Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Gut pathogens pose a significant threat to human health by disrupting the balance of intestinal microbiota. While antibiotics are effective in treating gut dysbiosis, the emergence of multidrug-resistant bacteria presents a daunting challenge. Moreover, the accumulation of these drugs alters gut microbiota and affects their pharmacokinetics. Consequently, probiotics are increasingly recognized as safe and sustainable means of maintaining a healthy gut microbiota, contributing to the achievement of Sustainable Development Goals (SDG), particularly SDG3 which emphasizes good health and well-being. species, as probiotics, play a crucial role in restoring equilibrium of gut microbiota by promoting a favorable microbial population and enhancing intestinal integrity. It has been shown to produce biologically active metabolites with antimicrobial properties against enteric pathogens and anti-inflammatory substances that aid in healing the intestinal mucosa from dysbiosis. Additionally, they modulate the immune system through communication with immune cells, competitively exclude pathogens, and activate humoral and innate cell populations. The enteric nervous system, residing in the gastrointestinal system, governs the physiological functions of the gut and its interactions with extraintestinal organs. In this review we explore the antimicrobial compounds produced by species to enhance their impact on gastrointestinal health and disease, as well as insights into the connection between intestinal and extraintestinal diseases.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013383124250416064658
2025-04-21
2025-11-03
Loading full text...

Full text loading...

References

  1. WeströmB. Arévalo SuredaE. PierzynowskaK. PierzynowskiS.G. Pérez-CanoF.J. The immature gut barrier and its importance in establishing immunity in newborn mammals.Front. Immunol.202011115310.3389/fimmu.2020.01153 32582216
    [Google Scholar]
  2. Sánchez-AlcoholadoL. Ramos-MolinaB. OteroA. The role of the gut microbiome in colorectal cancer development and therapy response.Cancers2020126140610.3390/cancers12061406 32486066
    [Google Scholar]
  3. ZengM.Y. InoharaN. NuñezG. Mechanisms of inflammation-driven bacterial dysbiosis in the gut.Mucosal Immunol.2017101182610.1038/mi.2016.75 27554295
    [Google Scholar]
  4. VestbyL.K. GrønsethT. SimmR. NesseL.L. Bacterial biofilm and its role in the pathogenesis of disease.Antibiotics2020925910.3390/antibiotics9020059 32028684
    [Google Scholar]
  5. ForniD. CaglianiR. PontremoliC. Antigenic variation of SARS‐CoV‐2 in response to immune pressure.Mol. Ecol.202130143548355910.1111/mec.15730 33289207
    [Google Scholar]
  6. SinghH. ChopraC. SinghH. Gut-brain axis and Alzheimer’s disease: Therapeutic interventions and strategies.J. Funct. Foods202411210591510.1016/j.jff.2023.105915
    [Google Scholar]
  7. KamadaN. ChenG.Y. InoharaN. NúñezG. Control of pathogens and pathobionts by the gut microbiota.Nat. Immunol.201314768569010.1038/ni.2608 23778796
    [Google Scholar]
  8. MühlenS. DerschP. Anti-virulence strategies to target bacterial infections.Curr. Top. Microbiol. Immunol.201539814718310.1007/82_2015_490 26942418
    [Google Scholar]
  9. KlünemannM. AndrejevS. BlascheS. Bioaccumulation of therapeutic drugs by human gut bacteria.Nature2021597787753353810.1038/s41586‑021‑03891‑8 34497420
    [Google Scholar]
