Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Rosemary, as a medicinal plant, contains valuable compounds such as rosmarinic acid, rosanol, caronic acid, and carnosol. In this study, we summarized studies related to the anticancer effects of rosemary and its main ingredients by activating Nrf2. For this purpose, we searched the main databases including Scopus, PubMed, Web of Science, and MEDLINE until 2024. It was found that Rosemary and its main ingredients affect Nrf2 signaling activity, a pathway that is induced in response to oxidative stress conditions to reduce reactive oxygen species (ROS). Nrf2-related effects of Rosemary and its main ingredients have been studied in different models of diseases, including cancers. These compounds also induce apoptosis and increase antioxidant enzyme activity downstream in favor of cancer cell line death. The induction of Nrf2 activity activating protein kinase RNA-like endoplasmic reticulum kinase results in increased phosphorylation at site threonine, downregulation of iNOS, enhancement of nerve growth factor, and activating transcription factor 4 protects cells against carcinogenesis.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013328720241112032005
2025-01-01
2025-09-11
Loading full text...

Full text loading...

References

  1. SantucciC. CarioliG. BertuccioP. MalvezziM. PastorinoU. BoffettaP. NegriE. BosettiC. La VecchiaC. Progress in cancer mortality, incidence, and survival: A global overview.Eur. J. Cancer Prev.202029536738110.1097/CEJ.000000000000059432740162
    [Google Scholar]
  2. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  3. RehmJ. ShieldK.D. WeiderpassE. Alcohol consumption. A leading risk factor for cancer.Chem. Biol. Interact.202033110928010.1016/j.cbi.2020.10928033010221
    [Google Scholar]
  4. JelicM. MandicA. MaricicS. SrdjenovicB. Oxidative stress and its role in cancer.J. Cancer Res. Ther.2021171222810.4103/jcrt.JCRT_862_1633723127
    [Google Scholar]
  5. CaliriA.W. TommasiS. BesaratiniaA. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer.Mutat. Res. Rev. Mutat. Res.202178710836510.1016/j.mrrev.2021.10836534083039
    [Google Scholar]
  6. EbrahimiS.O. ReiisiS. ShareefS. miRNAs, oxidative stress, and cancer: A comprehensive and updated review.J. Cell. Physiol.2020235118812882510.1002/jcp.2972432394436
    [Google Scholar]
  7. SamarghandianS. FarkhondehT. SaminiF. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases.CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders).201817641220
    [Google Scholar]
  8. MenegonS. ColumbanoA. GiordanoS. The dual roles of NRF2 in cancer.Trends Mol. Med.201622757859310.1016/j.molmed.2016.05.00227263465
    [Google Scholar]
  9. BouammaliH. ZraibiL. ZianiI. MerzoukiM. BourassiL. FrajE. ChalliouiA. AzzaouiK. SabbahiR. HammoutiB. JodehS. HassibaM. TouzaniR. Rosemary as a potential source of natural antioxidants and anticancer agents: A molecular docking study.Plants20231318910.3390/plants1301008938202397
    [Google Scholar]
  10. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv Biol & Earth Sci20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  11. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv Biol & Earth Sci20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  12. HuseynovE. KhalilovR. MohamedA.J. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives.Adv Biol Earth Sci20249Special Issue819110.62476/abes9s81
    [Google Scholar]
  13. FarkhondehT. MehrpourO. BuhrmannC. Pourbagher-ShahriA.M. ShakibaeiM. SamarghandianS. Organophosphorus compounds and MAPK signaling pathways.Int J Mol Sci202021124258
    [Google Scholar]
  14. ErdilN. Cardiovascular disease, signaling, gene/cell therapy and advanced nanobiomaterials.Adv Biol Earth Sci20249Special Issue588010.62476/abes9s58
    [Google Scholar]
  15. BjørklundG. Cruz-MartinsN. GohB.H. MykhailenkoO. LysiukR. ShanaidaM. LenchykL. UpyrT. RusuM.E. PryshlyakA. ShanaidaV. ChirumboloS. Medicinal plant-derived phytochemicals in detoxification.Curr. Pharm. Des.20243013988101510.2174/138161282966623080909424237559241
    [Google Scholar]
  16. MalikS. KaurK. PrasadS. JhaN.K. KumarV. A perspective review on medicinal plant resources for their antimutagenic potentials.Environ. Sci. Pollut. Res. Int.20222941620146202910.1007/s11356‑021‑16057‑w34431051
    [Google Scholar]
  17. de MacedoL.M. SantosÉ.M. MilitãoL. TundisiL.L. AtaideJ.A. SoutoE.B. MazzolaP.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: A review.Plants20209565110.3390/plants905065132455585
    [Google Scholar]
  18. NevesJ.A. NevesJ.A. OliveiraR.C.M. Pharmacological and biotechnological advances with Rosmarinus officinalis L.Expert Opin Ther Pat201828539941310.1080/13543776.2018.1459570
    [Google Scholar]
  19. PetrovskaB. Historical review of medicinal plants′ usage.Pharmacogn. Rev.20126111510.4103/0973‑7847.9584922654398
    [Google Scholar]
  20. Jamshidi-KiaFatemeh Medicinal plants: Past history and future perspectiveJ Herbmed Pharmacol.20127117
    [Google Scholar]
