Skip to content
2000
image of Triptolide-induced Pyroptosis: A Promising Strategy for Cancer Therapy

Abstract

(TPL), a diterpenoid epoxide, exhibits multifaceted anticancer properties, including the induction of diverse Programmed Cell Death (PCD) mechanisms, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Its ability to modulate signaling pathways, transcriptional activity, and interactions with noncoding RNAs underscores its potential as a versatile therapeutic agent. The apoptotic effects of TPL are well-documented across multiple cancer types. Recent evidence highlights TPL’s role in inducing pyroptosis, particularly through the Gasdermin-E (GSDM-E) pathway, which enhances tumor immunogenicity and stimulates antitumor immunity within the tumor microenvironment (TME). By disrupting mitochondrial membrane potential and inflammasome activation, TPL initiates pyroptotic cell death while modulating immune-related pathways, such as the NF-κB/NLRP3 inflammasome axis. Moreover, TPL’s ability to trigger autophagy and ferroptosis independently or in synergy with other PCD pathways enhances its therapeutic promise. The integration of TPL into cancer treatment protocols offers novel strategies, particularly in combination with immunotherapy, by enhancing immune effector responses and suppressing the pro-tumorigenic polarization of tumor-associated macrophages. However, the clinical translation of TPL faces challenges, including toxicity and the need for optimized delivery systems. Advanced research into TPL derivatives and innovative drug delivery frameworks, such as metal-organic frameworks, is crucial for mitigating side effects while preserving therapeutic efficacy. This review underscores TPL’s potential to redefine cancer therapy by harnessing its unique capacity to induce pyroptosis and other PCD forms, paving the way for its inclusion in next-generation oncological treatment paradigms.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013383144250730072151
2025-08-08
2025-09-29
Loading full text...

Full text loading...

References

  1. Gu Y. Tang X. Yang M. Yang D. Liu J. Transdermal drug delivery of Triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. Int. J. Pharm. 2019 554 235 244 10.1016/j.ijpharm.2018.11.024 30423415
    [Google Scholar]
  2. Liu Q. Triptolide and its expanding multiple pharmacological functions. Int. Immunopharmacol. 2011 11 3 377 383 10.1016/j.intimp.2011.01.012 21255694
    [Google Scholar]
  3. Banerjee S. Thayanithy V. Sangwan V. Mackenzie T.N. Saluja A.K. Subramanian S. Minnelide reduces tumor burden in preclinical models of osteosarcoma. Cancer Lett. 2013 335 2 412 420 10.1016/j.canlet.2013.02.050 23499892
    [Google Scholar]
  4. Hussain M.S. Agrawal M. Shaikh N.K. Saraswat N. Bahl G. Bhat M.M. Khurana N. Bisht A.S. Tufail M. Kumar R. Beyond the genome: Deciphering the role of MALAT1 in breast cancer progression. Curr. Genomics 2024 25 5 343 357 10.2174/0113892029305656240503045154 39323624
    [Google Scholar]
  5. Carter B.Z. Mak D.H. Schober W.D. McQueen T. Harris D. Estrov Z. Evans R.L. Andreeff M. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood 2006 108 2 630 637 10.1182/blood‑2005‑09‑3898 16556893
    [Google Scholar]
  6. Chugh R. Sangwan V. Patil S.P. Dudeja V. Dawra R.K. Banerjee S. Schumacher R.J. Blazar B.R. Georg G.I. Vickers S.M. Saluja A.K. A preclinical evaluation of Minnelide as a therapeutic agent against pancreatic cancer. Sci. Transl. Med. 2012 4 156 156ra139 10.1126/scitranslmed.3004334 23076356