  10. Barcel’o-CoblijnG. AmedeiA. The interplay of microbiome and immune response in health and diseases. MDPI.2019Available from: https://www.mdpi.com/books/reprint/1778-the-interplay-of-microbiome-and-immune-response-in-health-and-diseases
    [Google Scholar]
  11. MazziottaC. TognonM. MartiniF. TorreggianiE. RotondoJ.C. Probiotics mechanism of action on immune cells and beneficial effects on human health.Cells202312118410.3390/cells12010184 36611977
    [Google Scholar]
  12. FijanS. FrauwallnerA. VargaL. Health professionals’ knowledge of probiotics: An international survey.Int. J. Environ. Res. Public Health20191617312810.3390/ijerph16173128 31466273
    [Google Scholar]
  13. BizaniD. MottaA.S. MorrissyJ.A. TerraR.M. SoutoA.A. BrandelliA. Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus.Int. Microbiol.200582125131 16052461
    [Google Scholar]
  14. SoaresM.B. MartinezR.C.R. PereiraE.P.R. The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions.Food Res. Int.201912510854210.1016/j.foodres.2019.108542 31554104
    [Google Scholar]
  15. MohamadzadehM. AbbaspourS. Probiotic applications of Bacillus subtilis. Bacillus subtilis - Functionalities and Emerging Applications.IntechOpen2024Available from: https://www.intechopen.com/chapters/1201871
    [Google Scholar]
  16. CaulierS. NannanC. GillisA. LicciardiF. BragardC. MahillonJ. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group.Front. Microbiol.20191030210.3389/fmicb.2019.00302 30873135
    [Google Scholar]
  17. SharmaG. DangS. GuptaS. GabraniR. Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101.Med. Princ. Pract.201827218619210.1159/000487306 29402863
    [Google Scholar]
  18. MottaA.S. FloresF.S. SoutoA.A. BrandelliA. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope.Antonie van Leeuwenhoek2008933275284 17906937
    [Google Scholar]
  19. SharmaN. GautamN. Antibacterial activity and characterization of bacteriocin of Bacillus mycoides isolated from whey.Indian J. Biotechnol.200871117121
    [Google Scholar]
  20. KhochamitN. SiripornadulsilS. SukonP. SiripornadulsilW. Antibacterial activity and genotypic–phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: Potential as a probiotic strain.Microbiol. Res.2015170365010.1016/j.micres.2014.09.004 25440998
    [Google Scholar]
  21. ChiZ. RongY.J. LiY. TangM.J. ChiZ.M. Biosurfactins production by Bacillus amyloliquefaciens R3 and their antibacterial activity against multi-drug resistant pathogenic E. coli.Bioprocess Biosyst. Eng.201538585386110.1007/s00449‑014‑1328‑9 25407729
    [Google Scholar]
  22. TorresM.J. PetroselliG. DazM. Erra-BalsellsR. AudisioM.C. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.World J. Microbiol. Biotechnol.201531692994010.1007/s11274‑015‑1847‑9 25820813
    [Google Scholar]
  23. SabatéD.C. AudisioM.C. Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains.Microbiol. Res.2013168312512910.1016/j.micres.2012.11.004 23265790
    [Google Scholar]
  24. AbdelliF. JardakM. ElloumiJ. Antibacterial, anti-adherent and cytotoxic activities of surfactin(s) from a lipolytic strain Bacillus safensis F4.Biodegradation201930428730010.1007/s10532‑018‑09865‑4 30600423
    [Google Scholar]
  25. MeenaK.R. SharmaA. KanwarS.S. Antitumoral and antimicrobial activity of surfactin extracted from Bacillus subtilis KLP2015.Int. J. Pept. Res. Ther.202026142343310.1007/s10989‑019‑09848‑w
    [Google Scholar]
  26. LvJ. DaR. ChengY. Mechanism of antibacterial activity of Bacillus amyloliquefaciens C‐1 lipopeptide toward anaerobic Clostridium difficile.BioMed Res. Int.202020201310461310.1155/2020/3104613 32190658
