Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

L, known as olive, is an ancient tree that has been part of traditional and modern therapies. Table olives are produced by curing and then fermenting the olive drupe, a process that involves debittering the olive fruit by eliminating oleuropein, a bitter phenolic compound characteristic of the family. The curing of bitterness is an important method used with food products to increase the quality and health benefits of several edibles. The process of curing differs between the Spanish, Californian, and Greek styles, resulting in different levels of maturation and ripening. Other curing methods include using water alone, a combination of salt and oil, dry salt, and freezing. The presence of high salt concentration in table olives presents a barrier for some people with health conditions, such as hypertension, from consuming it.

Objective

The aim of this study is to search for alternative curing techniques, making table olives more universal and suitable for those with health conditions.

Methods

Herein, we review and discuss Sumac, L., a dark red condiment and flavoring agent commonly used in the Mediterranean region, as a potential curing agent for olives.

Results

The literature reports Sumac as a strong antimicrobial and antioxidant agent due to its high phenolic content. These properties make it an effective natural preservative and a healthier alternative to salt in olive curing. Furthermore, its use in curing olives can help maintain the firm texture of the fruit while reducing dietary sodium intake, addressing health concerns such as hypertension and cardiovascular diseases.

Conclusion

Replacing salt with Sumac in table olive curing offers a novel approach to food production that addresses the global health challenge of excessive sodium consumption. Sumac’s antioxidant, anti-inflammatory, and antimicrobial properties improve the nutritional profile of olives while supporting the health of individuals with hypertension and cardiovascular diseases. This innovative method has the potential to revolutionize table olive production and contribute to broader public health goals.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013359231250319063048
2025-04-03
2025-11-03
Loading full text...

Full text loading...