    [Google Scholar]
  7. Skorupan N. Ahmad M.I. Steinberg S.M. Trepel J.B. Cridebring D. Han H. Von Hoff D.D. Alewine C. A phase II trial of the super-enhancer inhibitor Minnelide™ in advanced refractory adenosquamous carcinoma of the pancreas. Future Oncol. 2022 18 20 2475 2481 10.2217/fon‑2021‑1609 35535581
    [Google Scholar]
  8. Borazanci E. Saluja A. Gockerman J. Velagapudi M. Korn R. Von Hoff D. Greeno E. First-in-human phase i study of minnelide in patients with advanced gastrointestinal cancers: Safety, pharmacokinetics, pharmacodynamics, and antitumor activity. Oncologist 2024 29 2 132 141 10.1093/oncolo/oyad278 38169017
    [Google Scholar]
  9. Hussain M.S. Mujwar S. Babu M.A. Goyal K. Chellappan D.K. Negi P. Singh T.G. Ali H. Singh S.K. Dua K. Gupta G. Balaraman A.K. Pharmacological, computational, and mechanistic insights into Triptolide’s role in targeting drug-resistant cancers. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03809‑5
    [Google Scholar]
  10. Li J. Zhang H. Huang W. Qian H. Li Y. TNF-α inhibitors with anti-oxidative stress activity from natural products. Curr. Top. Med. Chem. 2012 12 13 1408 1421 10.2174/156802612801784434 22650374
    [Google Scholar]
  11. Turner N. Biganzoli L. Di Leo A. Continued value of adjuvant anthracyclines as treatment for early breast cancer. Lancet Oncol. 2015 16 7 e362 e369 10.1016/S1470‑2045(15)00079‑0 26149888
    [Google Scholar]
  12. Yokoyama Y. Borja-Cacho D. Dudeja V. Dawra R. Talukdar R. Chugh R. Klug C.A. Vickers S. Saluja A. Mouse pancreatic cancer cells from krasg12d/P53−/− transgenic mice overexpress Heat Shock Protein 70 (Hsp70), and its inhibition by Triptolide decreases cell viability. Pancreas 2008 37 4 503 10.1097/01.MPA.0000335422.35981.98
    [Google Scholar]
  13. Wang Y. Chen Y. Molecular mechanism of anti-tumor effect by Triptolide in hematological malignancies. Curr. Signal Transduct. Ther. 2013 8 1 84 90 10.2174/1574362411308010011
    [Google Scholar]
  14. AbdulHussein A.H. Al-Taee M.M. Radih Z.A. Aljuboory D.S. Mohammed Z.Q. Hashesh T.S. Riadi Y. Hadrawi S.K. Najafi M. Mechanisms of cancer cell death induction by Triptolide. Biofactors 2023 49 4 718 735 10.1002/biof.1944 36876465
    [Google Scholar]
  15. Li X. Lu Q. Xie W. Wang Y. Wang G. Anti-tumor effects of Triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling. Biochem. Biophys. Res. Commun. 2018 496 2 443 449 10.1016/j.bbrc.2018.01.052 29330051
    [Google Scholar]
  16. Liu S.P. Wang G.D. Du X.J. Wan G. Wu J.T. Miao L.B. Liang Q.D. Triptolide inhibits the function of TNF-α in osteoblast differentiation by inhibiting the NF-κB signaling pathway. Exp. Ther. Med. 2017 14 3 2235 2240 10.3892/etm.2017.4749 28962148
    [Google Scholar]
  17. Phillips P.A. Dudeja V. McCarroll J.A. Borja-Cacho D. Dawra R.K. Grizzle W.E. Vickers S.M. Saluja A.K. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res. 2007 67 19 9407 9416 10.1158/0008‑5472.CAN‑07‑1077 17909050
    [Google Scholar]
  18. Dudeja V. Chugh R. Yokoyama Y. Talukdar R. Borja-Cacho D. Zwolak P. Dawra R. Vickers S. Saluja A. Triptolide inhibits heat shock protein 70 (Hsp70) expression by inhibiting dna binding of heat shock factor-1. Pancreas 2007 35 4 400 10.1097/01.mpa.0000297693.76686.8b
    [Google Scholar]
