Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Various factors, including physical, chemical, and biological hazards threaten food safety. Among these, the significance of microbial (bacteria and fungi) and chemical (biogenic amines, mycotoxins, and heavy metals) contamination cannot be overstated. In recent years, a novel approach has emerged for effectively managing these risks, which relies on probiotics and postbiotics. Recent research suggests that postbiotics show promise as potential alternatives to probiotic cells and can be valuable in improving food safety. The term “postbiotics” refers to soluble substances, including enzymes, teichoic acids, muropeptides from peptidoglycans, polysaccharides, proteins, and peptides. These substances are either produced by live bacteria or released when bacterial cells break down. Postbiotics have gained significant attention due to their unique chemical composition, well-established dosing guidelines, extended shelf life, and the Existence of different signaling molecules that may possess antioxidant, anti-inflammatory, anti-obesity, immunomodulatory, anti-hypertensive, and immunomodulatory properties. This review emphasizes the definition of postbiotics and their role in reducing microbial and chemical contaminants to ensure food safety.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013337740241115052908
2025-01-02
2025-09-11
Loading full text...

Full text loading...

References

  1. DaviesB. BroughM. JohnstoneE. Food safety: Maximising impact by understanding the food business context.2014
    [Google Scholar]
  2. ValdramidisV.P. KoutsoumanisK.P. Challenges and perspectives of advanced technologies in processing, distribution and storage for improving food safety.Curr. Opin. Food Sci.201612636910.1016/j.cofs.2016.08.008
    [Google Scholar]
  3. BearthA. HartmannC. Consumers’ perception and acceptance of food additives.Reference Module in Food Science201710.1016/B978‑0‑08‑100596‑5.21250‑X
    [Google Scholar]
  4. BarrosC.P. GuimarãesJ.T. EsmerinoE.A. DuarteM.C.K.H. SilvaM.C. SilvaR. FerreiraB.M. Sant’AnaA.S. FreitasM.Q. CruzA.G. Paraprobiotics and postbiotics: concepts and potential applications in dairy products.Curr. Opin. Food Sci.2020321810.1016/j.cofs.2019.12.003
    [Google Scholar]
  5. KhaniN. ShkouhianS. KafilH.S. GilaniN. AbbasiA. RadA.H. Assessing the growth-inhibitory activity of postbiotics of Lactobacillus spp. against Staphylococcus aureus under in vitro circumstances and food model.Lett. Appl. Microbiol.2023762ovac05610.1093/lambio/ovac05636734084
    [Google Scholar]
  6. KhaniN. SoleimaniR.A. MilaniP.G. RadA.H. Evaluation of the antifungal and antibiofilm activity of postbiotics derived from Lactobacillus spp. on Penicillium expansoum in vitro and in food model.Lett. Appl. Microbiol.2023767ovad07010.1093/lambio/ovad07037339913
    [Google Scholar]
  7. Aghebati-MalekiL. Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: a review of mechanisms and therapeutic perspectives.Biointerface Res. Appl. Chem.20211222629264510.33263/BRIAC122.26292645
    [Google Scholar]
  8. KhaniN. NoorkhajaviG. ReziabadR.H. Postbiotics as potential detoxification tools for mitigation of pesticides.Probiotics Antimicrob. Proteins202311337934379
    [Google Scholar]
  9. KhaniN. NoorkhajaviG. SoleimanR.A. RaziabadR.H. RadA.H. AkhlaghiA.P. Aflatoxin biodetoxification strategies based on postbiotics.Probiotics Antimicrob. Proteins20241651673168610.1007/s12602‑024‑10242‑238478298
