-FernandezJ. MaldonadoJ. NestaresT. Oxidative stress, DNA stability and evoked inflammatory signaling in young celiac patients consuming a gluten-free diet.Eur. J. Nutr.20205941577158410.1007/s00394‑019‑02013‑5 31144026
    [Google Scholar]
  96. AguilarE.C. Fernandes-BragaW. LeocádioP.C.L. Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE−/− mice fed a high-fat diet.Food Funct.20231473332334710.1039/D3FO00149K 36940107
    [Google Scholar]
  97. AL tamimi MI, Alfawaz HA, Bhat RS, Arzoo S, Soliman DA, AL khibary MAE. Comparative study on the exacerbating effects of casein-rich vs. gluten-rich diets on biochemical-induced features in rodent model of autism.J. Mol. Neurosci.202272235937110.1007/s12031‑021‑01950‑3
    [Google Scholar]
  98. AngeloS. D’. Gluten-free diets in athletes.J. Phys. Educ. Sport2020202330233610.7752/jpes.2020.s4314
    [Google Scholar]
  99. KandiV. VadakedathS. Clinical trials and clinical research: A comprehensive review.Cureus2023152e3507710.7759/cureus.35077 36938261
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013381075250829081219
Loading
/content/journals/cnf/10.2174/0115734013381075250829081219
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test