  19. Zhang F.Z. Ho D.H.H. Wong R.H.F. Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner. Oncotarget 2018 9 32 22301 22315 10.18632/oncotarget.24737 29854279
    [Google Scholar]
  20. Hussain M.S. Gupta G. Afzal M. Alqahtani S.M. Samuel V.P. Hassan almalki W. Kazmi I. Alzarea S.I. Saleem S. Dureja H. Singh S.K. Dua K. Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol. Res. Pract. 2023 252 154908 10.1016/j.prp.2023.154908 37950931
    [Google Scholar]
  21. Tan Y. Chen Q. Li X. Zeng Z. Xiong W. Li G. Pyroptosis: A new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res 2021 40 153
    [Google Scholar]
  22. Wu J. Wang L. Xu J. The role of pyroptosis in modulating the tumor immune microenvironment. Biomark. Res. 2022 10 1 45 10.1186/s40364‑022‑00391‑3 35739593
    [Google Scholar]
  23. Hussain M.S. Gupta G. Goyal A. Thapa R. almalki W.H. Kazmi I. Alzarea S.I. Fuloria S. Meenakshi D.U. Jakhmola V. Pandey M. Singh S.K. Dua K. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J. Biochem. Mol. Toxicol. 2023 37 11 e23482 10.1002/jbt.23482 37530602
    [Google Scholar]
  24. Kupchan S.M. Schubert R.M. Selective alkylation: A biomimetic reaction of the antileukemic Triptolides? Science 1974 185 4153 791 793 10.1126/science.185.4153.791 4843378
    [Google Scholar]
  25. Li Z. Zhou Z.L. Miao Z.H. Lin L.P. Feng H.J. Tong L.J. Ding J. Li Y.C. Design and synthesis of novel C14-hydroxyl substituted Triptolide derivatives as potential selective antitumor agents. J. Med. Chem. 2009 52 16 5115 5123 10.1021/jm900342g 19637874
    [Google Scholar]
  26. Aoyagi Y. Hitotsuyanagi Y. Hasuda T. Fukaya H. Takeya K. Aiyama R. Matsuzaki T. Hashimoto S. Semisynthesis of C-ring modified Triptolide analogues and their cytotoxic activities. Bioorg. Med. Chem. Lett. 2006 16 7 1947 1949 10.1016/j.bmcl.2005.12.098 16455242
    [Google Scholar]
  27. Kim S.T. Kim S.Y. Lee J. Kim K. Park S.H. Park Y.S. Lim H.Y. Kang W.K. Park J.O. Triptolide as a novel agent in pancreatic cancer: The validation using patient derived pancreatic tumor cell line. BMC Cancer 2018 18 1 1103 10.1186/s12885‑018‑4995‑0 30419860
    [Google Scholar]
  28. Zhang Y.Q. Shen Y. Liao M.M. Mao X. Mi G.J. You C. Guo Q.Y. Li W.J. Wang X.Y. Lin N. Webster T.J. Galactosylated chitosan Triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine 2019 15 1 86 97 10.1016/j.nano.2018.09.002 30244085
    [Google Scholar]
  29. Islam M.R. Rauf A. Alash S. Fakir M.N.H. Thufa G.K. Sowa M.S. Mukherjee D. Kumar H. Hussain M.S. Aljohani A.S.M. Imran M. Al Abdulmonem W. Thiruvengadam R. Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: Targeting insights into molecular signaling pathways. Med. Oncol. 2024 41 6 134 10.1007/s12032‑024‑02333‑5 38703282
    [Google Scholar]
  30. Zhou Z.L. Yang Y.X. Ding J. Li Y.C. Miao Z.H. Triptolide: structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms. Nat. Prod. Rep. 2012 29 4 457 475 10.1039/c2np00088a 22270059
    [Google Scholar]
  31. Wei Y. Wang Y. Xue H. Luan Z. Liu B. Ren J. Triptolide, a potential autophagy modulator. Chin. J. Integr. Med. 2019 25 3 233 240 10.1007/s11655‑018‑2847‑z 30178091
    [Google Scholar]
  32. Li R. Zhang X. Tian X. Shen C. Zhang Q. Zhang Y. Wang Z. Wang F. Tao Y. Triptolide inhibits tumor growth by induction of cellular senescence. Oncol. Rep. 2017 37 1 442 448 10.3892/or.2016.5258 27878302
    [Google Scholar]
