Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

(TPL), a diterpenoid epoxide, exhibits multifaceted anticancer properties, including the induction of diverse Programmed Cell Death (PCD) mechanisms, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Its ability to modulate signaling pathways, transcriptional activity, and interactions with noncoding RNAs underscores its potential as a versatile therapeutic agent. The apoptotic effects of TPL are well-documented across multiple cancer types. Recent evidence highlights TPL’s role in inducing pyroptosis, particularly through the Gasdermin-E (GSDM-E) pathway, which enhances tumor immunogenicity and stimulates antitumor immunity within the tumor microenvironment (TME). By disrupting mitochondrial membrane potential and inflammasome activation, TPL initiates pyroptotic cell death while modulating immune-related pathways, such as the NF-κB/NLRP3 inflammasome axis. Moreover, TPL’s ability to trigger autophagy and ferroptosis independently or in synergy with other PCD pathways enhances its therapeutic promise. The integration of TPL into cancer treatment protocols offers novel strategies, particularly in combination with immunotherapy, by enhancing immune effector responses and suppressing the pro-tumorigenic polarization of tumor-associated macrophages. However, the clinical translation of TPL faces challenges, including toxicity and the need for optimized delivery systems. Advanced research into TPL derivatives and innovative drug delivery frameworks, such as metal-organic frameworks, is crucial for mitigating side effects while preserving therapeutic efficacy. This review underscores TPL’s potential to redefine cancer therapy by harnessing its unique capacity to induce pyroptosis and other PCD forms, paving the way for its inclusion in next-generation oncological treatment paradigms.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013383144250730072151
2025-08-08
2026-01-09
Loading full text...

Full text loading...

References

  1. GuY. TangX. YangM. YangD. LiuJ. Transdermal drug delivery of Triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis.Int. J. Pharm.201955423524410.1016/j.ijpharm.2018.11.02430423415
    [Google Scholar]
  2. LiuQ. Triptolide and its expanding multiple pharmacological functions.Int. Immunopharmacol.201111337738310.1016/j.intimp.2011.01.01221255694
    [Google Scholar]
  3. BanerjeeS. ThayanithyV. SangwanV. MackenzieT.N. SalujaA.K. SubramanianS. Minnelide reduces tumor burden in preclinical models of osteosarcoma.Cancer Lett.2013335241242010.1016/j.canlet.2013.02.05023499892
    [Google Scholar]
  4. HussainM.S. AgrawalM. ShaikhN.K. SaraswatN. BahlG. BhatM.M. KhuranaN. BishtA.S. TufailM. KumarR. Beyond the genome: Deciphering the role of MALAT1 in breast cancer progression.Curr. Genomics202425534335710.2174/011389202930565624050304515439323624
    [Google Scholar]
  5. CarterB.Z. MakD.H. SchoberW.D. McQueenT. HarrisD. EstrovZ. EvansR.L. AndreeffM. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells.Blood2006108263063710.1182/blood‑2005‑09‑389816556893
    [Google Scholar]
