Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Processing techniques play a vital role in modifying the structure and physicochemical properties of carbohydrates in cereals, thereby impacting their nutritional value, functional properties, and overall quality. The significance of this review lies in comprehending the effects of different processing methods on cereal carbohydrates such as starch, dough, and flour to optimise food quality and health benefits. This review evaluates the impacts of various processing techniques on cereal grains' carbohydrate structure and physicochemical properties. This review draws upon research articles and theoretical papers, analysing approaches such as heat-based processing (cooking, baking, extrusion), milling, fermentation, and enzymatic treatments to comprehensively overview their effects on cereal carbohydrates. Heat-based processing methods, including cooking, baking, and extrusion, substantially modify the molecular structure of cereal carbohydrates. Starch gelatinisation during heating disrupts the granular structure, releasing amylose and amylopectin, which affect viscosity, texture, and digestibility. Thermal processing initiates the Maillard reaction, which generates desirable flavour compounds and brown pigments but can also produce undesirable compounds such as acrylamide. Milling reduces particle size, thereby increasing the surface area and modifying hydration and rheological properties. Fermentation utilises microbial enzymes to produce organic acids, gases, and flavour compounds while simultaneously breaking down complex carbohydrates. Enzymatic treatments enhance functional properties, such as solubility, viscosity, and stability, improving cereal-based products' texture, shelf life, and nutritional profile. This review underscores the fact that different processing techniques have distinct effects on cereals' carbohydrate structure and physicochemical properties. These findings contribute to the existing body of knowledge by providing insights into optimising processing methods to produce cereal-based foods with improved quality and health benefits. Consequently, processing techniques significantly influence the carbohydrate structure and physicochemical properties of cereals, which, in turn, affect their nutritional, functional, and sensory attributes. Understanding these effects is essential for optimising processing methods to produce cereals and cereal-based foods with desirable qualities and health benefits.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013348401250311033456
2025-05-06
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cnf/21/7/CNF-21-7-02.html?itemId=/content/journals/cnf/10.2174/0115734013348401250311033456&mimeType=html&fmt=ahah

References

  1. SealC.J. CourtinC.M. VenemaK. de VriesJ. Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing.Compr. Rev. Food Sci. Food Saf.20212032742276810.1111/1541‑4337.1272833682356
    [Google Scholar]
  2. LiM. NiuM. New technologies in cereal processing and their impact on the physical properties of cereal foods.Foods20231221400810.3390/foods1221400837959127
    [Google Scholar]
  3. XiaoX. LiX. BaiJ. FanS. DagliaM. LiJ. DingY. ZhangY. ZhaoY. Changes in the structural, physicochemical and functional properties and in vitro fecal fermentation characteristics of barley dietary fiber fermented by Lactiplantibacillus plantarum dy-1.Food Funct.20241584276429110.1039/D3FO05605H38526568
    [Google Scholar]
  4. ZhaoQ. SheZ. HouD. WangJ. LanT. LvX. ZhangY. SunX. MaT. Effect of partial substitution of wheat flour with kiwi starch on dough rheology, microstructure, the quality attributes and shelf life of Chinese steamed bread.Int. J. Biol. Macromol.2024258Pt 1128920.10.1016/j.ijbiomac.2023.12892038141697
    [Google Scholar]
  5. FAO. The Food Loss and Waste ChallengeRome, ItalyFood and Agriculture Organization202316
    [Google Scholar]
  6. FahadS. Major constraints for global rice production.Advances in rice research for abiotic stress tolerance.Amsterdam, NetherlandsElsevier201912210.1016/B978‑0‑12‑814332‑2.00001‑0
    [Google Scholar]
  7. Bin RahmanA.N.M.R. ZhangJ. Trends in rice research: 2030 and beyond.Food Energy Secur.2023122e390.10.1002/fes3.390
    [Google Scholar]