  33. Hou ZY Tong XP Peng YB Zhang BK Yan M Broad targeting of Triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother. 2018 104 771 780 10.1016/j.biopha.2018.05.088
    [Google Scholar]
  34. Yang A. Qin S. Schulte B.A. Ethier S.P. Tew K.D. Wang G.Y. MYC inhibition depletes cancer stem-like cells in triple-negative breast cancer. Cancer Res. 2017 77 23 6641 6650 10.1158/0008‑5472.CAN‑16‑3452 28951456
    [Google Scholar]
  35. Garg B. Giri B. Majumder K. Dudeja V. Banerjee S. Saluja A. Modulation of post-translational modifications in β-catenin and LRP6 inhibits Wnt signaling pathway in pancreatic cancer. Cancer Lett. 2017 388 64 72 10.1016/j.canlet.2016.11.026 27919787
    [Google Scholar]
  36. Ma J.X. Sun Y.L. Yu Y. Zhang J. Wu H.Y. Yu X.F. Triptolide enhances the sensitivity of pancreatic cancer PANC-1 cells to gemcitabine by inhibiting TLR4/NF-κB signaling. Am. J. Transl. Res. 2019 11 6 3750 3760 31312385
    [Google Scholar]
  37. Feng J. Xu M. Wang J. Zhou S. Liu Y. Liu S. Huang Y. Chen Y. Chen L. Song Q. Gong J. Lu H. Gao X. Chen J. Sequential delivery of nanoformulated α-mangostin and Triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials 2020 241 119907 10.1016/j.biomaterials.2020.119907 32120315
    [Google Scholar]
  38. Acikgoz E. Tatar C. Oktem G. Triptolide inhibits CD133 + /CD44 + colon cancer stem cell growth and migration through triggering apoptosis and represses epithelial‐mesenchymal transition via downregulating expressions of snail, slug, and twist. J. Cell. Biochem. 2020 121 5-6 3313 3324 10.1002/jcb.29602 31904143
    [Google Scholar]
  39. Jiang X. Cao G. Gao G. Wang W. Zhao J. Gao C. Triptolide decreases tumor‐associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor‐derived CXCL12. J. Cell. Physiol. 2021 236 1 193 204 10.1002/jcp.29833 32495392
    [Google Scholar]
  40. Yanchun M. Yi W. Lu W. Yu Q. Jian Y. Pengzhou K. Ting Y. Hongyi L. Fang W. Xiaolong C. Yongping C. Triptolide prevents proliferation and migration of esophageal squamous cell cancer via MAPK/ERK signaling pathway. Eur. J. Pharmacol. 2019 851 43 51 10.1016/j.ejphar.2019.02.030 30779917
    [Google Scholar]
  41. Yang C.Y. Lin C.K. Lin G.J. Hsieh C.C. Huang S.H. Ma K.H. Shieh Y.S. Sytwu H.K. Chen Y.W. Triptolide represses oral cancer cell proliferation, invasion, migration, and angiogenesis in co-inoculation with U937 cells. Clin. Oral Investig. 2017 21 1 419 427 10.1007/s00784‑016‑1808‑1 27073100
    [Google Scholar]
  42. Chan S.F. Chen Y.Y. Lin J.J. Liao C.L. Ko Y.C. Tang N.Y. Kuo C.L. Liu K.C. Chung J.G. Triptolide induced cell death through apoptosis and autophagy in murine leukemia WEHI‐3 cells in vitro and promoting immune responses in WEHI‐3 generated leukemia mice in vivo. Environ. Toxicol. 2017 32 2 550 568 10.1002/tox.22259 26990902
    [Google Scholar]
  43. Wang J. Zhang Z.Q. Li F.Q. Chen J.N. Gong X. Cao B.B. Wang W. Triptolide interrupts rRNA synthesis and induces the RPL23‑MDM2‑p53 pathway to repress lung cancer cells. Oncol. Rep. 2020 43 6 1863 1874 10.3892/or.2020.7569 32236588
    [Google Scholar]
  44. Reno T.A. Kim J.Y. Raz D.J. Triptolide inhibits lung cancer cell migration, invasion, and metastasis. Ann. Thorac. Surg. 2015 100 5 1817 1825 10.1016/j.athoracsur.2015.05.074 26298168
    [Google Scholar]
  45. Hamdi AM Jiang ZZ Guerram M Yousef BA Hassan HM Ling JW Biochemical and computational evaluation of Triptolide-induced cytotoxicity against NSCLC. Biomed Pharmacother. 2018 103 1557 1566 10.1016/j.biopha.2018.04.198