References

  1. BesnardG. TerralJ.F. CornilleA. On the origins and domestication of the olive: A review and perspectives.Ann. Bot. (Lond.)2018121338540310.1093/aob/mcx14529293871
    [Google Scholar]
  2. Haris O.S. Oleuropein in olive and its pharmacological effects.Sci. Pharm.201078213315410.3797/scipharm.0912‑1821179340
    [Google Scholar]
  3. GhanbariR. AnwarF. AlkharfyK.M. GilaniA.H. SaariN. Valuable nutrients and functional bioactives in different parts of olive Olea europaea: A review.Int. J. Mol. Sci.20121333291334010.3390/ijms1303329122489153
    [Google Scholar]
  4. ConteP. FaddaC. Del CaroA. UrgegheP.P. PigaA. Table olives: An overview on effects of processing on nutritional and sensory quality.Foods20209451410.3390/foods904051432325961
    [Google Scholar]
  5. SaúdeC. BarrosT. MateusT. QuintasC. Pires-CabralP. Effect of chloride salts on the sensory and nutritional properties of cracked table olives of the Maçanilha Algarvia cultivar.Food Biosci.201719737910.1016/j.fbio.2017.06.001
    [Google Scholar]
  6. Abu-ReidahI.M. Ali-ShtayehM.S. JamousR.M. Arráez-RománD. Segura-CarreteroA. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits.Food Chem.201516617919110.1016/j.foodchem.2014.06.01125053044
    [Google Scholar]
  7. AlsamriH. AthamnehK. PintusG. EidA.H. IratniR. Pharmacological and antioxidant activities of Rhus coriaria L. (Sumac).Antioxidants20211017310.3390/antiox10010073
    [Google Scholar]
  8. Fernández-PoyatosM. del P. Llorent-MartínezE. J. Ruiz-MedinaA. Effect of ripening on the phenolic composition and mineral content of three varieties of olive fruitsFoods202110238010.3390/foods10020380
    [Google Scholar]
  9. FernándezA.G AdamsM.R Fernandez-DiezM.J Table Olives: Production and processing.Springer New York199710.3390/foods10020380
    [Google Scholar]
  10. EstiM. CinquantaL. La NotteE. Phenolic compounds in different olive varietiesJ. Agric Food Chem. 19984613210.1021/jf970391+
    [Google Scholar]
  11. SkodraC. TiteliV.S. MichailidisM. BazakosC. GanopoulosI. MolassiotisA. TanouG. Olive fruit development and ripening: Break on through to the “-Omics” side.Int. J. Mol. Sci.20212211580610.3390/ijms2211580634071656
    [Google Scholar]
  12. RochaJ. BorgesN. PinhoO. Table olives and health: A review.J. Nutr. Sci.20209e5710.1017/jns.2020.5033354328
    [Google Scholar]
  13. HashmiM.A. KhanA. HanifM. FarooqU. PerveenS. Traditional Uses, phytochemistry, and pharmacology of Olea europaea (Olive).Evid.-Based Complement. Altern. Med. ECAM2015201554159110.1155/2015/541591
    [Google Scholar]
  14. GiorgiF. LionelloP. Climate change projections for the Mediterranean region.Global Planet. Change2008632-39010410.1016/j.gloplacha.2007.09.005
    [Google Scholar]
  15. BritoC. DinisL.T. Moutinho-PereiraJ. CorreiaC.M. Drought stress effects and olive tree acclimation under a changing climate.Plants20198723210.3390/plants807023231319621
    [Google Scholar]
  16. OzalpA.Y. AkinciH. Evaluation of land suitability for olive Olea europaea cultivation using the random forest algorithm.Agriculture2023136120810.3390/agriculture13061208
    [Google Scholar]
  17. Vicario-ModroñoV. Gallardo-CobosR. Sánchez-ZamoraP. Sustainability evaluation of olive oil mills in Andalusia (Spain): A study based on composite indicators.Environ. Dev. Sustain.20232576363639210.1007/s10668‑022‑02307‑5
    [Google Scholar]
  18. GouvinhasI. MachadoN. SobreiraC. Domínguez-PerlesR. GomesS. RosaE. BarrosA. Critical review on the significance of olive phytochemicals in plant physiology and human health.Molecules20172211198610.3390/molecules2211198629144445
    [Google Scholar]
  19. ShahidiF. KiritsakisA. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and ProcessingJohn Wiley and Sons201710.1002/9781119135340
    [Google Scholar]
  20. IOC standards, methods and guides.2025Available from: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/
  21. JohnsonR.L. MitchellA.E. Reducing phenolics related to bitterness in table olives.J. Food Qual.2018201811210.1155/2018/3193185
    [Google Scholar]
  22. BoskouD. Table olives: A vehicle for the delivery of bioactive compoundsJ. Exp. Food Chem.201731232472054210.4172/2472‑0542.1000123
    [Google Scholar]
  23. BoskouD. CamposeoS. ClodoveoM.L. Table olives as sources of bioactive compounds.Olive and Olive Oil Bioactive Constituents. BoskouD. AOCS Press201521725910.1016/B978‑1‑63067‑041‑2.50014‑8
    [Google Scholar]
  24. MalheiroR. MendesP. FernandesF. RodriguesN. BentoA. PereiraJ.A. Bioactivity and phenolic composition from natural fermented table olives.Food Funct.20145123132314210.1039/C4FO00560K25266980
    [Google Scholar]