  8. MetakovskyE. MelnikV.A. PascualL. WrigleyC.W. Gliadin genotypes worldwide for spring wheats (Triticum aestivum L.) 2. Strong differentiation of polymorphism between countries and regions of origin.J. Cereal Sci.20198731131710.1016/j.jcs.2019.04.015
    [Google Scholar]
  9. ZakharovaN. ZakharovN. Resource potential of the genus Triticum and its use in world agriculture.IOP Conf. Ser.: Earth Environ. Sci.2023122901201710.1088/1755‑1315/1229/1/012017
    [Google Scholar]
  10. García-LaraS. Serna-SaldivarS.O. Chapter 1 - Corn history and culture.Corn3rd Ed.New YorkAACC International Press201911810.1016/B978‑0‑12‑811971‑6.00001‑2
    [Google Scholar]
  11. ZahniserS. LópezN.F. MotamedM. The growing corn economies of Mexico and the United States FDS-19 F-01.Economic Research ServiceMexico, US201916
    [Google Scholar]
  12. El-HashashE.F. El-AbsyK.M. Barley (Hordeum vulgare L.) breeding.Adv. Plan. Breed. Strate.: Cere.20195145
    [Google Scholar]
  13. AbebawG. Review on structure, functional and nutritional composition of barley (Hordeum vulgare). J.Nutrit. Food Proces.202142010810.31579/2637‑8914/046
    [Google Scholar]
  14. SinghP. TomarM. SinghA.K. International scenario of oat production and its potential role in sustainable agriculture.Oat Avena sativa2025476810.1201/9781003263302‑2
    [Google Scholar]
  15. MushtaqA. Gul-Zaffar ZA.D. MehfuzaH. A review on Oat (Avena sativa L.) as a dual-purpose crop.Sci. Res. Essays201494525910.5897/SRE2014.5820
    [Google Scholar]
  16. RajasekaranR. Proso Millet (Panicum miliaceum L.).Neglected and underutilized crops.Amsterdam, NetherlandElsevier202324727810.1016/B978‑0‑323‑90537‑4.00005‑3
    [Google Scholar]
  17. TaylorJ.R. Sorghum and Millets: Taxonomy, History, Distribution, and Production.Sorghum and millets.Amsterdam, NetherlandElsevier201912110.1016/B978‑0‑12‑811527‑5.00007‑1
    [Google Scholar]
  18. LiL. WangQ. LiuC. HongJ. ZhengX. Effect of oven roasting on major chemical components in cereals and its modulation on flour‐based products quality.J. Food Sci.20238872740275710.1111/1750‑3841.1662537282778
    [Google Scholar]
  19. ThakurS. ScanlonM.G. TylerR.T. MilaniA. PaliwalJ. Pulse flour characteristics from a wheat flour miller’s perspective: A comprehensive review.Compr. Rev. Food Sci. Food Saf.201918377579710.1111/1541‑4337.1241333336925
    [Google Scholar]
  20. GaoW. ChenF. WangX. MengQ. Recent advances in processing food powders by using superfine grinding techniques: A review.Compr. Rev. Food Sci. Food Saf.20201942222225510.1111/1541‑4337.1258033337081
    [Google Scholar]
  21. SharmaR. GargP. KumarP. BhatiaS.K. KulshresthaS. Microbial fermentation and its role in quality improvement of fermented foods.Fermentation (Basel)20206410610.3390/fermentation6040106
    [Google Scholar]
  22. SalehA.S.M. WangP. WangN. YangS. XiaoZ. Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges.Crit. Rev. Food Sci. Nutr.201959220722710.1080/10408398.2017.136371128846456
    [Google Scholar]
  23. Boyaci GunduzC.P. Formulation and processing strategies to reduce acrylamide in thermally processed cereal-based foods.Int. J. Environ. Res. Public Health20232013627210.3390/ijerph2013627237444119
    [Google Scholar]
  24. De PilliT. AlessandrinoO. Effects of different cooking technologies on biopolymers modifications of cereal-based foods: Impact on nutritional and quality characteristics review.Crit. Rev. Food Sci. Nutr.202060455656510.1080/10408398.2018.154488430596251
    [Google Scholar]
  25. SmithC. Van HauteM.J. RoseD.J. Processing has differential effects on microbiota-accessible carbohydrates in whole grains during in vitro fermentation.Appl. Environ. Microbiol.20208621e01705-2010.1128/AEM.01705‑2032859598
    [Google Scholar]
  26. JohnsonJ. WallaceT.C. Whole grains and their bioactives: Composition and health.Hoboken, New JerseyJohn Wiley & Sons201949310.1002/9781119129486
    [Google Scholar]
  27. AdeboJ.A. NjobehP.B. GbashiS. OyedejiA.B. OgundeleO.M. OyeyinkaS.A. AdeboO.A. Fermentation of cereals and legumes: Impact on nutritional constituents and nutrient bioavailability.Fermentation (Basel)2022826310.3390/fermentation8020063
    [Google Scholar]
  28. Castro-AlbaV. LazarteC.E. Perez-ReaD. SandbergA.S. CarlssonN.G. AlmgrenA. BergenståhlB. GranfeldtY. Effect of fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa.Food Sci. Nutr.20197123902391110.1002/fsn3.124731890168