  6. ChughR. SangwanV. PatilS.P. DudejaV. DawraR.K. BanerjeeS. SchumacherR.J. BlazarB.R. GeorgG.I. VickersS.M. SalujaA.K. A preclinical evaluation of Minnelide as a therapeutic agent against pancreatic cancer.Sci. Transl. Med.20124156156ra13910.1126/scitranslmed.300433423076356
    [Google Scholar]
  7. SkorupanN. AhmadM.I. SteinbergS.M. TrepelJ.B. CridebringD. HanH. Von HoffD.D. AlewineC. A phase II trial of the super-enhancer inhibitor Minnelide™ in advanced refractory adenosquamous carcinoma of the pancreas.Future Oncol.202218202475248110.2217/fon‑2021‑160935535581
    [Google Scholar]
  8. BorazanciE. SalujaA. GockermanJ. VelagapudiM. KornR. Von HoffD. GreenoE. First-in-human phase i study of minnelide in patients with advanced gastrointestinal cancers: Safety, pharmacokinetics, pharmacodynamics, and antitumor activity.Oncologist202429213214110.1093/oncolo/oyad27838169017
    [Google Scholar]
  9. HussainM.S. MujwarS. BabuM.A. GoyalK. ChellappanD.K. NegiP. SinghT.G. AliH. SinghS.K. DuaK. GuptaG. BalaramanA.K. Pharmacological, computational, and mechanistic insights into Triptolide’s role in targeting drug-resistant cancers.Naunyn Schmiedebergs Arch. Pharmacol.202539866509653010.1007/s00210‑025‑03809‑5
    [Google Scholar]
  10. LiJ. ZhangH. HuangW. QianH. LiY. TNF-α inhibitors with anti-oxidative stress activity from natural products.Curr. Top. Med. Chem.201212131408142110.2174/15680261280178443422650374
    [Google Scholar]
  11. TurnerN. BiganzoliL. Di LeoA. Continued value of adjuvant anthracyclines as treatment for early breast cancer.Lancet Oncol.2015167e362e36910.1016/S1470‑2045(15)00079‑026149888
    [Google Scholar]
  12. YokoyamaY. Borja-CachoD. DudejaV. DawraR. TalukdarR. ChughR. KlugC.A. VickersS. SalujaA. Mouse pancreatic cancer cells from krasg12d/P53−/− transgenic mice overexpress Heat Shock Protein 70 (Hsp70), and its inhibition by Triptolide decreases cell viability.Pancreas200837450310.1097/01.MPA.0000335422.35981.98
    [Google Scholar]
  13. WangY. ChenY. Molecular mechanism of anti-tumor effect by Triptolide in hematological malignancies.Curr. Signal Transduct. Ther.201381849010.2174/1574362411308010011
    [Google Scholar]
  14. AbdulHusseinA.H. Al-TaeeM.M. RadihZ.A. AljubooryD.S. MohammedZ.Q. HasheshT.S. RiadiY. HadrawiS.K. NajafiM. Mechanisms of cancer cell death induction by Triptolide.Biofactors202349471873510.1002/biof.194436876465
    [Google Scholar]
  15. LiX. LuQ. XieW. WangY. WangG. Anti-tumor effects of Triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling.Biochem. Biophys. Res. Commun.2018496244344910.1016/j.bbrc.2018.01.05229330051
    [Google Scholar]
  16. LiuS.P. WangG.D. DuX.J. WanG. WuJ.T. MiaoL.B. LiangQ.D. Triptolide inhibits the function of TNF-α in osteoblast differentiation by inhibiting the NF-κB signaling pathway.Exp. Ther. Med.20171432235224010.3892/etm.2017.474928962148
    [Google Scholar]
  17. PhillipsP.A. DudejaV. McCarrollJ.A. Borja-CachoD. DawraR.K. GrizzleW.E. VickersS.M. SalujaA.K. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70.Cancer Res.200767199407941610.1158/0008‑5472.CAN‑07‑107717909050
    [Google Scholar]
  18. DudejaV. ChughR. YokoyamaY. TalukdarR. Borja-CachoD. ZwolakP. DawraR. VickersS. SalujaA. Triptolide inhibits heat shock protein 70 (Hsp70) expression by inhibiting dna binding of heat shock factor-1.Pancreas200735440010.1097/01.mpa.0000297693.76686.8b