    [Google Scholar]
  10. Homayouni-RadA. SoleimaniR.A. KhaniN. Can postbiotics prevent or improve SARS-CoV-2?Curr. Nutr. Food Sci.202319875675710.2174/1573401318666221004112500
    [Google Scholar]
  11. MujwarS. SunL. FidanO. In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19.J. Food Biochem.2022469e1421910.1111/jfbc.1421935545850
    [Google Scholar]
  12. ErolI. KotilS.E. OrtakciF. DurdagiS. Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations.J. Biomol. Struct. Dyn.20234120107741078410.1080/07391102.2022.215893436591650
    [Google Scholar]
  13. RadAH, Aghebati-Maleki L, Kafil HS Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety.Biointerface Res. Appl. Chem.2021116145291454410.33263/BRIAC116.1452914544
    [Google Scholar]
  14. KhaniN. Abedi, S.R. ChadorshabiS. MoutabB.P. MilaniP.G. RadA.H. Postbiotics as candidates in biofilm inhibition in food industries.Lett. Appl. Microbiol.2024774ovad06910.1093/lambio/ovad06937309029
    [Google Scholar]
  15. ErolI. KotilS.E. FidanO. YetimanA.E. DurdagiS. OrtakciF. In silico analysis of bacteriocins from lactic acid bacteria against SARS-CoV-2.Probiotics Antimicrob. Proteins2023151172910.1007/s12602‑021‑09879‑034837166
    [Google Scholar]
  16. FidanO. MujwarS. KciukM. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing.Mol. Divers.202327146347510.1007/s11030‑022‑10440‑635507211
    [Google Scholar]
  17. HosseiniSA, Abbasi A, Sabahi S, Khani N Application of postbiotics produced by lactic acid bacteria in the development of active food packaging.Biointerface Res. Appl. Chem.20211256164618310.33263/BRIAC125.61646183
    [Google Scholar]
  18. TeiarR. SaneF. ErolI. NekouaM.P. LecouturierD. BoukherroubR. DurdağıS. HoberD. DriderD. Enterocin DD14 can inhibit the infection of eukaryotic cells with enveloped viruses.Arch. Microbiol.2024206626910.1007/s00203‑024‑04002‑738767708
    [Google Scholar]
  19. ChatterjeeA. AbrahamJ. Microbial contamination, prevention, and early detection in food industry.Microbial contamination and food degradation.Elsevier2018214710.1016/B978‑0‑12‑811515‑2.00002‑0
    [Google Scholar]
  20. MoreirinhaC. VilelaC. SilvaN.H.C.S. PintoR.J.B. AlmeidaA. RochaM.A.M. CoelhoE. CoimbraM.A. SilvestreA.J.D. FreireC.S.R. Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging.Food Hydrocoll.202010810583610.1016/j.foodhyd.2020.105836
    [Google Scholar]
  21. GeboJ.E.T. EastA.D. LauA.F. A side-by-side comparison of clinical versus current good manufacturing practices (cGMP) microbiology laboratory requirements for sterility testing of cellular and gene therapy products.Clin. Microbiol. Newsl.2021432118119110.1016/j.clinmicnews.2021.10.001
    [Google Scholar]
  22. MoradiM. KoushehS.A. AlmasiH. AlizadehA. GuimarãesJ.T. YılmazN. LotfiA. Postbiotics produced by lactic acid bacteria: The next frontier in food safety.Compr. Rev. Food Sci. Food Saf.20201963390341510.1111/1541‑4337.1261333337065
    [Google Scholar]
  23. Baghban-KananiP. Hosseintabar-GhasemabadB. Azimi-YouvalariS. SeidaviA. RagniM. LaudadioV. TufarelliV. Effects of using Artemisia annua leaves, probiotic blend, and organic acids on performance, egg quality, blood biochemistry, and antioxidant status of laying hens.J. Poult. Sci.201956212012710.2141/jpsa.018005032055206
    [Google Scholar]
  24. BairdB.E. LuciaL.M. AcuffG.R. HarrisK.B. SavellJ.W. Beef hide antimicrobial interventions as a means of reducing bacterial contamination.Meat Sci.200673224524810.1016/j.meatsci.2005.11.02322062295