    [Google Scholar]
  29. WangQ. LiL. WangT. ZhengX. A review of extrusion-modified underutilized cereal flour: Chemical composition, functionality, and its modulation on starchy food quality.Food Chem.202237013136110.1016/j.foodchem.2021.13136134788965
    [Google Scholar]
  30. ZhangZ. BaoJ. Recent advances in modification approaches, health benefits, and food applications of resistant starch.Stärke2023759-102100141.10.1002/star.202100141
    [Google Scholar]
  31. PaivaF.F. VanierN.L. BerriosJ.D.J. PintoV.Z. WoodD. WilliamsT. PanJ. EliasM.C. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice.Food Chem.201619110511210.1016/j.foodchem.2015.02.04726258708
    [Google Scholar]
  32. Rocha-VillarrealV. Serna-SaldivarS.O. García-LaraS. Effects of parboiling and other hydrothermal treatments on the physical, functional, and nutritional properties of rice and other cereals.Cereal Chem.2018951799110.1002/cche.10010
    [Google Scholar]
  33. CarbonH.N. LeeH.J. Varied reduction of ochratoxin A in brown and white rice during roasting.World Mycotoxin J.202215436136810.3920/WMJ2021.2712
    [Google Scholar]
  34. DasP.P. DuarahP. PurkaitM.K. Fundamentals of food roasting process.High-Temperature Processing of Food Products.Amsterdam, NetherlandElsevier202310313010.1016/B978‑0‑12‑818618‑3.00005‑7
    [Google Scholar]
  35. GoyatJ. RudraS.G. SuriS. PassiS.J. DuttaH. Nutritional, functional and sensory properties of ready-to-eat chia and quinoa mix enriched low amylose rice based porridge mixes.Curr. Res. Nutr. Food Sci.20197239941410.12944/CRNFSJ.7.2.10
    [Google Scholar]
  36. KavaliS. ShobhaD. Effect of cooking on nutritional and antinutritional components of quinoa incorporated products.Pharma Innov.20209534635310.22271/tpi.2020.v9.i5g.4716
    [Google Scholar]
  37. WuT. TaylorC. NeblT. NgK. BennettL.E. Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours.Food Chem.201723351452410.1016/j.foodchem.2017.04.15828530606
    [Google Scholar]
  38. MartinezM.M. PallarésM.G. Current Strategies to Improve the Nutritional and Physical Quality of Baked Goods.Basel, SwitzerlandUniversity of Valladolid20201143
    [Google Scholar]
  39. BainesJ. BorradaleD. Food processing.Food Nutrit.2020749910.4324/9781003115656‑7
    [Google Scholar]
  40. Castro-CamposF.G. Cabrera-RamírezA.H. Morales-SánchezE. Rodríguez-GarcíaM.E. VillamielM. Ramos-LópezM. Gaytán-MartínezM. Impact of the popping process on the structural and thermal properties of sorghum grains (Sorghum bicolor L. Moench).Food Chem.202134812909210.1016/j.foodchem.2021.12909233529940
    [Google Scholar]
  41. MounirS. GhandourA. FaridE. ShattaA. Popped and puffed cereal products. Cereal-Based Food Products.ChamSpringer International Publishing202316919510.1007/978‑3‑031‑40308‑8_8
    [Google Scholar]
  42. TaylorJ.R. KrugerJ. Sorghum and millets: Food and beverage nutritional attributes.Sorghum and millets.Amsterdam, NetherlandElsevier201917122410.1016/B978‑0‑12‑811527‑5.00007‑1
    [Google Scholar]
  43. FoxG.P. BettenhausenH.M. Variation in quality of grains used in malting and brewing.Front. Plant Sci.202314117202810.3389/fpls.2023.117202837377804
    [Google Scholar]
  44. Van HungP. Phenolic compounds of cereals and their antioxidant capacity.Crit. Rev. Food Sci. Nutr.2016561253510.1080/10408398.2012.70890925075608
    [Google Scholar]
  45. ObadiM. XuB. A review of the effects of physical processing techniques on the characteristics of legume starches and their application in low-glycemic index foods.Int. J. Biol. Macromol.2024279Pt 1135124.10.1016/j.ijbiomac.2024.13512439208910
    [Google Scholar]
  46. MonroJ. MishraS. In vitro digestive analysis of digestible and resistant starch fractions, with concurrent glycemic index determination, in whole grain wheat products minimally processed for reduced glycaemic impact.Foods20221113190410.3390/foods1113190435804723
    [Google Scholar]
  47. HuangX. LiuH. MaY. MaiS. LiC. Effects of extrusion on starch molecular degradation, order–disorder structural transition and digestibility—A review.Foods20221116253810.3390/foods1116253836010538
    [Google Scholar]
  48. DalbhagatC.G. MahatoD.K. MishraH.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review.Trends Food Sci. Technol.20198522624010.1016/j.tifs.2019.01.001
    [Google Scholar]