    [Google Scholar]
  27. LoiseauC. SchlusselhuberM. BigotR. BertauxJ. BerjeaudJ.M. VerdonJ. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity.Appl. Microbiol. Biotechnol.201599125083509310.1007/s00253‑014‑6317‑z 25573468
    [Google Scholar]
  28. a) SharmaD SinghSS BaindaraP Surfactin like broad spectrum antimicrobial lipopeptide co-produced with sublancin from Bacillus subtilis strain A52: Dual reservoir of bioactives.Front Microbiol202011116710.3389/fmicb.2020.01167 32595619
    [Google Scholar]
  29. b) MouniaYoucef-Ali NoreddineKC LaidD Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis.Afr J Microbiol Res2014864768410.5897/AJMR2013.6327
    [Google Scholar]
  30. HathoutY. HoY.P. RyzhovV. DemirevP. FenselauC. Kurstakins: A new class of lipopeptides isolated from Bacillus thuringiensis.J. Nat. Prod.200063111492149610.1021/np000169q 11087590
    [Google Scholar]
  31. RivardoF. TurnerR.J. AllegroneG. CeriH. MartinottiM.G. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.Appl. Microbiol. Biotechnol.200983354155310.1007/s00253‑009‑1987‑7 19343338
    [Google Scholar]
  32. RautelaR. SinghA.K. ShuklaA. CameotraS.S. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.Antonie van Leeuwenhoek2014105580982110.1007/s10482‑014‑0135‑2 24623107
    [Google Scholar]
  33. ZhaoC. LvX. FuJ. HeC. HuaH. YanZ. In vitro inhibitory activity of probiotic products against oral Candida species.J. Appl. Microbiol.2016121125426210.1111/jam.13138 26999745
    [Google Scholar]
  34. LeiS. ZhaoH. PangB. Capability of iturin from Bacillus subtilis to inhibit Candida albicans in vitro and in vivo.Appl. Microbiol. Biotechnol.2019103114377439210.1007/s00253‑019‑09805‑z 30997554
    [Google Scholar]
  35. RamachandranR. ShrivastavaM. NarayananN.N. ThakurR.L. ChakrabartiA. RoyU. Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class bacillomycin from Bacillus subtilis RLID 12.1.Antimicrob. Agents Chemother.2018621e01457e1710.1128/AAC.01457‑17 29038271
    [Google Scholar]
  36. TabbeneO. KalaiL. Ben SlimeneI. Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38.FEMS Microbiol. Lett.2011316210811410.1111/j.1574‑6968.2010.02199.x 21204933
    [Google Scholar]
  37. NamJ. AlamS.T. KangK. ChoiJ. SeoM.H. Anti‐staphylococcal activity of a cyclic lipopeptide, C15‐bacillomycin D, produced by Bacillus velezensis NST6.J. Appl. Microbiol.202113119310410.1111/jam.14936 33211361
    [Google Scholar]
  38. EregaA. StefanicP. DogsaI. Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms.Appl. Environ. Microbiol.20218712e02955e2010.1128/AEM.02955‑20 33837012
    [Google Scholar]
  39. HamdacheA. LamartiA. AleuJ. ColladoI.G. Non-peptide metabolites from the genus Bacillus.J. Nat. Prod.201174489389910.1021/np100853e 21401023
    [Google Scholar]
  40. Romero-TabarezM. JansenR. SyllaM. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia.Antimicrob. Agents Chemother.20065051701170910.1128/AAC.50.5.1701‑1709.2006 16641438
    [Google Scholar]
  41. SchmidtE.W. The hidden diversity of ribosomal peptide natural products.BMC Biol.2010818310.1186/1741‑7007‑8‑83 20594290
    [Google Scholar]
  42. HuangF. TengK. LiuY. Bacteriocins: Potential for human health.Oxid. Med. Cell. Longev.202120211551882510.1155/2021/5518825 33936381
    [Google Scholar]
  43. AjeshK. SudarslalS. ArunanC. SreejithK. Kannurin, a novel lipopeptide from Bacillus cereus strain AK1: Isolation, structural evaluation and antifungal activities.J. Appl. Microbiol.201311561287129610.1111/jam.12324 23937170