    [Google Scholar]
  25. Mani-LópezE. GarcíaH.S. López-MaloA. Organic acids as antimicrobials to control Salmonella in meat and poultry products.Food Res. Int.201245271372110.1016/j.foodres.2011.04.043
    [Google Scholar]
  26. ŠuškovićJ, Šušković J, Kos B, Beganović J, Pavunc AL, Habjanič Ksenija, Matošić S. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria.Food Technol. Biotechnol.2010483296307
    [Google Scholar]
  27. HuC.H. RenL.Q. ZhouY. YeB.C. Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food.Food Sci. Nutr.2019761997200510.1002/fsn3.102531289647
    [Google Scholar]
  28. O’ConnorP.M. KuniyoshiT.M. OliveiraR.P.S. HillC. RossR.P. CotterP.D. Antimicrobials for food and feed; a bacteriocin perspective.Curr. Opin. Biotechnol.20206116016710.1016/j.copbio.2019.12.02331968296
    [Google Scholar]
  29. GálvezA. AbriouelH. LópezR.L. OmarN.B. Bacteriocin-based strategies for food biopreservation.Int. J. Food Microbiol.20071201-2517010.1016/j.ijfoodmicro.2007.06.00117614151
    [Google Scholar]
  30. KimS.W. HaY.J. BangK.H. LeeS. YeoJ.H. YangH.S. KimT.W. LeeK.P. BangW.Y. Potential of bacteriocins from Lactobacillus taiwanensis for producing bacterial ghosts as a next generation vaccine.Toxins (Basel)202012743210.3390/toxins1207043232630253
    [Google Scholar]
  31. ChurchwardC.P. AlanyR.G. SnyderL.A.S. Alternative antimicrobials: the properties of fatty acids and monoglycerides.Crit. Rev. Microbiol.201844556157010.1080/1040841X.2018.146787529733249
    [Google Scholar]
  32. DesboisA.P. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries.Recent Patents Anti-Infect. Drug Disc.20127211112210.2174/15748911280161972822630821
    [Google Scholar]
  33. MaliJ.K. SutarY.B. PahelkarA.R. VermaP.M. TelvekarV.N. Novel fatty acid-thiadiazole derivatives as potential antimycobacterial agents.Chem. Biol. Drug Des.202095117418110.1111/cbdd.1363431581353
    [Google Scholar]
  34. YoonB. JackmanJ. Valle-GonzálezE. ChoN.J. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications.Int. J. Mol. Sci.2018194111410.3390/ijms1904111429642500
    [Google Scholar]
  35. WaghuF.H. Idicula-ThomasS. Collection of antimicrobial peptides database and its derivatives: Applications and beyond.Protein Sci.2020291364210.1002/pro.371431441165
    [Google Scholar]
  36. MakarovaK.S. WolfY.I. KaramychevaS. ZhangD. AravindL. KooninE.V. Antimicrobial peptides, polymorphic toxins, and self-nonself recognition systems in Archaea: an untapped armory for intermicrobial conflicts.MBio2019103e00715-1910.1128/mBio.00715‑1931064832
    [Google Scholar]
  37. HansonM.A. DostálováA. CeroniC. PoidevinM. KondoS. LemaitreB. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach.eLife20198e4434110.7554/eLife.4434130803481
    [Google Scholar]
  38. MillerS. Antimicrobial fusion proteins comprising an endolysin and an amphipathic peptide segment.2019
    [Google Scholar]
  39. ZasloffM. Antimicrobial peptides of multicellular organisms.Nature200241538939510.1038/415389a
    [Google Scholar]
  40. ReidG. Probiotic Lactobacilli for urogenital health in women.J. Clin. Gastroenterol.200842S234S23610.1097/MCG.0b013e31817f129818685506
    [Google Scholar]
  41. CordsB. Sanitizers; Halogens, surface-active agents and peroxides. Antimicrobials in foods.2005
    [Google Scholar]
  42. OsbornH.T. AkohC.C. Structured lipids-novel fats with medical, nutraceutical, and food applications.Compr. Rev. Food Sci. Food Saf.20021311012010.1111/j.1541‑4337.2002.tb00010.x33451231