    [Google Scholar]
  19. ZhangF.Z. HoD.H.H. WongR.H.F. Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner.Oncotarget2018932223012231510.18632/oncotarget.2473729854279
    [Google Scholar]
  20. HussainM.S. GuptaG. AfzalM. AlqahtaniS.M. SamuelV.P. Hassan almalkiW. KazmiI. AlzareaS.I. SaleemS. DurejaH. SinghS.K. DuaK. ThangaveluL. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review.Pathol. Res. Pract.202325215490810.1016/j.prp.2023.15490837950931
    [Google Scholar]
  21. TanY. ChenQ. LiX. ZengZ. XiongW. LiG. Pyroptosis: A new paradigm of cell death for fighting against cancer.J Exp Clin Cancer Res202140153
    [Google Scholar]
  22. WuJ. WangL. XuJ. The role of pyroptosis in modulating the tumor immune microenvironment.Biomark. Res.20221014510.1186/s40364‑022‑00391‑335739593
    [Google Scholar]
  23. HussainM.S. GuptaG. GoyalA. ThapaR. almalkiW.H. KazmiI. AlzareaS.I. FuloriaS. MeenakshiD.U. JakhmolaV. PandeyM. SinghS.K. DuaK. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders.J. Biochem. Mol. Toxicol.20233711e2348210.1002/jbt.2348237530602
    [Google Scholar]
  24. KupchanS.M. SchubertR.M. Selective alkylation: A biomimetic reaction of the antileukemic Triptolides?Science1974185415379179310.1126/science.185.4153.7914843378
    [Google Scholar]
  25. LiZ. ZhouZ.L. MiaoZ.H. LinL.P. FengH.J. TongL.J. DingJ. LiY.C. Design and synthesis of novel C14-hydroxyl substituted Triptolide derivatives as potential selective antitumor agents.J. Med. Chem.200952165115512310.1021/jm900342g19637874
    [Google Scholar]
  26. AoyagiY. HitotsuyanagiY. HasudaT. FukayaH. TakeyaK. AiyamaR. MatsuzakiT. HashimotoS. Semisynthesis of C-ring modified Triptolide analogues and their cytotoxic activities.Bioorg. Med. Chem. Lett.20061671947194910.1016/j.bmcl.2005.12.09816455242
    [Google Scholar]
  27. KimS.T. KimS.Y. LeeJ. KimK. ParkS.H. ParkY.S. LimH.Y. KangW.K. ParkJ.O. Triptolide as a novel agent in pancreatic cancer: The validation using patient derived pancreatic tumor cell line.BMC Cancer2018181110310.1186/s12885‑018‑4995‑030419860
    [Google Scholar]
  28. ZhangY.Q. ShenY. LiaoM.M. MaoX. MiG.J. YouC. GuoQ.Y. LiW.J. WangX.Y. LinN. WebsterT.J. Galactosylated chitosan Triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms.Nanomedicine2019151869710.1016/j.nano.2018.09.00230244085
    [Google Scholar]
  29. IslamM.R. RaufA. AlashS. FakirM.N.H. ThufaG.K. SowaM.S. MukherjeeD. KumarH. HussainM.S. AljohaniA.S.M. ImranM. Al AbdulmonemW. ThiruvengadamR. ThiruvengadamM. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: Targeting insights into molecular signaling pathways.Med. Oncol.202441613410.1007/s12032‑024‑02333‑538703282
    [Google Scholar]
  30. ZhouZ.L. YangY.X. DingJ. LiY.C. MiaoZ.H. Triptolide: structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms.Nat. Prod. Rep.201229445747510.1039/c2np00088a22270059
    [Google Scholar]
  31. WeiY. WangY. XueH. LuanZ. LiuB. RenJ. Triptolide, a potential autophagy modulator.Chin. J. Integr. Med.201925323324010.1007/s11655‑018‑2847‑z30178091
    [Google Scholar]
  32. LiR. ZhangX. TianX. ShenC. ZhangQ. ZhangY. WangZ. WangF. TaoY. Triptolide inhibits tumor growth by induction of cellular senescence.Oncol. Rep.201737144244810.3892/or.2016.525827878302