    [Google Scholar]
  44. FanH. RuJ. ZhangY. WangQ. LiY. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.Microbiol. Res.2017199899710.1016/j.micres.2017.03.004 28454713
    [Google Scholar]
  45. SenR. Surfactin: Biosynthesis, genetics and potential applications.Adv. Exp. Med. Biol.201067231632310.1007/978‑1‑4419‑5979‑9_24 20545293
    [Google Scholar]
  46. SurS. RomoT.D. GrossfieldA. Selectivity and mechanism of fengycin, an antimicrobial lipopeptide, from molecular dynamics.J. Phys. Chem. B201812282219222610.1021/acs.jpcb.7b11889 29376372
    [Google Scholar]
  47. RomaniukJ A CegelskiL Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR.Philos Trans R Soc Lond B Biol Sci201537016792015002410.1098/rstb.2015.0024
    [Google Scholar]
  48. EregaA. StefanicP. DanevčičT. SmoleM.S. MandicM.I. Impact of Bacillus subtilis antibiotic bacilysin and Campylobacter jejuni efflux pumps on pathogen survival in mixed biofilms.Microbiol. Spectr.2022104e02156e2210.1128/spectrum.02156‑22 35938811
    [Google Scholar]
  49. TamehiroN. Okamoto-HosoyaY. OkamotoS. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168.Antimicrob. Agents Chemother.200246231532010.1128/AAC.46.2.315‑320.2002 11796336
    [Google Scholar]
  50. RappC. JungG. KatzerW. LoefflerW. Chlorotetain from Bacillus subtilis, an antifungal dipeptide with an unusual chlorine‐containing amino acid.Angew. Chem. Int. Ed. Engl.198827121733173410.1002/anie.198817331
    [Google Scholar]
  51. PatelA.K. DeshattiwarM.K. ChaudhariB.L. ChincholkarS.B. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp.Bioresour. Technol.2009100136837310.1016/j.biortech.2008.05.008 18585911
    [Google Scholar]
  52. Torres-SánchezA. Pardo-CachoJ. López-MorenoA. Ruiz-MorenoÁ. CerkK. AguileraM. Antimicrobial effects of potential probiotics of Bacillus spp. Isolated from human microbiota: In vitro and in silico methods.Microorganisms202198161510.3390/microorganisms9081615 34442694
    [Google Scholar]
  53. RhayatL. MarescaM. NicolettiC. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response.Front. Immunol.20191056410.3389/fimmu.2019.00564 30984172
    [Google Scholar]
  54. FreedmanK.E. HillJ.L. WeiY. Examining the gastrointestinal and immunomodulatory effects of the novel probiotic Bacillus subtilis DE111.Int. J. Mol. Sci.2021225245310.3390/ijms22052453 33671071
    [Google Scholar]
  55. RheeK.J. SethupathiP. DriksA. LanningD.K. KnightK.L. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire.J. Immunol.200417221118112410.4049/jimmunol.172.2.1118 14707086
    [Google Scholar]
  56. SuvaM. SurejaV. KheniD. Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications.J Curr Res Sci Med201622657210.4103/2455‑3069.198381
    [Google Scholar]
  57. IlinskayaO.N. UlyanovaV.V. YarullinaD.R. GataullinI.G. Secretome of intestinal Bacilli: A natural guard against pathologies.Front. Microbiol.20178166610.3389/fmicb.2017.01666 28919884
    [Google Scholar]
  58. SandersM.E. MorelliL. TompkinsT.A. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus.Compr. Rev. Food Sci. Food Saf.20032310111010.1111/j.1541‑4337.2003.tb00017.x 33451235
    [Google Scholar]
  59. MarzoratiM. Van den AbbeeleP. BubeckS.S. Bacillus subtilis HU58 and Bacillus coagulans SC208 probiotics reduced the effects of antibiotic-induced gut microbiome dysbiosis in an M-SHIME® model.Microorganisms202087102810.3390/microorganisms8071028 32664604
    [Google Scholar]