    [Google Scholar]
  46. Zhu J. Wang H. Chen F. Lv H. Xu Z. Fu J. Hou Y. Xu Y. Pi J. Triptolide enhances chemotherapeutic efficacy of antitumor drugs in non-small-cell lung cancer cells by inhibiting Nrf2-ARE activity. Toxicol. Appl. Pharmacol. 2018 358 1 9 10.1016/j.taap.2018.09.004 30196066
    [Google Scholar]
  47. Li S.G. Shi Q.W. Yuan L. Qin L. Wang Y. Miao Y.Q. Chen Z. Ling C.Q. Qin W. C-Myc-dependent repression of two oncogenic miRNA clusters contributes to Triptolide-induced cell death in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 2018 37 1 51 10.1186/s13046‑018‑0698‑2 29523159
    [Google Scholar]
  48. Sun Y.Y. Xiao L. Wang D. Ji Y.C. Yang Y.P. Ma R. Chen X.H. Triptolide inhibits viability and induces apoptosis in liver cancer cells through activation of the tumor suppressor gene p53. Int. J. Oncol. 2017 50 3 847 852 10.3892/ijo.2017.3850 28098861
    [Google Scholar]
  49. Wang R. Ma X. Su S. Liu Y. Triptolide antagonized the cisplatin resistance in human ovarian cancer cell line A2780/CP70 via hsa-mir-6751. Future Med. Chem. 2018 10 16 1947 1955 10.4155/fmc‑2018‑0108 29966441
    [Google Scholar]
  50. Yuan S Wang L Chen X Fan B Yuan Q Zhang H Triptolide inhibits the migration and invasion of human prostate cancer cells via Caveolin-1/CD147/MMPs pathway. Biomed Pharmacother. 2016 84 1776 1782 10.1016/j.biopha.2016.10.104
    [Google Scholar]
  51. Wang C.Y. Bai X.Y. Wang C.H. Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development. Am. J. Chin. Med. 2014 42 3 543 559 10.1142/S0192415X14500359 24871650
    [Google Scholar]
  52. Yan P. Sun X. Triptolide. J. Cancer Res. Ther. 2018 14 S271 S275 10.4103/0973‑1482.235340 29970675
    [Google Scholar]
  53. Pefanis E. Wang J. Rothschild G. Lim J. Kazadi D. Sun J. Federation A. Chao J. Elliott O. Liu Z.P. Economides A.N. Bradner J.E. Rabadan R. Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2015 161 4 774 789 10.1016/j.cell.2015.04.034 25957685
    [Google Scholar]
  54. Qin G. Li P. Xue Z. Triptolide induces protective autophagy and apoptosis in human cervical cancer cells by downregulating Akt/mTOR activation. Oncol. Lett. 2018 16 3 3929 3934 10.3892/ol.2018.9074 30128010
    [Google Scholar]
  55. Li C. Zhang B. Lv W. Lai C. Chen Z. Wang R. Long X. Feng X. Triptolide inhibits cell growth and GRP78 protein expression but induces cell apoptosis in original and radioresistant NPC cells. Oncotarget 2016 7 31 49588 49596 10.18632/oncotarget.10412 27391061
    [Google Scholar]
  56. Xie C.Q. Zhou P. Zuo J. Li X. Chen Y. Chen J.W. Triptolide exerts pro-apoptotic and cell cycle arrest activity on drug-resistant human lung cancer A549/Taxol cells via modulation of MAPK and PI3K/Akt signaling pathways. Oncol. Lett. 2016 12 5 3586 3590 10.3892/ol.2016.5099 27900040
    [Google Scholar]
  57. Eisenberg-Lerner A. Bialik S. Simon H-U. Kimchi A. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009 16 7 966 975 10.1038/cdd.2009.33 19325568
    [Google Scholar]
  58. Hussain M.S. Altamimi A.S.A. Afzal M. Almalki W.H. Kazmi I. Alzarea S.I. Gupta G. Shahwan M. Kukreti N. Wong L.S. Kumarasamy V. Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol. 2024 188 112389 10.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  59. Kong J. Wang L. Ren L. Yan Y. Cheng Y. Huang Z. Shen F. Triptolide induces mitochondria-mediated apoptosis of Burkitt’s lymphoma cell via deacetylation of GSK-3β by increased SIRT3 expression. Toxicol. Appl. Pharmacol. 2018 342 1 13 10.1016/j.taap.2018.01.011 29407771