    [Google Scholar]
  33. HouZY TongXP PengYB ZhangBK YanM Broad targeting of Triptolide to resistance and sensitization for cancer therapy.Biomed Pharmacother.201810477178010.1016/j.biopha.2018.05.088
    [Google Scholar]
  34. YangA. QinS. SchulteB.A. EthierS.P. TewK.D. WangG.Y. MYC inhibition depletes cancer stem-like cells in triple-negative breast cancer.Cancer Res.201777236641665010.1158/0008‑5472.CAN‑16‑345228951456
    [Google Scholar]
  35. GargB. GiriB. MajumderK. DudejaV. BanerjeeS. SalujaA. Modulation of post-translational modifications in β-catenin and LRP6 inhibits Wnt signaling pathway in pancreatic cancer.Cancer Lett.2017388647210.1016/j.canlet.2016.11.02627919787
    [Google Scholar]
  36. MaJ.X. SunY.L. YuY. ZhangJ. WuH.Y. YuX.F. Triptolide enhances the sensitivity of pancreatic cancer PANC-1 cells to gemcitabine by inhibiting TLR4/NF-κB signaling.Am. J. Transl. Res.20191163750376031312385
    [Google Scholar]
  37. FengJ. XuM. WangJ. ZhouS. LiuY. LiuS. HuangY. ChenY. ChenL. SongQ. GongJ. LuH. GaoX. ChenJ. Sequential delivery of nanoformulated α-mangostin and Triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer.Biomaterials202024111990710.1016/j.biomaterials.2020.11990732120315
    [Google Scholar]
  38. AcikgozE. TatarC. OktemG. Triptolide inhibits CD133 + /CD44 + colon cancer stem cell growth and migration through triggering apoptosis and represses epithelial-mesenchymal transition via downregulating expressions of snail, slug, and twist.J. Cell. Biochem.20201215-63313332410.1002/jcb.2960231904143
    [Google Scholar]
  39. JiangX. CaoG. GaoG. WangW. ZhaoJ. GaoC. Triptolide decreases tumor-associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor-derived CXCL12.J. Cell. Physiol.2021236119320410.1002/jcp.2983332495392
    [Google Scholar]
  40. YanchunM. YiW. LuW. YuQ. JianY. PengzhouK. TingY. HongyiL. FangW. XiaolongC. YongpingC. Triptolide prevents proliferation and migration of esophageal squamous cell cancer via MAPK/ERK signaling pathway.Eur. J. Pharmacol.2019851435110.1016/j.ejphar.2019.02.03030779917
    [Google Scholar]
  41. YangC.Y. LinC.K. LinG.J. HsiehC.C. HuangS.H. MaK.H. ShiehY.S. SytwuH.K. ChenY.W. Triptolide represses oral cancer cell proliferation, invasion, migration, and angiogenesis in co-inoculation with U937 cells.Clin. Oral Investig.201721141942710.1007/s00784‑016‑1808‑127073100
    [Google Scholar]
  42. ChanS.F. ChenY.Y. LinJ.J. LiaoC.L. KoY.C. TangN.Y. KuoC.L. LiuK.C. ChungJ.G. Triptolide induced cell death through apoptosis and autophagy in murine leukemia WEHI-3 cells in vitro and promoting immune responses in WEHI-3 generated leukemia mice in vivo.Environ. Toxicol.201732255056810.1002/tox.2225926990902
    [Google Scholar]
  43. WangJ. ZhangZ.Q. LiF.Q. ChenJ.N. GongX. CaoB.B. WangW. Triptolide interrupts rRNA synthesis and induces the RPL23-MDM2-p53 pathway to repress lung cancer cells.Oncol. Rep.20204361863187410.3892/or.2020.756932236588
    [Google Scholar]
  44. RenoT.A. KimJ.Y. RazD.J. Triptolide inhibits lung cancer cell migration, invasion, and metastasis.Ann. Thorac. Surg.201510051817182510.1016/j.athoracsur.2015.05.07426298168