    [Google Scholar]
  43. CrowleyS. MahonyJ. van SinderenD. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives.Trends Food Sci. Technol.20133329310910.1016/j.tifs.2013.07.004
    [Google Scholar]
  44. LiuA. XuR. ZhangS. WangY. HuB. AoX. LiQ. LiJ. HuK. YangY. LiuS. Antifungal mechanisms and application of lactic acid bacteria in bakery products: a review.Front. Microbiol.20221392439810.3389/fmicb.2022.92439835783382
    [Google Scholar]
  45. ChenH. YanX. DuG. GuoQ. ShiY. ChangJ. WangX. YuanY. YueT. Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms.Crit. Rev. Food Sci. Nutr.202363152544255810.1080/10408398.2021.197761034523362
    [Google Scholar]
  46. SadiqF.A. YanB. TianF. ZhaoJ. ZhangH. ChenW. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review.Compr. Rev. Food Sci. Food Saf.20191851403143610.1111/1541‑4337.1248133336904
    [Google Scholar]
  47. NasrollahzadehA. MokhtariS. KhomeiriM. SarisP.E.J. Antifungal preservation of food by lactic acid bacteria.Foods202211339510.3390/foods1103039535159544
    [Google Scholar]
  48. JinJ. NguyenT.T.H. HumayunS. ParkS. OhH. LimS. MokI.K. LiY. PalK. KimD. Characteristics of sourdough bread fermented with Pediococcus pentosaceus and Saccharomyces cerevisiae and its bio-preservative effect against Aspergillus flavus.Food Chem.202134512878710.1016/j.foodchem.2020.12878733310248
    [Google Scholar]
  49. RussoP. ArenaM.P. FioccoD. CapozziV. DriderD. SpanoG. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.Int. J. Food Microbiol.2017247485410.1016/j.ijfoodmicro.2016.04.02727240933
    [Google Scholar]
  50. AxelC. BrosnanB. ZanniniE. FureyA. CoffeyA. ArendtE.K. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.Int. J. Food Microbiol.2016239869410.1016/j.ijfoodmicro.2016.05.00627236463
    [Google Scholar]
  51. Leyva SM. MounierJ. MaillardM.B. ValenceF. CotonE. ThierryA. Identification and quantification of natural compounds produced by antifungal bioprotective cultures in dairy products.Food Chem.201930112526010.1016/j.foodchem.2019.12526031404803
    [Google Scholar]
  52. VermeulenN. GánzleM.G. VogelR.F. Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451(T) and Lactobacillus plantarum TMW1.468.J. Agric. Food Chem.200654113832383910.1021/jf052733e16719504
    [Google Scholar]
  53. LambertR.J. StratfordM. Weak-acid preservatives: modelling microbial inhibition and response.J. Appl. Microbiol.199986115716410.1046/j.1365‑2672.1999.00646.x10030018
    [Google Scholar]
  54. DebonneE. VermeulenA. BouboutiefskiN. RuyssenT. Van BockstaeleF. EeckhoutM. DevlieghereF. Modelling and validation of the antifungal activity of DL-3-phenyllactic acid and acetic acid on bread spoilage moulds.Food Microbiol.20208810340710.1016/j.fm.2019.10340731997763
    [Google Scholar]
  55. SchnürerJ. MagnussonJ. Antifungal lactic acid bacteria as biopreservatives.Trends Food Sci. Technol.2005161-3707810.1016/j.tifs.2004.02.014
    [Google Scholar]
  56. BlackB.A. ZanniniE. CurtisJ.M. GänzleM.G. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.Appl. Environ. Microbiol.20137961866187310.1128/AEM.03784‑1223315734
    [Google Scholar]
  57. SjögrenJ. MagnussonJ. BrobergA. SchnürerJ. KenneL. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14.Appl. Environ. Microbiol.200369127554755710.1128/AEM.69.12.7554‑7557.200314660414
    [Google Scholar]