  25. RoncaC.L. MarquesS.S. RitieniA. Giménez-MartínezR. BarreirosL. SegundoM.A. Olive oil waste as a source of functional food ingredients: Assessing polyphenolic content and antioxidant activity in olive leaves.Foods202413218910.3390/foods1302018938254490
    [Google Scholar]
  26. NedianiC. RuzzoliniJ. RomaniA. CaloriniL. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases.Antioxidants201981257810.3390/antiox8120578
    [Google Scholar]
  27. OzdemirY, Guven E, Ozturk A. Understanding the characteristics of oleuropein for table olive processing.J. Food Process. Technol.20145532810.4172/2157‑7110.1000328
    [Google Scholar]
  28. OzturkA. RussoM. CacciolaF. Determination of the phenol and tocopherol content in italian high-quality extra-virgin olive oils by using LC-MS and multivariate data analysis. Food Anal. Methods20205131027104110.4172/2157‑7110.1000328
    [Google Scholar]
  29. PsomiadouE. TsimidouM. Stability of virgin olive oil. 1. Autoxidation studies.J. Agric. Food Chem.200250471672110.1021/jf010846211829634
    [Google Scholar]
  30. MedinaE. BrenesM. RomeroC. GarcíaA. CastroA. Main antimicrobial compounds in table olives.J. Agric. Food Chem.200755249817982310.1021/jf071975717970590
    [Google Scholar]
  31. ParadisoV.M. ClementeA. SummoC. PasqualoneA. CaponioF. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.Data Brief2016855355610.1016/j.dib.2016.05.076
    [Google Scholar]
  32. Gómez-CaravacaA.M. MaggioR.M. CerretaniL. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review.Anal. Chim. Acta201691312110.1016/j.aca.2016.01.02526944986
    [Google Scholar]
  33. KimS.K. KaradenizF. Biological importance and applications of squalene and squalane.Adv. Food Nutr. Res.20126522323310.1016/B978‑0‑12‑416003‑3.00014‑722361190
    [Google Scholar]
  34. OwenR.W. MierW. GiacosaA. HullW.E. SpiegelhalderB. BartschH. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene.Food Chem. Toxicol.200038864765910.1016/S0278‑6915(00)00061‑210908812
    [Google Scholar]
  35. KaluaC.M. AllenM.S. BedgoodD.R.Jr BishopA.G. PrenzlerP.D. RobardsK. Olive oil volatile compounds, flavour development and quality: A critical review.Food Chem.2007100127328610.1016/j.foodchem.2005.09.059
    [Google Scholar]
  36. ZamoraR. AlaizM. HidalgoF. J. Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition, and antioxidant activityJ. Agric. Food Chem.2001499426710.1021/jf0104634
    [Google Scholar]
  37. Gandul-RojasB. Gallardo-GuerreroL. Characterization and processing of table olives: A special issue.Foods2020910146910.3390/foods910146933076335
    [Google Scholar]
  38. CampusM. DeğirmencioğluN. ComunianR. Technologies and trends to improve table olive quality and safety.Front. Microbiol2018961710.3389/fmicb.2018.00617
    [Google Scholar]
  39. YadaS. HarrisL. J. YorkG. VaughR. Olives: Safe methods for home pickling.2007Available from: https://anrcatalog.ucanr.edu/pdf/8267.pdf
  40. MartinyT.R. DottoG.L. RaghavanV. de MoraesC.C. da RosaG.S. Freezing effect on the oleuropein content of olive leaves extracts obtained from microwave-assisted extraction.Int. J. Environ. Sci. Technol.20221910103758010.1007/s13762‑021‑03732‑134691198
    [Google Scholar]
  41. MontaganoF. Dell’OrcoF. PreteR. CorsettiA. Health benefits of fermented olives, olive pomace and their polyphenols: A focus on the role of lactic acid bacteria.Front. Nutr.202411146772410.3389/fnut.2024.146772439360269
    [Google Scholar]
  42. SakhrK. El KhatibS. Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac - Rhus coriaria): A review.Heliyon202061e0320710.1016/j.heliyon.2020.e0320732042964
    [Google Scholar]
  43. Abu-ReidaI.M. JamousR.M. Ali-ShtayehM.S. Phytochemistry, pharmacological properties and industrial applications of Rhus coriaria L. ( Sumac ).Jordan J. Biol. Sci.20147423324410.12816/0008245
    [Google Scholar]
  44. WheltonP.K. CareyR.M. AronowW.S. CaseyD.E.Jr CollinsK.J. Dennison HimmelfarbC. DePalmaS.M. GiddingS. JamersonK.A. JonesD.W. MacLaughlinE.J. MuntnerP. OvbiageleB. SmithS.C.Jr SpencerC.C. StaffordR.S. TalerS.J. ThomasR.J. WilliamsK.A.Sr WilliamsonJ.D. WrightJ.T.Jr 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.Hypertension20187161269132410.1161/HYP.000000000000006629133354
    [Google Scholar]
  45. PerroneA. YousefiS. BasileB. CorradoG. GiovinoA. SalamiS.A. PapiniA. MartinelliF. Phytochemical, antioxidant, anti-microbial, and pharmaceutical properties of Sumac (Rhus coriaria L.) and its genetic diversity.Horticulturae2022812116810.3390/horticulturae8121168
    [Google Scholar]
  46. ZannouO. Oussouk.F. ChabiI.B. Phytochemical and nutritional properties of sumac (Rhus coriaria): A potential ingredient for developing functional foods.J. Future Foods20255213510.1016/j.jfutfo.2024.01.002
    [Google Scholar]
  47. AronowW.S. Reduction in dietary sodium improves blood pressure and reduces cardiovascular events and mortality.Ann. Transl. Med2017540510.21037/atm.2017.08.06