  49. TianS. SunY. Influencing factor of resistant starch formation and application in cereal products: A review.Int. J. Biol. Macromol.202014942443110.1016/j.ijbiomac.2020.01.26432004604
    [Google Scholar]
  50. TostaM.R. PratesL.L. FengX. Rodríguez-EspinosaM.E. ZhangH. ZhangW. YuP. Research progress in structural and nutritional characterization and technologically processing impact on cool-season adapted oat and barley cereal kernels with wet chemistry and advanced vibrational molecular spectroscopy.Crit. Rev. Food Sci. Nutr.202262195130513910.1080/10408398.2021.188238033612010
    [Google Scholar]
  51. SinghM. SoodS. Millets and Pseudo Cereals.Amsterdam, NetherlandElsevier202016
    [Google Scholar]
  52. AdetokunbohA.H. ObilanaA.O. JideaniV.A. Physicochemical characteristics of bambara groundnut speciality malts and extract.Molecules20222714433210.3390/molecules2714433235889203
    [Google Scholar]
  53. KreftI. GermM. GolobA. VombergarB. BonafacciaF. LutharZ. Impact of rutin and other phenolic substances on the digestibility of buckwheat grain metabolites.Int. J. Mol. Sci.2022237392310.3390/ijms2307392335409281
    [Google Scholar]
  54. BalasubramaniamV. Barbosa-CánovasG.V. LelieveldH. High pressure processing of food: Principles, technology and applications.ChamSpringer20161610.1007/978‑1‑4939‑3234‑4
    [Google Scholar]
  55. ToutounjiM.R. FarahnakyA. SanthakumarA.B. OliP. ButardoV.M.Jr BlanchardC.L. Intrinsic and extrinsic factors affecting rice starch digestibility.Trends Food Sci. Technol.201988102210.1016/j.tifs.2019.02.012
    [Google Scholar]
  56. KoczońP. JosefssonH. MichorowskaS. TarnowskaK. KowalskaD. BartyzelB.J. NiemiecT. LipińskaE. Gruczyńska-SękowskaE. The influence of the structure of selected polymers on their properties and food-related applications.Polymers (Basel)20221410196210.3390/polym1410196235631843
    [Google Scholar]
  57. Alcázar-AlayS.C. MeirelesM.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources.Food Sci. Technol. (Campinas)201535221523610.1590/1678‑457X.6749
    [Google Scholar]
  58. ShahidiF. AmbigaipalanP. AbadA. PeggR.B. Food and bioactive encapsulation.Handbook of food preservation.Boca Raton, FLCRC Press202052959610.1201/9780429091483‑38
    [Google Scholar]
  59. NathP. PandeyN. SamotaM. SharmaK. KaleS. KannaujiaP. SethiS. ChauhanO.P. Browning reactions in foods.Advances in food chemistry: Food components, processing and preservation.ChamSpringer202211715910.1007/978‑981‑19‑4796‑4_4
    [Google Scholar]
  60. LiuS. SunH. MaG. ZhangT. WangL. PeiH. LiX. GaoL. Insights into flavor and key influencing factors of Maillard reaction products: A recent update.Front. Nutr.2022997367710.3389/fnut.2022.97367736172529
    [Google Scholar]
  61. OlawoyeB. JolayemiO.S. OrigbemisoyeB.A. OluwajuyitanT.D. Popoola-AkinolaO. Hydrolysis of Starch.Starch: Advances in Modifications, Technologies and Applications.ChamSpringer International Publishing20238310110.1007/978‑3‑031‑35843‑2_4
    [Google Scholar]
  62. GamageA. LiyanapathiranageA. ManamperiA. GunathilakeC. ManiS. MerahO. MadhujithT. Applications of starch biopolymers for a sustainable modern agriculture.Sustainability (Basel)20221410608510.3390/su14106085
    [Google Scholar]
  63. YadavK.C. MitchellJ. BhandariB. PrakashS. Unlocking the potentials of rice bran through extrusion: A systematic review.Sustai. Food Technol.20242359461410.1039/d4fb00027g
    [Google Scholar]
  64. XuK. ChiC. SheZ. LiuX. ZhangY. WangH. ZhangH. Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread.Food Chem.202236613061410.1016/j.foodchem.2021.13061434304137
    [Google Scholar]
  65. DuttaD. SitN. Ultrasound treatment.Starch2025613216410.1201/9781032655598‑6
    [Google Scholar]
  66. DessevT. LalanneV. KeramatJ. JuryV. ProstC. Le-BailA. Influence of baking conditions on bread characteristics and acrylamide concentration.J. Food Sci. Nutr. Res.20203429131010.26502/jfsnr.2642‑11000056
    [Google Scholar]
  67. WangK. LiM. WangY. LiuZ. NiY. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa).Food Hydrocoll.202111010616210.1016/j.foodhyd.2020.106162
    [Google Scholar]
  68. HuangG. McClementsD.J. HeK. ZhangZ. LinZ. XuZ. ZouY. JinZ. ChenL. Review of formation mechanisms and quality regulation of chewiness in staple foods: Rice, noodles, potatoes and bread.Food Res. Int.202418711445910.1016/j.foodres.2024.11445938763692