    [Google Scholar]
  60. Ziaei S. Halaby R. Immunosuppressive, anti-inflammatory and anti-cancer properties of Triptolide: A mini review. Avicenna J. Phytomed. 2016 6 2 149 164 27222828
    [Google Scholar]
  61. Xiaowen H. Yi S. Triptolide sensitizes TRAIL-induced apoptosis in prostate cancer cells via p53-mediated DR5 up-regulation. Mol. Biol. Rep. 2012 39 9 8763 8770 10.1007/s11033‑012‑1737‑2 22707197
    [Google Scholar]
  62. Wang B.Y. Cao J. Chen J.W. Liu Q.Y. Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2. Med. Oncol. 2014 31 11 270 10.1007/s12032‑014‑0270‑7 25280518
    [Google Scholar]
  63. Xiong J. Su T. Qu Z. Yang Q. Wang Y. Li J. Zhou S. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Oncotarget 2016 7 17 23933 23946 10.18632/oncotarget.8207 27004407
    [Google Scholar]
  64. Ren T. Tang Y.J. Wang M.F. Wang H.S. Liu Y. Qian X. Chang C. Chen M.W. Triptolide induces apoptosis through the calcium/calmodulin‑dependent protein kinase kinaseβ/AMP‑activated protein kinase signaling pathway in non‑small cell lung cancer cells. Oncol. Rep. 2020 44 5 2288 2296 10.3892/or.2020.7763 33000264
    [Google Scholar]
  65. Wang J Gao X Ren D Zhang M Zhang P Lu S Triptolide induces atrophy of myotubes by triggering IRS-1 degradation and activating the FoxO3 pathway. Toxicol In Vitro 2020 65 104793 10.1016/j.tiv.2020.104793
    [Google Scholar]
  66. Jiang X.H. Wong B.C.Y. Lin M.C.M. Zhu G.H. Kung H.F. Jiang S.H. Yang D. Lam S.K. Functional p53 is required for Triptolide-induced apoptosis and AP-1 and nuclear factor-κB activation in gastric cancer cells. Oncogene 2001 20 55 8009 8018 10.1038/sj.onc.1204981 11753684
    [Google Scholar]
  67. Banerjee S. Sangwan V. McGinn O. Chugh R. Dudeja V. Vickers S.M. Saluja A.K. Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. J. Biol. Chem. 2013 288 47 33927 33938 10.1074/jbc.M113.500983 24129563
    [Google Scholar]
  68. MacKenzie T.N. Mujumdar N. Banerjee S. Sangwan V. Sarver A. Vickers S. Subramanian S. Saluja A.K. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol. Cancer Ther. 2013 12 7 1266 1275 10.1158/1535‑7163.MCT‑12‑1231 23635652
    [Google Scholar]
  69. Wang W. Li X. Sun W. Zhang L. Zhang M. Hong B. Lv G. Triptolide triggers the apoptosis of pancreatic cancer cells via the downregulation of Decoy receptor 3 expression. J. Cancer Res. Clin. Oncol. 2012 138 9 1597 1605 10.1007/s00432‑012‑1235‑x 22581262
    [Google Scholar]
  70. Yang C.Y. Lin C.K. Hsieh C.C. Tsao C.H. Lin C.S. Peng B. Chen Y.T. Ting C.C. Chang W.C. Lin G.J. Sytwu H.K. Chen Y.W. Anti‐oral cancer effects of Triptolide by downregulation of DcR3 in vitro, in vivo, and in preclinical patient‐derived tumor xenograft model. Head Neck 2019 41 5 1260 1269 10.1002/hed.25554 30537218
    [Google Scholar]
  71. Yuan C. Liao Y. Liao S. Huang M. Li D. Wu W. Quan Y. Li L. Yu X. Si W. Triptolide inhibits the progression of Glioblastoma U251 cells via targeting PROX1. Front. Oncol. 2023 13 1077640 10.3389/fonc.2023.1077640 36969058
    [Google Scholar]
  72. Krosch T.C.K. Sangwan V. Banerjee S. Mujumdar N. Dudeja V. Saluja A.K. Vickers S.M. Triptolide-mediated cell death in neuroblastoma occurs by both apoptosis and autophagy pathways and results in inhibition of nuclear factor–kappa B activity. Am. J. Surg. 2013 205 4 387 396 10.1016/j.amjsurg.2013.01.008 23428154