    [Google Scholar]
  48. HeF.J. TanM. MaY. MacGregorG.A. Salt reduction to prevent hypertension and cardiovascular disease.J. Am. Coll. Cardiol.202075663264710.1016/j.jacc.2019.11.05532057379
    [Google Scholar]
  49. López-LópezA. Moreno-BaqueroJ.M. Garrido-FernándezA. The desalting process for table olives and its effect on their physicochemical characteristics and nutrient mineral content.Foods20231212230710.3390/foods12122307
    [Google Scholar]
  50. MirenayatF. S. HajhashemyZ. SiavashM. SaneeiP. Effects of sumac supplementation on metabolic markers in adults with metabolic syndrome: A triple-blinded randomized placebo-controlled cross-over clinical trialNutr J.20232212510.1186/s12937‑023‑00854‑9
    [Google Scholar]
  51. JaquesD.A. WuerznerG. PonteB. Sodium Intake as a cardiovascular risk factor: A Narrative review.Nutrients2021139317710.3390/nu1309317734579054
    [Google Scholar]
  52. CalabròA. LigottiM. E. AccardiG. Di MajoD. CarusoC. CandoreG. AielloA. The nutraceutical properties of Rhus coriaria Linn: Potential application on human health and aging biomedicineInt J Mol Sci.202324/7620610.3390/ijms24076206
    [Google Scholar]
  53. TeshomeE. ForsidoS.F. RupasingheH.P.V. KeyataE.O. Potentials of natural preservatives to enhance food safety and shelf life: A review.Sci. World J.20222022990101810.1155/2022/9901018
    [Google Scholar]
  54. NessabianM.S. MansouripourS. RamezanY. Sumac extract as a natural preservative in mayonnaise: Effects on lipid oxidation, microbial growth, physicochemical, rheological, and sensory characteristics.J. Agric. Food Res20241810146310.1016/j.jafr.2024.101463
    [Google Scholar]
  55. ShiJ. XuJ. LiuX. Evaluation of some artificial food preservatives and natural plant extracts as antimicrobial agents for safety.Discov. Food202448910.1007/s44187‑024‑00162‑z
    [Google Scholar]
  56. LeeS.M. KitsawadK. SigalA. FlynnD. GuinardJ.X. Sensory properties and consumer acceptance of imported and domestic sliced black ripe olives.J. Food Sci.20127712S439S44810.1111/j.1750‑3841.2012.03001.x23240976
    [Google Scholar]
  57. López-LópezA. Moreno-BaqueroJ.M. Garrido-FernándezA. Impact of salts mixtures on the physicochemical and sensory characteristics of spanish-style manzanilla green table olives during packaging.Foods20231219356110.3390/foods1219356137835215
    [Google Scholar]
  58. JosephGili KoltaiHinanit RonEliora Z. AzzamNaiel HazanHaim RaskinIlya MengeritskyGalina MazuzMoran ShalevNurit BiranDvora PoulevAlexander FridlenderBertold Rhus coriaria L. (sumac) leaves harbour robust antimicrobial activity.J. Herb. Med.20234110072910.1016/j.hermed.2023.100729
    [Google Scholar]
  59. FarazandehniaN. SotoudeganF. SepahyA.A. FazeliM.R. Antibacterial and antioxidant properties of sumac extract on methicillin-resistant Staphylococcus aureus.AMB Express202414111110.1186/s13568‑024‑01759‑4
    [Google Scholar]
  60. Al-ZorekyN.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels.Int. J. Food. Microbiol.2009134324410.1016/j.ijfoodmicro.2009.07.002
    [Google Scholar]
  61. KhalilMohamad HayekSoukayna KhalilNour SeraleNadia VerganiLaura CalassoMaria De AngelisMaria PortincasaPiero Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplayJ. Funct. Foods20218710481110.1016/j.jff.2021.104811
    [Google Scholar]
  62. El-KhatibS. AssafN. Antioxidant and antibacterial activity of plants extracts in food industry and safety.J. Food Technol20226813610.35841/aapcgp‑6.8.136
    [Google Scholar]
  63. GhafouriA EstêvãoMD AlibakhshiP PizarroAB KashaniAF PersadE HeydariH HasaniM HeshmatiJ MorvaridzadehM Sumac fruit supplementation improve glycemic parameters in patients with metabolic syndrome and related disorders: A systematic review and meta-analysisPhytomedicine20219015366110.1016/j.phymed.2021.153661
    [Google Scholar]
  64. Akbari-FakhrabadiM. HeshmatiJ. SepidarkishM. ShidfarF. Effect of sumac (Rhus Coriaria) on blood lipids: A systematic review and meta-analysis.Complement. Ther. Med201881210.1016/j.ctim.2018.07.001
    [Google Scholar]
  65. AsgaryS. SalehizadehL. KeshvariM. TaheriM. SpenceN.D. FarvidM.S. Rafieian-KopaeiM. SarrafzadeganN. Potential cardioprotective effects of sumac capsule in patients with hyperlipidemia: A triple-blind randomized, placebo-controlled crossover trial.J. Am. Coll. Nutr.201837428629210.1080/07315724.2017.139423729425477
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013359231250319063048
Loading
/content/journals/cnf/10.2174/0115734013359231250319063048
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Curing; debittering; oleuropein; sodium consumption; sumac; table olives
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test