    [Google Scholar]
  69. GasparreN. RosellC.M. Snacking: Ingredients, processing and safety.J. Food Sci.2021716719210.1007/978‑3‑030‑69228‑5_7
    [Google Scholar]
  70. LohinovaА. PetrushaО. Maillard reaction in food technologies.Ukrai. J. Food Sci.20231128110910.24263/2310‑1008‑2023‑11‑2‑4
    [Google Scholar]
  71. RuanD. WangH. ChengF. The maillard reaction in food chemistry: Current technology and applications.ChamSpringer20181610.1007/978‑3‑030‑04777‑1
    [Google Scholar]
  72. GulatiP. BrahmaS. RoseD.J. Impacts of extrusion processing on nutritional components in cereals and legumes: Carbohydrates, proteins, lipids, vitamins, and minerals.Extrusion cooking.Amsterdam, NetherlandElsevier202041544310.1016/B978‑0‑12‑815360‑4.00013‑4
    [Google Scholar]
  73. PrakashS. BhandariB. GaianiC. Engineering plant-based food systems.Cambridge, USAcademic Press202216
    [Google Scholar]
  74. GalanakisC.M. Food quality and shelf life.Cambridge, USAcademic Press201919
    [Google Scholar]
  75. KambleD.B. SinghR. KaurB.P. RaniS. Storage stability and shelf life prediction of multigrain pasta under different packaging material and storage conditions.J. Food Process. Preserv.2020448e14585.10.1111/jfpp.14585
    [Google Scholar]
  76. Barbosa-CánovasG.V. FontanaA.J.Jr SchmidtS.J. LabuzaT.P. Water activity in foods: Fundamentals and applications.Hoboken, New JerseyJohn Wiley & Sons2020164010.1002/9781118765982
    [Google Scholar]
  77. RifnaE. DwivediM. ChauhanO. Role of water activity in food preservation.Advances in food chemistry: Food components, processing and preservation.ChamSpringer2022396410.1007/978‑981‑19‑4796‑4_2
    [Google Scholar]
  78. GallegoM. BaratJ.M. GrauR. TalensP. Compositional, structural design and nutritional aspects of texture-modified foods for the elderly.Trends Food Sci. Technol.202211915216310.1016/j.tifs.2021.12.008
    [Google Scholar]
  79. RevillaP. AlvesM.L. AndelkovićV. BalconiC. DinisI. Mendes-MoreiraP. RedaelliR. Ruiz de GalarretaJ.I. Vaz PattoM.C. ŽilićS. MalvarR.A. Traditional foods from maize (Zea mays L.) in Europe.Front. Nutr.2022868339910.3389/fnut.2021.68339935071287
    [Google Scholar]
  80. JoshiV. Concise Encyclopedia of Science and Technology of Wine.Boca Raton, FLCRC Press20211610.1201/9781315107295
    [Google Scholar]
  81. RahmanM.S. Handbook of food preservation.Boca Raton, FLCRC Press20201910.1201/9780429091483
    [Google Scholar]
  82. SchutteM. HaywardS. ManleyM. Nonenzymatic browning and antioxidant properties of thermally treated cereal grains and end products.J. Food Biochem.20242024112010.1155/2024/3865849
    [Google Scholar]
  83. SruthiN.U. PremjitY. PandiselvamR. KothakotaA. RameshS.V. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures.Food Chem.202134812908810.1016/j.foodchem.2021.12908833515948
    [Google Scholar]
  84. YuT. JingS. JiaxinL. AixiaW. MengziN. XueG. LiliW. LiyaL. FengzhongW. LitaoT. Effects of milling methods on rice flour properties and rice product quality: A review.Rice Sci.2024311334610.1016/j.rsci.2023.11.002
    [Google Scholar]
  85. BalaM. TushirS. GargM. Wheat milling and recent processing technologiesEffect on Nutritional Properties, Challenges, and Strategies.1st Ed.Boca Raton, FLCRC Press2023138
    [Google Scholar]
  86. BenincasaP. FalcinelliB. LuttsS. StagnariF. GalieniA. Sprouted grains: A comprehensive review.Nutrients201911242110.3390/nu1102042130781547
    [Google Scholar]
  87. AgriopoulouS. StamatelopoulouE. VarzakasT. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods.Foods20209213710.3390/foods902013732012820
    [Google Scholar]
  88. AjibadeB.O. OlagunjuO.F. AdemolaO. 3 Cereals and cereal products.Food Sci. Technol. Trends Futur. Prospect.20208111010.1515/9783110667462‑003
    [Google Scholar]
  89. TieX.Y. AnN-N. LiD. WangL-J. WangY. Recent advances in rice milling technology: Effect on nutrient, physical properties and digestibility.Food Rev. Int.20244082256228210.1080/87559129.2023.2272932
    [Google Scholar]
  90. JoyeI. Protein digestibility of cereal products.Foods20198619910.3390/foods806019931181787
    [Google Scholar]
  91. YiC. QiangN. ZhuH. XiaoQ. LiZ. Extrusion processing: A strategy for improving the functional components, physicochemical properties, and health benefits of whole grains.Food Res. Int.2022160111681.10.1016/j.foodres.2022.11168136076390