    [Google Scholar]
  45. HamdiAM JiangZZ GuerramM YousefBA HassanHM LingJW Biochemical and computational evaluation of Triptolide-induced cytotoxicity against NSCLC.Biomed Pharmacother.20181031557156610.1016/j.biopha.2018.04.198
    [Google Scholar]
  46. ZhuJ. WangH. ChenF. LvH. XuZ. FuJ. HouY. XuY. PiJ. Triptolide enhances chemotherapeutic efficacy of antitumor drugs in non-small-cell lung cancer cells by inhibiting Nrf2-ARE activity.Toxicol. Appl. Pharmacol.20183581910.1016/j.taap.2018.09.00430196066
    [Google Scholar]
  47. LiS.G. ShiQ.W. YuanL. QinL. WangY. MiaoY.Q. ChenZ. LingC.Q. QinW. C-Myc-dependent repression of two oncogenic miRNA clusters contributes to Triptolide-induced cell death in hepatocellular carcinoma cells.J. Exp. Clin. Cancer Res.20183715110.1186/s13046‑018‑0698‑229523159
    [Google Scholar]
  48. SunY.Y. XiaoL. WangD. JiY.C. YangY.P. MaR. ChenX.H. Triptolide inhibits viability and induces apoptosis in liver cancer cells through activation of the tumor suppressor gene p53.Int. J. Oncol.201750384785210.3892/ijo.2017.385028098861
    [Google Scholar]
  49. WangR. MaX. SuS. LiuY. Triptolide antagonized the cisplatin resistance in human ovarian cancer cell line A2780/CP70 via hsa-mir-6751.Future Med. Chem.201810161947195510.4155/fmc‑2018‑010829966441
    [Google Scholar]
  50. YuanS WangL ChenX FanB YuanQ ZhangH Triptolide inhibits the migration and invasion of human prostate cancer cells via Caveolin-1/CD147/MMPs pathway.Biomed Pharmacother.2016841776178210.1016/j.biopha.2016.10.104
    [Google Scholar]
  51. WangC.Y. BaiX.Y. WangC.H. Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development.Am. J. Chin. Med.201442354355910.1142/S0192415X1450035924871650
    [Google Scholar]
  52. YanP. SunX. Triptolide.J. Cancer Res. Ther.201814S271S27510.4103/0973‑1482.23534029970675
    [Google Scholar]
  53. PefanisE. WangJ. RothschildG. LimJ. KazadiD. SunJ. FederationA. ChaoJ. ElliottO. LiuZ.P. EconomidesA.N. BradnerJ.E. RabadanR. BasuU. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity.Cell2015161477478910.1016/j.cell.2015.04.03425957685
    [Google Scholar]
  54. QinG. LiP. XueZ. Triptolide induces protective autophagy and apoptosis in human cervical cancer cells by downregulating Akt/mTOR activation.Oncol. Lett.20181633929393410.3892/ol.2018.907430128010
    [Google Scholar]
  55. LiC. ZhangB. LvW. LaiC. ChenZ. WangR. LongX. FengX. Triptolide inhibits cell growth and GRP78 protein expression but induces cell apoptosis in original and radioresistant NPC cells.Oncotarget2016731495884959610.18632/oncotarget.1041227391061
    [Google Scholar]
  56. XieC.Q. ZhouP. ZuoJ. LiX. ChenY. ChenJ.W. Triptolide exerts pro-apoptotic and cell cycle arrest activity on drug-resistant human lung cancer A549/Taxol cells via modulation of MAPK and PI3K/Akt signaling pathways.Oncol. Lett.20161253586359010.3892/ol.2016.509927900040
    [Google Scholar]
  57. Eisenberg-LernerA. BialikS. SimonH-U. KimchiA. Life and death partners: Apoptosis, autophagy and the cross-talk between them.Cell Death Differ.200916796697510.1038/cdd.2009.3319325568
    [Google Scholar]