  60. AmedeiA. Barceló-CoblijnG. The interplay of microbiome and immune response in health and diseases.Intern J Mol Sci201920610.3390/books978‑3‑03921‑647‑5
    [Google Scholar]
  61. YossefS. ClarkF. BubeckS.S. An oral formulation of the probiotic, Bacillus subtilis HU58, was safe and well tolerated in a pilot study of patients with hepatic encephalopathy.Evid. Based Complement. Alternat. Med.202020201146310810.1155/2020/1463108 32714397
    [Google Scholar]
  62. OstaffM.J. StangeE.F. WehkampJ. Antimicrobial peptides and gut microbiota in homeostasis and pathology.EMBO Mol. Med.20135101465148310.1002/emmm.201201773 24039130
    [Google Scholar]
  63. GopikrishnaT. SureshK.H.K. PerumalK. ElangovanE. Impact of Bacillus in fermented soybean foods on human health.Ann. Microbiol.20217113010.1186/s13213‑021‑01641‑9 34305497
    [Google Scholar]
  64. GagliardiA. TotinoV. CacciottiF. Rebuilding the gut microbiota ecosystem.Int. J. Environ. Res. Public Health2018158167910.3390/ijerph15081679 30087270
    [Google Scholar]
  65. SayemS.M.A. ManzoE. CiavattaL. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis.Microb. Cell Fact.20111017410.1186/1475‑2859‑10‑74 21951859
    [Google Scholar]
  66. MadempudiR.S. KalleA.M. Antiproliferative effects of Bacillus coagulans unique IS2 in colon cancer cells.Nutr. Cancer20176971062106810.1080/01635581.2017.1359317 28910156
    [Google Scholar]
  67. Aguilar-ToaláJ.E. HallF.G. Urbizo-ReyesU.C. In silico prediction and in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria.Probiotics Antimicrob. Proteins202012260862210.1007/s12602‑019‑09568‑z 31280464
    [Google Scholar]
  68. YinL. MengZ. ZhangY. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.J. Control. Release2018271314410.1016/j.jconrel.2017.12.013 29274436
    [Google Scholar]
  69. RubioA.P.D. MartínezJ. PalavecinoM. Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model.Sci. Rep.2020101312010.1038/s41598‑020‑60077‑4 32080346
    [Google Scholar]
  70. ChengH.W. JiangS. HuJ. Gut-brain axis: Probiotic, Bacillus subtilis, prevents aggression via the modification of the central serotonergic system.Oral health by using probiotic products.IntechOpen2019Available from: https://www.intechopen.com/chapters/67675 10.5772/intechopen.86775
    [Google Scholar]
  71. YanF.F. WangW.C. ChengH.W. Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens.J. Funct. Foods20184950150910.1016/j.jff.2018.09.017
    [Google Scholar]
  72. JiangS. HuJ.Y. ChengH.W. The impact of probiotic Bacillus subtilis on injurious behavior in laying hens.Animals202212787010.3390/ani12070870 35405859
    [Google Scholar]
  73. MajeedM. NagabhushanamK. ArumugamS. MajeedS. AliF. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: A randomised, double-blind, placebo controlled, multi-centre, pilot clinical study.Food Nutr. Res.20186210.29219/fnr.v62.1218
    [Google Scholar]
  74. CogliatiS. ClementiV. FranciscoM. CrespoC. ArgañarazF. GrauR. Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer’s disease model Caenorhabditis elegans.J. Alzheimers Dis.20207331035105210.3233/JAD‑190837 31884470
    [Google Scholar]
  75. FengS. MengC. HaoZ. LiuH. Bacillus licheniformis reshapes the gut microbiota to alleviate the subhealth.Nutrients2022148164210.3390/nu14081642 35458204
    [Google Scholar]
  76. SattiS. PalepuM.S.K. SinghA.A. Anxiolytic- and antidepressant-like effects of Bacillus coagulans unique IS-2 mediate via reshaping of microbiome gut-brain axis in rats.Neurochem. Int.202316310548310.1016/j.neuint.2023.105483 36641109