    [Google Scholar]
  92. ZhuR. FanZ. HanY. LiS. LiG. WangL. YeT. ZhaoW. Acute effects of three cooked non-cereal starchy foods on postprandial glycemic responses and in vitro carbohydrate digestion in comparison with whole grains: A randomized trial.Nutrients201911363410.3390/nu1103063430875961
    [Google Scholar]
  93. TaylorJ.R.N. EmmambuxM.N. KrugerJ. Developments in modulating glycaemic response in starchy cereal foods.Stärke2015671-2798910.1002/star.201400192
    [Google Scholar]
  94. RaigondP. EzekielR. RaigondB. Resistant starch in food: A review.J. Sci. Food Agric.201595101968197810.1002/jsfa.696625331334
    [Google Scholar]
  95. AroraS.K. Cereals for prevention of disease conditions for better health.Cerea. Cere.-Bas. Food20211727329110.1201/9781003081975‑17
    [Google Scholar]
  96. ParisiS. Maillard reaction in foods: Mitigation strategies and positive properties.ChamSpringer International Publishing20193810.1007/978‑3‑030‑22556‑8
    [Google Scholar]
  97. Amaya-FarfanJ. Rodriguez-AmayaD.B. The Maillard Reactions.Chemical Changes During Processing and Storage of Foods.Amsterdam, NetherlandElsevier202121526310.1016/B978‑0‑12‑817380‑0.00006‑3
    [Google Scholar]
  98. ParkH.J. ChoD.H. ChungH.J. LimS.T. Enhanced gelling property and freeze–thaw stability of potato, tapioca and corn starches modified by mild heating in aqueous ethanol solution.J. Sci. Food Agric.2024104127228723710.1002/jsfa.1354438629447
    [Google Scholar]
  99. GongY. XuS. HeT. DongR. RenT. WangX. HuX. Effect of quick-freezing temperature on starch retrogradation and ice crystals properties of steamed oat roll.J. Cereal Sci.202096:10310910.1016/j.jcs.2020.103109
    [Google Scholar]
  100. KumarM. BarbhaiM.D. HasanM. DhumalS. SinghS. PandiselvamR. RaisN. NattaS. SenapathyM. SinhaN. AmarowiczR. Onion (Allium cepa L.) peel: A review on the extraction of bioactive compounds, its antioxidant potential, and its application as a functional food ingredient.J. Food Sci.202287104289431110.1111/1750‑3841.1629736101019
    [Google Scholar]
  101. ChandrasekaraA. ShahidiF. Minor millet processing and its impacts on composition.Handbook of Millets-Processing, Quality, and Nutrition Status.SingaporeSpringer Nature Singapore20228110110.1007/978‑981‑16‑7224‑8_5
    [Google Scholar]
  102. SolankiC. IndoreN. SahaD. KudosA. Effect of popping methods on popping characteristics of amaranth grain.Int. J. Chem. Stud.20186227792782
    [Google Scholar]
  103. DabijaA. CiocanM.E. ChetrariuA. CodinăG.G. Buckwheat and amaranth as raw materials for brewing, a review.Plants202211675610.3390/plants1106075635336638
    [Google Scholar]
  104. SirohaA.K. BangarS.P. RoseP.K. KumarA. Novel approaches to improve functional potential of cereals.Functional Cereals and Cereal Foods: Properties, Functionality and Applications.ChamSpringer International Publishing2022274910.1007/978‑3‑031‑05611‑6_2
    [Google Scholar]
  105. De BrierN. LemmensE. GomandS.V. VerbekeK. DelcourJ.A. Premilling pearling for producing wheat fractions with distinct digestibility and fermentability.Cereal Chem.202198375977310.1002/cche.10419
    [Google Scholar]
  106. TiwariU. PojićM. Introduction to cereal processing: Innovative processing techniques.Edible. Grain.202093510.1002/9781119470182.ch2
    [Google Scholar]
  107. Ramos M.A.E. Landim N.M.I. dos Reis G.B. Oliveira JrF.D. Ribas F.L. Joy S.C. Lopes da C.R. Organic acids in bread-making affecting gluten structure and digestibility.Food Res. Int.2023174Pt 1113520.10.1016/j.foodres.2023.11352037986424
    [Google Scholar]
  108. LiuJ. LuW. LiangY. WangL. JinN. ZhaoH. FanB. WangF. Research progress on hypoglycemic mechanisms of resistant starch: A review.Molecules20222720711110.3390/molecules2720711136296704
    [Google Scholar]
  109. LockyerS. NugentA.P. Health effects of resistant starch.Nutr. Bull.2017421104110.1111/nbu.12244
    [Google Scholar]
  110. ThakurM. NandaV. Storage stability and quality management of nutri-cereals and associated products.In: Cereal Research CommunicationsChamSpringer202311510.1201/9781003251279‑15
    [Google Scholar]
  111. AlamM.S. KaurJ. KhairaH. GuptaK. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review.Crit. Rev. Food Sci. Nutr.201656344547310.1080/10408398.2013.77956825574813
    [Google Scholar]