  58. VenturiniM.E. BlancoD. OriaR. In vitro antifungal activity of several antimicrobial compounds against Penicillium expansum.J. Food Prot.200265583483910.4315/0362‑028X‑65.5.83412030296
    [Google Scholar]
  59. MartinsD. NguyenD. EnglishA.M. Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae.Sci. Rep.201991918510.1038/s41598‑019‑45070‑w31235707
    [Google Scholar]
  60. MoradiM. GuimarãesJ.T. SahinS. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging.Curr. Opin. Food Sci.202140333910.1016/j.cofs.2020.06.001
    [Google Scholar]
  61. WuM.H. PanT.M. WuY.J. ChangS.J. ChangM.S. HuC.Y. Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties.Int. J. Food Microbiol.2010144110411010.1016/j.ijfoodmicro.2010.09.00320884069
    [Google Scholar]
  62. AbinayaM. VaseeharanB. DivyaM. VijayakumarS. GovindarajanM. AlharbiN.S. KhaledJ.M. Al-anbrM.N. BenelliG. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide—antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors.Environ. Sci. Pollut. Res. Int.20182519186041861910.1007/s11356‑018‑2002‑629704178
    [Google Scholar]
  63. HanQ. WuZ. HuangB. SunL. DingC. YuanS. ZhangZ. ChenY. HuC. ZhouL. LiuJ. HuangY. LiaoJ. YuanM. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides.Int. J. Biol. Macromol.20169211612410.1016/j.ijbiomac.2016.06.08727370746
    [Google Scholar]
  64. WangL. HuaX. ShiJ. JingN. JiT. LvB. LiuL. ChenY. Ochratoxin A: Occurrence and recent advances in detoxification.Toxicon2022210111810.1016/j.toxicon.2022.02.01035181402
    [Google Scholar]
  65. JakubczykA. KaraśM. Rybczyńska-TkaczykK. ZielińskaE. ZielińskiD. Current trends of bioactive peptides–new sources and therapeutic effect.Foods20209784610.3390/foods907084632610520
    [Google Scholar]
  66. MuhialdinB.J. HassanZ. BakarF.A. SaariN. Identification of antifungal peptides produced by Lactobacillus plantarum IS10 grown in the MRS broth.Food Control201659273010.1016/j.foodcont.2015.05.022
    [Google Scholar]
  67. LeónR. RuizM. ValeroY. CárdenasC. GuzmanF. VilaM. CuestaA. Exploring small cationic peptides of different origin as potential antimicrobial agents in aquaculture.Fish Shellfish Immunol.20209872072710.1016/j.fsi.2019.11.01931730928
    [Google Scholar]
  68. Czajkowska-MysłekA. LeszczyńskaJ. Risk assessment related to biogenic amines occurrence in ready-to-eat baby foods.Food Chem. Toxicol.2017105829210.1016/j.fct.2017.03.06128366843
    [Google Scholar]
  69. ÖzogulY. ÖzogulF. Biogenic Amines in Food: Analysis, Occurrence and ToxicityThe Royal Society of Chemistry2019117
    [Google Scholar]
  70. MolaeiR. TajikH. MoradiM. Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product; Kashk.Food Control20191011810.1016/j.foodcont.2019.02.011
    [Google Scholar]
  71. BarbieriF. MontanariC. GardiniF. TabanelliG. Biogenic amine production by lactic acid bacteria: A review.Foods2019811710.3390/foods801001730621071
    [Google Scholar]
  72. NailaA. FlintS. FletcherG. BremerP. MeerdinkG. Control of biogenic amines in food-existing and emerging approaches.J. Food Sci.2010757R139R15010.1111/j.1750‑3841.2010.01774.x21535566
    [Google Scholar]
  73. ToyN. ÖzogulF. ÖzogulY. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth.Food Chem.2015173455310.1016/j.foodchem.2014.10.00125465993
    [Google Scholar]
  74. García-RuizA. González-RompinelliE.M. BartoloméB. Moreno-ArribasM.V. Potential of wine-associated lactic acid bacteria to degrade biogenic amines.Int. J. Food Microbiol.2011148211512010.1016/j.ijfoodmicro.2011.05.00921641669