    [Google Scholar]
  73. Zhao F. Huang W. Zhang Z. Mao L. Han Y. Yan J. Lei M. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget 2016 7 5 5366 5382 10.18632/oncotarget.6783 26734992
    [Google Scholar]
  74. Zheng Z. Yan G. Xi N. Xu X. Zeng Q. Wu Y. Zheng Y. Zhang G. Wang X. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR Pathway. Anticancer. Agents Med. Chem. 2023 23 13 1596 1604 10.2174/1871520623666230413130417 37056067
    [Google Scholar]
  75. Cai J. Yi M. Tan Y. Li X. Li G. Zeng Z. Natural product Triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-II. Journal of experimental clinical cancer research. CR (East Lansing Mich) 2021 40 190 34108030
    [Google Scholar]
  76. Han C. Pei H. Sheng Y. Wang J. Zhou X. Li W. Guo L. Kong Y. Yang Y. Toxicological mechanism of Triptolide-induced liver injury: Caspase3-GSDME-mediated pyroptosis of Kupffer cell. Ecotoxicol. Environ. Saf. 2023 258 114963 10.1016/j.ecoenv.2023.114963 37130490
    [Google Scholar]
  77. Lv C. Cheng T. Zhang B. Sun K. Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren. Fail. 2023 45 1 2165103 10.1080/0886022X.2023.2165103 36938748
    [Google Scholar]
  78. Wu X. Chen S. Huang K. Lin G. Triptolide promotes ferroptosis by suppressing Nrf2 to overcome leukemia cell resistance to doxorubicin. Mol. Med. Rep. 2023 27 1 27 36453238
    [Google Scholar]
  79. Liu X. Chen C. Han D. Zhou W. Cui Y. Tang X. Xiao C. Wang Y. Gao Y. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of Triptolide-induced cardiotoxicity. Oxid. Med. Cell. Longev. 2022 2022 1 16 10.1155/2022/3192607 35757509
    [Google Scholar]
  80. Li M. Liu Y. Nie X. Ma B. Ma Y. Hou Y. Yang Y. Xu J. Wang Y. S100A4 promotes BCG-induced pyroptosis of macrophages by activating the NF-κB/NLRP3 inflammasome signaling pathway. Int. J. Mol. Sci. 2023 24 16 12709 10.3390/ijms241612709
    [Google Scholar]
  81. Jin H. Xie W. He M. Li H. Xiao W. Li Y. Pyroptosis and Sarcopenia: Frontier perspective of disease mechanism. Cells 2022 11 7 1078 10.3390/cells11071078 35406642
    [Google Scholar]
  82. Wang S. Guo Q. Xu R. Lin P. Deng G. Xia X. Combination of ferroptosis and pyroptosis dual induction by Triptolide nano-MOFs for immunotherapy of Melanoma. J. Nanobiotechnology 2023 21 1 383 10.1186/s12951‑023‑02146‑0 37858186
    [Google Scholar]
  83. Qiu H. Zhang X. Yu H. Gao R. Shi J. Shen T. Identification of potential targets of Triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics. Bioengineered 2021 12 1 4304 4319 10.1080/21655979.2021.1945522 34348580
    [Google Scholar]
  84. Hu M. Deng F. Song X. Zhao H. Yan F. The crosstalk between immune cells and tumor pyroptosis: Advancing cancer immunotherapy strategies. J. Exp. Clin. Cancer Res. 2024 43 1 190 10.1186/s13046‑024‑03115‑7 38987821
    [Google Scholar]
  85. Wang H. Wang T. Yan S. Tang J. Zhang Y. Wang L. Xu H. Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: From mechanisms to clinical implication. Mol. Cancer 2024 23 1 268 10.1186/s12943‑024‑02183‑9 39614288
    [Google Scholar]
  86. You H. Wang L. Meng H. Huang C. Fang G. Li J. Pyroptosis: Shedding light on the mechanisms and links with cancers. Front. Immunol. 2023 14 1290885 10.3389/fimmu.2023.1290885 38016064
    [Google Scholar]