  58. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  59. KongJ. WangL. RenL. YanY. ChengY. HuangZ. ShenF. Triptolide induces mitochondria-mediated apoptosis of Burkitt’s lymphoma cell via deacetylation of GSK-3β by increased SIRT3 expression.Toxicol. Appl. Pharmacol.201834211310.1016/j.taap.2018.01.01129407771
    [Google Scholar]
  60. ZiaeiS. HalabyR. Immunosuppressive, anti-inflammatory and anti-cancer properties of Triptolide: A mini review.Avicenna J. Phytomed.20166214916427222828
    [Google Scholar]
  61. XiaowenH. YiS. Triptolide sensitizes TRAIL-induced apoptosis in prostate cancer cells via p53-mediated DR5 up-regulation.Mol. Biol. Rep.20123998763877010.1007/s11033‑012‑1737‑222707197
    [Google Scholar]
  62. WangB.Y. CaoJ. ChenJ.W. LiuQ.Y. Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2.Med. Oncol.2014311127010.1007/s12032‑014‑0270‑725280518
    [Google Scholar]
  63. XiongJ. SuT. QuZ. YangQ. WangY. LiJ. ZhouS. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer.Oncotarget2016717239332394610.18632/oncotarget.820727004407
    [Google Scholar]
  64. RenT. TangY.J. WangM.F. WangH.S. LiuY. QianX. ChangC. ChenM.W. Triptolide induces apoptosis through the calcium/calmodulin-dependent protein kinase kinaseβ/AMP-activated protein kinase signaling pathway in non-small cell lung cancer cells.Oncol. Rep.20204452288229610.3892/or.2020.776333000264
    [Google Scholar]
  65. WangJ GaoX RenD ZhangM ZhangP LuS Triptolide induces atrophy of myotubes by triggering IRS-1 degradation and activating the FoxO3 pathway.Toxicol In Vitro 20206510479310.1016/j.tiv.2020.104793
    [Google Scholar]
  66. JiangX.H. WongB.C.Y. LinM.C.M. ZhuG.H. KungH.F. JiangS.H. YangD. LamS.K. Functional p53 is required for Triptolide-induced apoptosis and AP-1 and nuclear factor-κB activation in gastric cancer cells.Oncogene200120558009801810.1038/sj.onc.120498111753684
    [Google Scholar]
  67. BanerjeeS. SangwanV. McGinnO. ChughR. DudejaV. VickersS.M. SalujaA.K. Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1.J. Biol. Chem.201328847339273393810.1074/jbc.M113.50098324129563
    [Google Scholar]
  68. MacKenzieT.N. MujumdarN. BanerjeeS. SangwanV. SarverA. VickersS. SubramanianS. SalujaA.K. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation.Mol. Cancer Ther.20131271266127510.1158/1535‑7163.MCT‑12‑123123635652
    [Google Scholar]
  69. WangW. LiX. SunW. ZhangL. ZhangM. HongB. LvG. Triptolide triggers the apoptosis of pancreatic cancer cells via the downregulation of Decoy receptor 3 expression.J. Cancer Res. Clin. Oncol.201213891597160510.1007/s00432‑012‑1235‑x22581262
    [Google Scholar]
  70. YangC.Y. LinC.K. HsiehC.C. TsaoC.H. LinC.S. PengB. ChenY.T. TingC.C. ChangW.C. LinG.J. SytwuH.K. ChenY.W. Anti-oral cancer effects of Triptolide by downregulation of DcR3 in vitro, in vivo, and in preclinical patient-derived tumor xenograft model.Head Neck20194151260126910.1002/hed.2555430537218
    [Google Scholar]
  71. YuanC. LiaoY. LiaoS. HuangM. LiD. WuW. QuanY. LiL. YuX. SiW. Triptolide inhibits the progression of Glioblastoma U251 cells via targeting PROX1.Front. Oncol.202313107764010.3389/fonc.2023.107764036969058
    [Google Scholar]
  72. KroschT.C.K. SangwanV. BanerjeeS. MujumdarN. DudejaV. SalujaA.K. VickersS.M. Triptolide-mediated cell death in neuroblastoma occurs by both apoptosis and autophagy pathways and results in inhibition of nuclear factor–kappa B activity.Am. J. Surg.2013205438739610.1016/j.amjsurg.2013.01.00823428154