    [Google Scholar]
  75. NiuT. LiX. GuoY. MaY. Identification of a lactic acid bacteria to degrade biogenic amines in Chinese rice wine and its enzymatic mechanism.Foods20198831210.3390/foods808031231382407
    [Google Scholar]
  76. FaddaS. VignoloG. OliverG. Tyramine degradation and tyramine/histamine production by lactic acid bacteria and Kocuria strains.Biotechnol. Lett.200123242015201910.1023/A:1013783030276
    [Google Scholar]
  77. XieC. WangH. DengS. XuX-L. The inhibition of cell-free supernatant of Lactobacillus plantarum on production of putrescine and cadaverine by four amine-positive bacteria in vitro.Lebensm. Wiss. Technol.20166710611110.1016/j.lwt.2015.11.028
    [Google Scholar]
  78. NailaA. FlintS. Histamine degradation by diamine oxidase, Lactobacillus and Vergibacillus halodonitrificans Nai18.J. Food Process. Technol.201236100015810.4172/2157‑7110.1000158
    [Google Scholar]
  79. FreidingS. GutscheK.A. EhrmannM.A. VogelR.F. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism, and comparison of their volatilomes in a model system.Syst. Appl. Microbiol.201134531132010.1016/j.syapm.2010.12.00621570226
    [Google Scholar]
  80. ÖzogulF. ToyN. ÖzogulY. The impact of the cell-free solution of lactic acid bacteria on cadaverine production by Listeria monocytogenes and Staphylococcus aureus in lysine-decarboxylase broth.Int J Nutr Food Eng201593309317
    [Google Scholar]
  81. ÖzogulF. ToyN. ÖzogulY. HamedI. Function of cell-free supernatants of Leuconostoc, Lactococcus, Streptococcus, Pediococcus strains on histamine formation by foodborne pathogens in histidine decarboxylase broth.J. Food Process. Preserv.2017415e1320810.1111/jfpp.13208
    [Google Scholar]
  82. KuleyE. DurmusM. UcarY. KoskerA.R. Aksun TumerkanE.T. RegensteinJ.M. OzogulF. Combined effects of plant and cell-free extracts of lactic acid bacteria on biogenic amines and bacterial load of fermented sardine stored at 3 ± 1°C.Food Biosci.20182412713610.1016/j.fbio.2018.06.008
    [Google Scholar]
  83. DasD.N. BhutiaS.K. Inevitable dietary exposure of Benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns.Curr. Opin. Food Sci.201824162510.1016/j.cofs.2018.10.008
    [Google Scholar]
  84. TungE.W.Y. PhilbrookN.A. BelangerC.L. AnsariS. WinnL.M. Benzo[a]pyrene increases DNA double strand break repair in vitro and in vivo: A possible mechanism for benzo[a]pyrene-induced toxicity.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2014760646910.1016/j.mrgentox.2013.12.00324412381
    [Google Scholar]
  85. VermaN. PinkM. RettenmeierA.W. Schmitz-SpankeS. Review on proteomic analyses of benzo[a]pyrene toxicity.Proteomics201212111731175510.1002/pmic.20110046622623321
    [Google Scholar]
  86. ZhouX.W. ZhaoX.H. Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters.J. Sci. Food Agric.201595226026610.1002/jsfa.671024777955
    [Google Scholar]
  87. ApásA.L. GonzálezS.N. ArenaM.E. Potential of goat probiotic to bind mutagens.Anaerobe20142881210.1016/j.anaerobe.2014.04.00424785349
    [Google Scholar]
  88. ShoukatS. LiuY. RehmanA. ZhangB. Screening of Bifidobacterium strains with assignment of functional groups to bind with benzo[a]pyrene under food stress factors.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20191114-111510010910.1016/j.jchromb.2019.03.02430947130
    [Google Scholar]
  89. MarinS. RamosA.J. Cano-SanchoG. SanchisV. Mycotoxins: Occurrence, toxicology, and exposure assessment.Food Chem. Toxicol.20136021823710.1016/j.fct.2013.07.04723907020