  87. Ni L. Chen D. Zhao Y. Ye R. Fang P. Unveiling the flames: Macrophage pyroptosis and its crucial role in liver diseases. Front. Immunol. 2024 15 1338125 10.3389/fimmu.2024.1338125 38380334
    [Google Scholar]
  88. Bao S. Yi M. Xiang B. Chen P. Antitumor mechanisms and future clinical applications of the natural product Triptolide. Cancer Cell Int. 2024 24 1 150 10.1186/s12935‑024‑03336‑y 38678240
    [Google Scholar]
  89. Zhang H. Zhang Z. Jiang M. Wang S. Wang J. Wang H. Liu Y. Wang Y. Fu J. Wang P. Miao M. Kim M.O. Fang X. Triptolide suppresses melanoma cell growth in vitro and in vivo through the Src-ERK signaling pathway. J. Cancer 2024 15 19 6345 6354 10.7150/jca.100840 39513117
    [Google Scholar]
  90. Wang X. Zeng H. Zhu X. Xu D. Tian Q. Wang C. Zhao L. Zhao J. Miao M. Wu X. TP-CSO: A Triptolide prodrug for pancreatic cancer treatment. Molecules 2022 27 12 3686 10.3390/molecules27123686 35744811
    [Google Scholar]
  91. Li Y. Zhou L. Zhu B. Xiang J. Du J. He M. Fan X. Zhang P. Zeng R. Gong P. A glutathione-activated carrier-free nanodrug of Triptolide as a trackable drug delivery system for monitoring and improving tumor therapy. Mater. Chem. Front. 2021 5 14 5312 5318 10.1039/D1QM00400J
    [Google Scholar]
  92. Noel P. Von Hoff D.D. Saluja A.K. Velagapudi M. Borazanci E. Han H. Triptolide and its derivatives as cancer therapies. Trends Pharmacol. Sci. 2019 40 5 327 341 10.1016/j.tips.2019.03.002 30975442
    [Google Scholar]
  93. Xu L Pan J Chen Q Yu Q Chen H Xu H In vivo evaluation of the safety of Triptolide-loaded hydrogel-thickened microemulsion. Food Chem Toxicol 2008 46 12 3792 10.1016/j.fct.2008.09.065
    [Google Scholar]
  94. Shi J.F. Luo Y.Y. Li J.X. Luo R.F. Chen L. Li J. Zhang J.M. Fu C.M. Research progress on anti-tumor effects and mechanisms of Triptolide and its combined application. Zhongguo Zhongyao Zazhi. 2019 44 16 3391 3398 31602900
    [Google Scholar]
  95. Li Z. Yang G. Han L. Wang R. Gong C. Yuan Y. Sorafenib and Triptolide loaded cancer cell-platelet hybrid membrane-camouflaged liquid crystalline lipid nanoparticles for the treatment of hepatocellular carcinoma. J. Nanobiotechnology 2021 19 1 360 10.1186/s12951‑021‑01095‑w 34749742
    [Google Scholar]
  96. Banerjee S. Sangwan V. McGinn O. Chugh R. Dudeja V. Vickers S.M. Saluja A.K. Correction: Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. J. Biol. Chem. 2019 294 27 10739 10.1074/jbc.AAC119.009844 31278158
    [Google Scholar]
  97. Li X.J. Jiang Z.Z. Zhang L. Triptolide: Progress on research in pharmacodynamics and toxicology. J. Ethnopharmacol. 2014 155 1 67 79 10.1016/j.jep.2014.06.006 24933225
    [Google Scholar]
  98. Xi C Peng S Wu Z Zhou Q Zhou J Toxicity of Triptolide and the molecular mechanisms involved. Biomed Pharmacother. 2017 90 531 541 10.1016/j.biopha.2017.04.003
    [Google Scholar]
  99. Xu H. Liu B. Triptolide-targeted delivery methods. Eur. J. Med. Chem. 2019 164 342 351 10.1016/j.ejmech.2018.12.058 30605832
    [Google Scholar]
  100. Sun R. Dai J. Ling M. Yu L. Yu Z. Tang L. Delivery of Triptolide: A combination of traditional Chinese medicine and nanomedicine. J. Nanobiotechnology 2022 20 1 194 10.1186/s12951‑022‑01389‑7 35443712
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013383144250730072151
Loading
/content/journals/cnf/10.2174/0115734013383144250730072151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test