    [Google Scholar]
  73. ZhaoF. HuangW. ZhangZ. MaoL. HanY. YanJ. LeiM. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells.Oncotarget2016755366538210.18632/oncotarget.678326734992
    [Google Scholar]
  74. ZhengZ. YanG. XiN. XuX. ZengQ. WuY. ZhengY. ZhangG. WangX. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR Pathway.Anticancer. Agents Med. Chem.202323131596160410.2174/187152062366623041313041737056067
    [Google Scholar]
  75. CaiJ. YiM. TanY. LiX. LiG. ZengZ. Natural product Triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-II.J Experi Clin Cancer Res. CR (East Lansing Mich.)20214019034108030
    [Google Scholar]
  76. HanC. PeiH. ShengY. WangJ. ZhouX. LiW. GuoL. KongY. YangY. Toxicological mechanism of Triptolide-induced liver injury: Caspase3-GSDME-mediated pyroptosis of Kupffer cell.Ecotoxicol. Environ. Saf.202325811496310.1016/j.ecoenv.2023.11496337130490
    [Google Scholar]
  77. LvC. ChengT. ZhangB. SunK. LuK. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway.Ren. Fail.2023451216510310.1080/0886022X.2023.216510336938748
    [Google Scholar]
  78. WuX. ChenS. HuangK. LinG. Triptolide promotes ferroptosis by suppressing Nrf2 to overcome leukemia cell resistance to doxorubicin.Mol. Med. Rep.20232712736453238
    [Google Scholar]
  79. LiuX. ChenC. HanD. ZhouW. CuiY. TangX. XiaoC. WangY. GaoY. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of Triptolide-induced cardiotoxicity.Oxid. Med. Cell. Longev.2022202211610.1155/2022/319260735757509
    [Google Scholar]
  80. LiM. LiuY. NieX. MaB. MaY. HouY. YangY. XuJ. WangY. S100A4 promotes BCG-induced pyroptosis of macrophages by activating the NF-κB/NLRP3 inflammasome signaling pathway.Int. J. Mol. Sci.202324161270910.3390/ijms241612709
    [Google Scholar]
  81. JinH. XieW. HeM. LiH. XiaoW. LiY. Pyroptosis and sarcopenia: Frontier perspective of disease mechanism.Cells2022117107810.3390/cells1107107835406642
    [Google Scholar]
  82. WangS. GuoQ. XuR. LinP. DengG. XiaX. Combination of ferroptosis and pyroptosis dual induction by Triptolide nano-MOFs for immunotherapy of melanoma.J. Nanobiotechnology202321138310.1186/s12951‑023‑02146‑037858186
    [Google Scholar]
  83. QiuH. ZhangX. YuH. GaoR. ShiJ. ShenT. Identification of potential targets of Triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics.Bioengineered20211214304431910.1080/21655979.2021.194552234348580
    [Google Scholar]
  84. HuM. DengF. SongX. ZhaoH. YanF. The crosstalk between immune cells and tumor pyroptosis: Advancing cancer immunotherapy strategies.J. Exp. Clin. Cancer Res.202443119010.1186/s13046‑024‑03115‑738987821
    [Google Scholar]
  85. WangH. WangT. YanS. TangJ. ZhangY. WangL. XuH. TuC. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: From mechanisms to clinical implication.Mol. Cancer202423126810.1186/s12943‑024‑02183‑939614288
    [Google Scholar]
  86. YouH. WangL. MengH. HuangC. FangG. LiJ. Pyroptosis: Shedding light on the mechanisms and links with cancers.Front. Immunol.202314129088510.3389/fimmu.2023.129088538016064
    [Google Scholar]