  112. YiX. LiC. Main controllers for improving the resistant starch content in cooked white rice.Food Hydrocoll.2022122107083.10.1016/j.foodhyd.2021.107083
    [Google Scholar]
  113. Latha R.J. RanaS.S. Maximizing the nutritional benefits and prolonging the shelf life of millets through effective processing techniques: A review.ACS Omega2024937383273834710.1021/acsomega.4c0346639310183
    [Google Scholar]
  114. HeiniöR.L. NoortM.W.J. KatinaK. AlamS.A. SozerN. de KockH.L. HerslethM. PoutanenK. Sensory characteristics of wholegrain and bran-rich cereal foods – A review.Trends Food Sci. Technol.201647253810.1016/j.tifs.2015.11.002
    [Google Scholar]
  115. BauerA.S. LeppikK. GalićK. AnestopoulosI. PanayiotidisM.I. AgriopoulouS. MilousiM. Uysal-UnalanI. VarzakasT. KrauterV. Cereal and confectionary packaging: Background, application and shelf-life extension.Foods202211569710.3390/foods1105069735267329
    [Google Scholar]
  116. FarooqM.A. YuJ. Recent advances in physical processing techniques to enhance the resistant starch content in foods: A review.Foods20241317277010.3390/foods1317277039272535
    [Google Scholar]
  117. YehY. LaiL.S. Effect of single and dual hydrothermal treatments on the resistant starch content and physicochemical properties of lotus rhizome starches.Molecules20212614433910.3390/molecules2614433934299614
    [Google Scholar]
  118. SudheeshC. Cereal proteins.In: Nutraceuticals and Health Care.Amsterdam, NetherlandElsevier2022296010.1016/B978‑0‑323‑89779‑2.00010‑7
    [Google Scholar]
  119. ZhangJ. CelliG. BrooksM. Chapter 1 - Natural Sources of Anthocyanins: Exploiting Targeted Delivery for Improved Health.Natural sources of anthocyaninsNew YorkAACC International Press2019133
    [Google Scholar]
  120. HealyL.E. ZhuX. PojićM. SullivanC. TiwariU. CurtinJ. TiwariB.K. Biomolecules from macroalgae—nutritional profile and bioactives for novel food product development.Biomolecules202313238610.3390/biom1302038636830755
    [Google Scholar]
  121. ZengF. GaoQ. HanZ. ZengX. YuS. Structural properties and digestibility of pulsed electric field treated waxy rice starch.Food Chem.20161941313131910.1016/j.foodchem.2015.08.10426471687
    [Google Scholar]
  122. Elez-MartínezP. Odriozola-SerranoI. Oms-OliuG. Soliva-FortunyR. Martín-BellosoO. Effects of pulsed electric fields processing strategies on health-related compounds of plant-based foods.Food Eng. Rev.20179321322510.1007/s12393‑017‑9162‑x
    [Google Scholar]
  123. ZhuZ. HeJ. LiuG. BarbaF.J. KoubaaM. DingL. BalsO. GrimiN. VorobievE. Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review.Innov. Food Sci. Emerg. Technol.2016331910.1016/j.ifset.2015.12.023
    [Google Scholar]
  124. SiddiquiS.A. MahmudM.M.C. AbdiG. WanichU. FarooqiM.Q.U. SettapramoteN. KhanS. WaniS.A. New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges.J. Food Biochem.2022469e14185.10.1111/jfbc.1418535441405
    [Google Scholar]
  125. SarangapaniC. O’TooleG. CullenP.J. BourkeP. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries.Innov. Food Sci. Emerg. Technol.20174423524110.1016/j.ifset.2017.02.012
    [Google Scholar]
  126. RaghunathanR. PandiselvamR. KothakotaA. Mousavi KhaneghahA. The application of emerging non-thermal technologies for the modification of cereal starches.Lebensm. Wiss. Technol.2021138110795.10.1016/j.lwt.2020.110795
    [Google Scholar]
  127. DengX. HuangH. HuangS. YangM. WuJ. CiZ. HeY. WuZ. HanL. ZhangD. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food.Front. Nutr.20229941527.10.3389/fnut.2022.94152736313079
    [Google Scholar]
  128. NiuD. ZengX.A. RenE.F. XuF.Y. LiJ. WangM.S. WangR. Review of the application of pulsed electric fields (PEF) technology for food processing in China.Food Res. Int.2020137109715.10.1016/j.foodres.2020.10971533233287
    [Google Scholar]
  129. BourkeP. ZiuzinaD. BoehmD. CullenP.J. KeenerK. The potential of cold plasma for safe and sustainable food production.Trends Biotechnol.201836661562610.1016/j.tibtech.2017.11.00129329724
    [Google Scholar]
  130. MisnalM.F.I. RedzuanN. ZainalM.N.F. AhmadN. Raja IbrahimR.K. AgunL. Cold plasma: A potential alternative for rice grain postharvest treatment management in Malaysia.Rice Sci.202229111510.1016/j.rsci.2021.12.001
    [Google Scholar]