    [Google Scholar]
  77. ZhaoY. WangT. LiP. Bacillus amyloliquefaciens B10 can alleviate aflatoxin B1-induced kidney oxidative stress and apoptosis in mice.Ecotoxicol. Environ. Saf.202121811228610.1016/j.ecoenv.2021.112286 33933810
    [Google Scholar]
  78. PatelC. PatelP. AcharyaS. Therapeutic prospective of a spore-forming probiotic-Bacillus clausii UBBC07 against acetaminophen-induced uremia in rats.Probiotics Antimicrob. Proteins202012125325810.1007/s12602‑019‑09540‑x
    [Google Scholar]
  79. KandilA. The effects of a probiotic (Bacillus clausii) in acute kidney injury in a rat model of LPS-induced endotoxemia.Eur J Biol2021801485310.26650/EurJBiol.2021.931755
    [Google Scholar]
  80. JafarpourD. ShekarforoushS.S. GhaisariH.R. NazifiS. SajedianfardJ. EskandariM.H. Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats.BMC Complement. Altern. Med.201717129110.1186/s12906‑017‑1803‑3 28583137
    [Google Scholar]
  81. MajlesiM. ShekarforoushS.S. GhaisariH.R. NazifiS. SajedianfardJ. EskandariM.H. Effect of probiotic Bacillus coagulans and Lactobacillus plantarum on alleviation of mercury toxicity in rat.Probiotics Antimicrob. Proteins20179330030910.1007/s12602‑016‑9250‑x 28084611
    [Google Scholar]
  82. ZhaoM. ChenC. YuanZ. Dietary Bacillus subtilis supplementation alleviates alcohol induced liver injury by maintaining intestinal integrity and gut microbiota homeostasis in mice.Exp. Ther. Med.2021225131210.3892/etm.2021.10747 34630666
    [Google Scholar]
  83. WangY. WuY. WangB. Bacillus amyloliquefaciens SC06 protects mice against high-fat diet-induced obesity and liver injury via regulating host metabolism and gut microbiota.Front. Microbiol.201910116110.3389/fmicb.2019.01161 31191487
    [Google Scholar]
  84. DeabesM.M. AboulthanaW.M. AhmedK.A. NaguibK.M. Assessment of the ameliorative effect of Bacillus subtilis against the toxicity induced by aflatoxin B1 in rats.Egypt. J. Chem.20216442141216410.21608/ejchem.2021.67171.3450
    [Google Scholar]
  85. ShahgondL. PatelC. ThakurK. SarkarD. AcharyaS. PatelP. Therapeutic potential of probiotics – Lactobacillus plantarum UBLP40 and Bacillus clausii UBBC07 on thioacetamide-induced acute hepatic encephalopathy in rats.Metab. Brain Dis.202237118519510.1007/s11011‑021‑00862‑w 34731397
    [Google Scholar]
  86. WuY. WangB. TangL. Probiotic Bacillus alleviates oxidative stress-induced liver injury by modulating gut-liver axis in a rat model.Antioxidants202211229110.3390/antiox11020291 35204173
    [Google Scholar]
  87. ZhaoY. ZengD. WangH. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against clostridium perfringens–induced subclinical necrotic enteritis.Probiotics Antimicrob. Proteins202012388389510.1007/s12602‑019‑09597‑8 31713770
    [Google Scholar]
  88. KohY.C. ChangY.C. LinW.S. Efficacy and mechanism of the action of live and heat-killed Bacillus coagulans BC198 as potential probiotic in ameliorating dextran sulfate sodium-induced colitis in mice.ACS Omega202499102531026610.1021/acsomega.3c07529 38463297
    [Google Scholar]
  89. BaindaraP. ChakrabortyR. HollidayZ.M. MandalS.M. SchrumA.G. Oral probiotics in coronavirus disease 2019: Connecting the gut–lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials.New Microbes New Infect.20214010083710.1016/j.nmni.2021.100837 33425362
    [Google Scholar]
  90. ZhangP. HuangL. ZhangE. YuanC. YangQ. Oral administration of Bacillus subtilis promotes homing of CD3+ T cells and IgA-secreting cells to the respiratory tract in piglets.Res. Vet. Sci.202113631031710.1016/j.rvsc.2021.03.006 33756379