  87. NiL. ChenD. ZhaoY. YeR. FangP. Unveiling the flames: Macrophage pyroptosis and its crucial role in liver diseases.Front. Immunol.202415133812510.3389/fimmu.2024.133812538380334
    [Google Scholar]
  88. BaoS. YiM. XiangB. ChenP. Antitumor mechanisms and future clinical applications of the natural product Triptolide.Cancer Cell Int.202424115010.1186/s12935‑024‑03336‑y38678240
    [Google Scholar]
  89. ZhangH. ZhangZ. JiangM. WangS. WangJ. WangH. LiuY. WangY. FuJ. WangP. MiaoM. KimM.O. FangX. Triptolide suppresses melanoma cell growth in vitro and in vivo through the Src-ERK signaling pathway.J. Cancer202415196345635410.7150/jca.10084039513117
    [Google Scholar]
  90. WangX. ZengH. ZhuX. XuD. TianQ. WangC. ZhaoL. ZhaoJ. MiaoM. WuX. TP-CSO: A Triptolide prodrug for pancreatic cancer treatment.Molecules20222712368610.3390/molecules2712368635744811
    [Google Scholar]
  91. LiY. ZhouL. ZhuB. XiangJ. DuJ. HeM. FanX. ZhangP. ZengR. GongP. A glutathione-activated carrier-free nanodrug of Triptolide as a trackable drug delivery system for monitoring and improving tumor therapy.Mater. Chem. Front.20215145312531810.1039/D1QM00400J
    [Google Scholar]
  92. NoelP. Von HoffD.D. SalujaA.K. VelagapudiM. BorazanciE. HanH. Triptolide and its derivatives as cancer therapies.Trends Pharmacol. Sci.201940532734110.1016/j.tips.2019.03.00230975442
    [Google Scholar]
  93. XuL PanJ ChenQ YuQ ChenH XuH In vivo evaluation of the safety of Triptolide-loaded hydrogel-thickened microemulsion.Food Chem Toxicol20084612379210.1016/j.fct.2008.09.065
    [Google Scholar]
  94. ShiJ.F. LuoY.Y. LiJ.X. LuoR.F. ChenL. LiJ. ZhangJ.M. FuC.M. Research progress on anti-tumor effects and mechanisms of Triptolide and its combined application.Zhongguo Zhongyao Zazhi. J Chinese Materia Medica201944163391339831602900
    [Google Scholar]
  95. LiZ. YangG. HanL. WangR. GongC. YuanY. Sorafenib and Triptolide loaded cancer cell-platelet hybrid membrane-camouflaged liquid crystalline lipid nanoparticles for the treatment of hepatocellular carcinoma.J. Nanobiotechnology202119136010.1186/s12951‑021‑01095‑w34749742
    [Google Scholar]
  96. BanerjeeS. SangwanV. McGinnO. ChughR. DudejaV. VickersS.M. SalujaA.K. Correction: Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1.J. Biol. Chem.2019294271073910.1074/jbc.AAC119.00984431278158
    [Google Scholar]
  97. LiX.J. JiangZ.Z. ZhangL. Triptolide: Progress on research in pharmacodynamics and toxicology.J. Ethnopharmacol.20141551677910.1016/j.jep.2014.06.00624933225
    [Google Scholar]
  98. XiC PengS WuZ ZhouQ ZhouJ Toxicity of Triptolide and the molecular mechanisms involved.Biomed Pharmacother.20179053154110.1016/j.biopha.2017.04.003
    [Google Scholar]
  99. XuH. LiuB. Triptolide-targeted delivery methods.Eur. J. Med. Chem.201916434235110.1016/j.ejmech.2018.12.05830605832
    [Google Scholar]
  100. SunR. DaiJ. LingM. YuL. YuZ. TangL. Delivery of Triptolide: A combination of traditional Chinese medicine and nanomedicine.J. Nanobiotechnology202220119410.1186/s12951‑022‑01389‑735443712
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013383144250730072151
Loading
/content/journals/cnf/10.2174/0115734013383144250730072151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test