    [Google Scholar]
  90. Greeff-LaubscherM.R. BeukesI. MaraisG.J. JacobsK. Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins.Mycology202011210511710.1080/21501203.2019.160457532923019
    [Google Scholar]
  91. RaiA. DasM. TripathiA. Occurrence and toxicity of a fusarium mycotoxin, zearalenone.Crit. Rev. Food Sci. Nutr.202060162710272910.1080/10408398.2019.165538831446772
    [Google Scholar]
  92. RushingB.R. SelimM.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods.Food Chem. Toxicol.20191248110010.1016/j.fct.2018.11.04730468841
    [Google Scholar]
  93. AlshannaqA. YuJ.H. Occurrence, toxicity, and analysis of major mycotoxins in food.Int. J. Environ. Res. Public Health201714663210.3390/ijerph1406063228608841
    [Google Scholar]
  94. YangS. GongP. PanJ. WangN. TongJ. WangM. LongM. LiP. HeJ. Pediococcus pentosaceus xy46 can absorb zearalenone and alleviate its toxicity to the reproductive systems of male mice.Microorganisms20197826610.3390/microorganisms708026631426404
    [Google Scholar]
  95. NiderkornV. BoudraH. MorgaviD.P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro.J. Appl. Microbiol.2006101484985610.1111/j.1365‑2672.2006.02958.x16968296
    [Google Scholar]
  96. RogowskaA. PomastowskiP. RafińskaK. Railean-PlugaruV. ZłochM. WalczakJ. BuszewskiB. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells.Toxicon2019169819010.1016/j.toxicon.2019.09.00831493420
    [Google Scholar]
  97. Mogahed FK. Noah BA. Gamal SM. Ibrahim HE. Ibrahim AL. Innovative application of postbiotics, parabiotics and encapsulated Lactobacillus plantarum RM1 and Lactobacillus paracasei KC39 for detoxification of aflatoxin M1 in milk powder.J. Dairy Res.202188442943510.1017/S002202992100090X34937580
    [Google Scholar]
  98. ChlebiczA. ŚliżewskaK. In vitro Detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast.Probiotics Antimicrob. Proteins2019201911330721525
    [Google Scholar]
  99. ArmandoM. DogiC. PizzolittoR. EscobarF. PeiranoM. SalvanoM. SabiniL. CombinaM. DalceroA. CavaglieriL. Saccharomyces cerevisiae strains from animal environment with in vitro aflatoxin B1 binding ability and anti-pathogenic bacterial influence.World Mycotoxin J.201141596810.3920/WMJ2010.1208
    [Google Scholar]
  100. GonçalvesB.L. MuazK. CoppaC.F.S.C. RosimR.E. KamimuraE.S. OliveiraC.A.F. CorassinC.H. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese.Food Res. Int.202013610960410.1016/j.foodres.2020.10960432846626
    [Google Scholar]
  101. ČvekD. Adhesion of zearalenone to the surface of lactic acid bacteria cells.CJFST201274952
    [Google Scholar]
  102. El-KadyA.A. Abdel-WahhabM.A. Occurrence of trace metals in foodstuffs and their health impact.Trends Food Sci. Technol.201875364510.1016/j.tifs.2018.03.001
    [Google Scholar]
  103. GiriS.S. YunS. JunJ.W. KimH.J. KimS.G. KangJ.W. KimS.W. HanS.J. SukumaranV. ParkS.C. Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio.Front. Immunol.20189182410.3389/fimmu.2018.0182430131809
    [Google Scholar]
  104. ZhangJ. YangY. LiuW. SchlenkD. LiuJ. Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals.Environ. Int.2019133Pt A10513310.1016/j.envint.2019.10513331520960
    [Google Scholar]
  105. KumarS. PrasadS. YadavK.K. ShrivastavaM. GuptaN. NagarS. BachQ.V. KamyabH. KhanS.A. YadavS. MalavL.C. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review.Environ. Res.2019179Pt A10879210.1016/j.envres.2019.10879231610391