    [Google Scholar]
  91. CampbellA.W. SinatraD. ZhangZ. SinatraS.T. Efficacy of spore forming Bacilli supplementation in patients with mild to moderate elevation of triglycerides: A 12 week, randomized, double-blind, placebo controlled trial.Integr. Med.20201922227 33041703
    [Google Scholar]
  92. MajeedM. MajeedS. NagabhushanamK. ArumugamS. BeedeK. AliF. Evaluation of the in vitro cholesterol‐lowering activity of the probiotic strain Bacillus coagulans MTCC 5856.IJFST2019541212220
    [Google Scholar]
  93. MandelD.R. EichasK. HolmesJ. Bacillus coagulans: A viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial.BMC Complement. Altern. Med.2010101110.1186/1472‑6882‑10‑1 20067641
    [Google Scholar]
  94. TakimotoT. HatanakaM. HoshinoT. Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: A randomized, placebo-controlled, double-blind clinical trial.Biosci. Microbiota Food Health2018374879610.12938/bmfh.18‑006 30370192
    [Google Scholar]
  95. CiurescuG. DumitruM. GheorgheA. UnteaA.E. DrăghiciR. Effect of Bacillus subtilis on growth performance, bone mineralization, and bacterial population of broilers fed with different protein sources.Poult. Sci.202099115960597110.1016/j.psj.2020.08.075 33142513
    [Google Scholar]
  96. MohammedA.A. ZakiR.S. NegmE.A. MahmoudM.A. ChengH.W. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens.Poult. Sci.2021100310090610.1016/j.psj.2020.11.073 33518351
    [Google Scholar]
  97. MessoraM.R. PereiraL.J. FoureauxR. Favourable effects of Bacillus subtilis and Bacillus licheniformis on experimental periodontitis in rats.Arch. Oral Biol.20166610811910.1016/j.archoralbio.2016.02.014 26945169
    [Google Scholar]
  98. JiangS. YanF.F. HuJ.Y. MohammedA. ChengH.W. Bacillus subtilis-based probiotic improves skeletal health and immunity in broiler chickens exposed to heat stress.Animals2021116149410.3390/ani11061494 34064126
    [Google Scholar]
  99. SyedS. ChinthalaP. Heavy metal detoxification by different Bacillus species isolated from solar salterns.Scientifica201520151810.1155/2015/319760 26525498
    [Google Scholar]
  100. MiryusifovaK. The saffron effects on the dynamics of experimental epilepsy.Adv Biol Earth Sci20249119620210.62476/abes9196
    [Google Scholar]
  101. DaiY. WangM. ZhongD. XuX. Bacillus subtilis plays a role in the inhibition of transporter ABCB1 in Caco-2 cells.Epilepsy Res.202218310692510.1016/j.eplepsyres.2022.106925 35526327
    [Google Scholar]
  102. TripathiA. DebeliusJ. BrennerD.A. Publisher correction: The gut–liver axis and the intersection with the microbiome.Nat. Rev. Gastroenterol. Hepatol.2018151278510.1038/s41575‑018‑0031‑8 29785003
    [Google Scholar]
  103. BuddenK.F. GellatlyS.L. WoodD.L.A. Emerging pathogenic links between microbiota and the gut–lung axis.Nat. Rev. Microbiol.2017151556310.1038/nrmicro.2016.142 27694885
    [Google Scholar]
  104. NovakovicM. RoutA. KingsleyT. Role of gut microbiota in cardiovascular diseases.World J. Cardiol.202012411012210.4330/wjc.v12.i4.110 32431782
    [Google Scholar]
  105. BelapurkarP. GoyalP. KarA. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity.J. Pharm. Bioallied Sci.20168427227610.4103/0975‑7406.199344 28216949
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013383124250416064658
Loading
/content/journals/cnf/10.2174/0115734013383124250416064658
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test