  131. Punia BangarS. AshogbonA.O. SinghA. ChaudharyV. WhitesideW.S. Enzymatic modification of starch: A green approach for starch applications.Carbohydr. Polym.2022287119265.10.1016/j.carbpol.2022.11926535422280
    [Google Scholar]
  132. ZadeikeD. DegutyteR. Recent advances in acoustic technology in food processing.Foods20231218336510.3390/foods1218336537761074
    [Google Scholar]
  133. ManyatsiT.S. Al-HilphyA.R. MajzoobiM. FarahnakyA. GavahianM. Effects of infrared heating as an emerging thermal technology on physicochemical properties of foods.Crit. Rev. Food Sci. Nutr.202363246840685910.1080/10408398.2022.204382035225100
    [Google Scholar]
  134. PattabhiramaiahM. MallikarjunaiahS. Advances in innovative and emerging technologies in food processing.Impact. Technol. Transfo. Food Indust.202313210.4018/978‑1‑6684‑9094‑5.ch001
    [Google Scholar]
  135. Astráin-RedínL. OspinaS. CebriánG. Álvarez-LanzaroteI. Ohmic heating technology for food applications, from ohmic systems to moderate electric fields and pulsed electric fields.Food Eng. Rev.202416222525110.1007/s12393‑024‑09368‑4
    [Google Scholar]
  136. KaurN. SinghA.K. Ohmic heating: concept and applications - A review.Crit. Rev. Food Sci. Nutr.201656142338235110.1080/10408398.2013.83530325830778
    [Google Scholar]
  137. FonsecaL.M. HalalS.L.M.E. DiasA.R.G. ZavarezeE.R. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review.Carbohydr. Polym.202127411866510.1016/j.carbpol.2021.11866534702484
    [Google Scholar]
  138. CastroL.M.G. AlexandreE.M.C. SaraivaJ.A. PintadoM. Impact of high pressure on starch properties: A review.Food Hydrocoll.202010610587710.1016/j.foodhyd.2020.105877
    [Google Scholar]
  139. YangX. LiA. LiX. SunL. GuoY. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures.Trends Food Sci. Technol.202010211510.1016/j.tifs.2020.05.020
    [Google Scholar]
  140. ŠárkaE. DvořáčekV. New processing and applications of waxy starch (a review).J. Food Eng.2017206778710.1016/j.jfoodeng.2017.03.006
    [Google Scholar]
  141. MiaoM. BeMillerJ.N. Enzymatic approaches for structuring starch to improve functionality.Annu. Rev. Food Sci. Technol.202314127129510.1146/annurev‑food‑072122‑02351036525688
    [Google Scholar]
  142. WalshS.K. LuceyA. WalterJ. ZanniniE. ArendtE.K. Resistant starch — An accessible fiber ingredient acceptable to the Western palate.Compr. Rev. Food Sci. Food Saf.20222132930295510.1111/1541‑4337.1295535478262
    [Google Scholar]
  143. CuiH. YuJ. ZhaiY. FengL. ChenP. HayatK. XuY. ZhangX. HoC-T. Formation and fate of Amadori rearrangement products in Maillard reaction.Trends Food Sci. Technol.202111539140810.1016/j.tifs.2021.06.055
    [Google Scholar]
  144. YeJ. HuX. LuoS. LiuW. ChenJ. ZengZ. LiuC. Properties of starch after extrusion: A review.Stärke20187011-121700110.10.1002/star.201700110
    [Google Scholar]
  145. OkaforD. OfoeduC. E. NwakauduA. DaramolaM. O. Chapter 10 - Enzymes as additives in starch processing: A short overview.Enzymes in Food BiotechnologyCambridge, USAcademic Press201914916810.1016/B978‑0‑12‑813280‑7.00010‑4
    [Google Scholar]
  146. SamarakoonE.R.J. WadugeR. LiuQ. ShahidiF. BanoubJ.H. Impact of annealing on the hierarchical structure and physicochemical properties of waxy starches of different botanical origins.Food Chem.2020303125344.10.1016/j.foodchem.2019.12534431446363
    [Google Scholar]
  147. dos SantosT.P.R. FrancoC.M.L. do CarmoE.L. JaneJ. LeonelM. Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch.J. Food Sci. Technol.201956137638310.1007/s13197‑018‑3498‑y30728580
    [Google Scholar]
  148. AvelarZ. PereiraR.N. VicenteA.A. RodriguesR.M. Protein quality of cereals: Technological and functional perspectives.J. Cereal Sci.202411710392210.1016/j.jcs.2024.103922
    [Google Scholar]
  149. GobbettiM. De AngelisM. Di CagnoR. PoloA. RizzelloC.G. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry.Crit. Rev. Food Sci. Nutr.202060132158217310.1080/10408398.2019.163175331257912
    [Google Scholar]
  150. JeongS. LeeJ. Effects of cultural background on consumer perception and acceptability of foods and drinks: A review of latest cross-cultural studies.Curr. Opin. Food Sci.20214224825610.1016/j.cofs.2021.07.004
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013348401250311033456
Loading
/content/journals/cnf/10.2174/0115734013348401250311033456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test