    [Google Scholar]
  106. DuanH. YuL. TianF. ZhaiQ. FanL. ChenW. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy.Sci. Total Environ.202074214042910.1016/j.scitotenv.2020.14042932629250
    [Google Scholar]
  107. WuJ. WenX.W. FaulkC. BoehnkeK. ZhangH. DolinoyD.C. XiC. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice.Toxicol. Sci.2016151232433310.1093/toxsci/kfw04626962054
    [Google Scholar]
  108. ZhangS. JinY. ZengZ. LiuZ. FuZ. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome.Chem. Res. Toxicol.201528102000200910.1021/acs.chemrestox.5b0023726352046
    [Google Scholar]
  109. TengY. Plant-derived exosomal MicroRNAs shape the gut microbiota.Cell Host Microbe.201824563765210.1016/j.chom.2018.10.001
    [Google Scholar]
  110. WuG. XiaoX. FengP. XieF. YuZ. YuanW. LiuP. LiX. Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1.Sci. Rep.2017711500010.1038/s41598‑017‑15216‑929118411
    [Google Scholar]
  111. GophnaU. KonikoffT. NielsenH.B. Oscillospira and related bacteria – From metagenomic species to metabolic features.Environ. Microbiol.201719383584110.1111/1462‑2920.1365828028921
    [Google Scholar]
  112. AlcántaraC. Jadán-PiedraC. VélezD. DevesaV. ZúñigaM. MonederoV. Characterization of the binding capacity of mercurial species in Lactobacillus strains.J. Sci. Food Agric.201797155107511310.1002/jsfa.838828423187
    [Google Scholar]
  113. Abdel-MegeedR.M. Probiotics: a promising generation of heavy metal detoxification.Biol. Trace Elem. Res.202119962406241310.1007/s12011‑020‑02350‑132821997
    [Google Scholar]
  114. KumarN. KumariV. RamC. ThakurK. TomarS.K. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts.Appl. Microbiol. Biotechnol.201810241599161510.1007/s00253‑018‑8743‑929352397
    [Google Scholar]
  115. XingS. SongY. LiangJ.B. Faseleh JahromiM. ShokryazdaP. MiJ. ZhuC. WangJ. LiaoX. In vitro assessment on effect of duodenal contents on the lead (Pb 2+ ) binding capacity of two probiotic bacterial strains.Ecotoxicol. Environ. Saf.2017139788210.1016/j.ecoenv.2017.01.01628113114
    [Google Scholar]
  116. KirillovaA.V. Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium.Int J Microbiol.201720179869145
    [Google Scholar]
  117. ZhaiQ. WangG. ZhaoJ. LiuX. TianF. ZhangH. ChenW. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice.Appl. Environ. Microbiol.20137951508151510.1128/AEM.03417‑1223263961
    [Google Scholar]
  118. ZhaiQ. XiaoY. TianF. WangG. ZhaoJ. LiuX. ChenY.Q. ZhangH. ChenW. Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice.RSC Advances2015564648465810.1039/C4RA12865F
    [Google Scholar]
  119. ZhaiQ. YuL. LiT. ZhuJ. ZhangC. ZhaoJ. ZhangH. ChenW. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure.Antonie van Leeuwenhoek2017110450151310.1007/s10482‑016‑0819‑x28028640
    [Google Scholar]
  120. DaisleyB.A. MonacheseM. TrinderM. BisanzJ.E. ChmielJ.A. BurtonJ.P. ReidG. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium.Gut Microbes201910332133310.1080/19490976.2018.152658130426826
    [Google Scholar]
  121. KimB. ShynlovaO. LyeS. Probiotic Lactobacillus rhamnosus GR-1 is a unique prophylactic agent that suppresses infection-induced myometrial cell responses.Sci. Rep.201991469810.1038/s41598‑019‑41133‑030886179
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013337740241115052908
Loading
/content/journals/cnf/10.2174/0115734013337740241115052908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test