  21. QiuK. WangS. DuanF. SangZ. WeiS. LiuH. TanH. Rosemary: Unrevealing an old aromatic crop as a new source of promising functional food additive—A review.Compr. Rev. Food Sci. Food Saf.2024231e1327310.1111/1541‑4337.1327338284599
    [Google Scholar]
  22. CuvelierM.E. RichardH. BersetC. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary.J. Am. Oil Chem. Soc.199673564565210.1007/BF02518121
    [Google Scholar]
  23. BarakT.H. BölükbaşE. BardakciH. Evaluation of marketed rosemary essential oils (Rosmarinus officinalis L.) in terms of european pharmacopoeia 10.0 criteria.Turk. J. Pharm. Sci.202320425326010.4274/tjps.galenos.2022.7801037606010
    [Google Scholar]
  24. RaškovićA. MilanovićI. PavlovićN. ĆebovićT. VukmirovićS. MikovM. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential.BMC Complement. Altern. Med.201414122510.1186/1472‑6882‑14‑22525002023
    [Google Scholar]
  25. ChangS.S. Ostric-MatijasevicB. HsiehO.A.L. HuangC-L. Natural antioxidants from rosemary and sage.J. Food Sci.19774241102110610.1111/j.1365‑2621.1977.tb12676.x
    [Google Scholar]
  26. MorenoS ScheyerT RomanoCS VojnovAA Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol compositionFree Radic Res2006402223231
    [Google Scholar]
  27. Ghasemzadeh R.M. HosseinzadehH. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders.Iran. J. Basic Med. Sci.20202391100111210.22038/IJBMS.2020.45269.1054132963731
    [Google Scholar]
  28. Ghasemzadeh R.M. HosseinzadehH. Effects of rosmarinic acid on nervous system disorders: An updated review.Naunyn Schmiedebergs Arch. Pharmacol.2020393101779179510.1007/s00210‑020‑01935‑w32725282
    [Google Scholar]
  29. OresanyaI.O. OrhanI.E. Deciphering neuroprotective effect of Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.) through preclinical and clinical studies.Curr. Drug Targets202425533035210.2174/011389450125509324011709232838258779
    [Google Scholar]
  30. AlmeidaJ.R.G.S. SouzaG.R. SilvaJ.C. SaraivaS.R.G.L. JúniorR.G.O. QuintansJ.S.S. BarretoR.S.S. BonjardimL.R. CavalcantiS.C.H. JuniorL.J.Q. Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice.ScientificWorldJournal20132013180846010.1155/2013/80846023710149
    [Google Scholar]
  31. ChenL. SuJ. LiL. LiB. LiW. A new source of natural D-borneol and its characteristic.J. Med. Plants Res.201151534403447
    [Google Scholar]
  32. NaderaliE. NikbakhtF. OfoghS.N. RasoolijaziH. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach.J. Integr. Neurosci.2018171314310.3233/JIN‑17003529376880
    [Google Scholar]
  33. YuM.H. ChoiJ.H. ChaeI.G. ImH.G. YangS.A. MoreK. LeeI.S. LeeJ. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.Food Chem.201313621047105410.1016/j.foodchem.2012.08.08523122161
    [Google Scholar]
  34. de OliveiraJ.R. CamargoS.E.A. de OliveiraL.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent.J. Biomed. Sci.2019261510.1186/s12929‑019‑0499‑830621719
    [Google Scholar]
  35. BaoT.Q. LiY. QuC. ZhengZ.G. YangH. LiP. Antidiabetic effects and mechanisms of rosemary ( Rosmarinus officinalis L.) and its phenolic components.Am. J. Chin. Med.20204861353136810.1142/S0192415X2050066433016104
    [Google Scholar]
  36. KohandelZ. FarkhondehT. AschnerM. SamarghandianS. Nrf2 a molecular therapeutic target for Astaxanthin.Biomed Pharmacother2021137111374
    [Google Scholar]
  37. MoiP. ChanK. AsunisI. CaoA. KanY.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.Proc. Natl. Acad. Sci. USA199491219926993010.1073/pnas.91.21.99267937919
    [Google Scholar]
  38. HayesJ.D. Dinkova-KostovaA.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.Trends Biochem. Sci.201439419921810.1016/j.tibs.2014.02.00224647116
    [Google Scholar]
  39. YamamotoM KenslerTW MotohashiH The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasisPhysiol Rev20189831169120310.1152/physrev.00023.2017
    [Google Scholar]
  40. HolmströmK.M. BairdL. ZhangY. HargreavesI. ChalasaniA. LandJ.M. StanyerL. YamamotoM. Dinkova-KostovaA.T. AbramovA.Y. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration.Biol. Open20132876177010.1242/bio.2013485323951401
    [Google Scholar]
  41. SamarghandianS. Azimi-NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytotherapy research.2016 Aug308134553
    [Google Scholar]
  42. SovaM. SasoL. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: A review.Drug Des. Devel. Ther.2018123181319710.2147/DDDT.S17261230288023
    [Google Scholar]
  43. KlaunigJE KamendulisLM The role of oxidative stress in carcinogenesis.Annu Rev Pharmacol Toxicol20044423926710.1146/annurev.pharmtox.44.101802.121851
    [Google Scholar]
  44. van der WijstM.G.P. BrownR. RotsM.G. Nrf2, the master redox switch: The Achilles’ heel of ovarian cancer?Biochim. Biophys. Acta Rev. Cancer20141846249450910.1016/j.bbcan.2014.09.00425270772
    [Google Scholar]
  45. MilkovicL. ZarkovicN. SasoL. Controversy about pharmacological modulation of Nrf2 for cancer therapy.Redox Biol.20171272773210.1016/j.redox.2017.04.01328411557
    [Google Scholar]
  46. PandeyP. SinghA.K. SinghM. TewariM. ShuklaH.S. GambhirI.S. P P The see-saw of Keap1-Nrf2 pathway in cancer.Crit. Rev. Oncol. Hematol.2017116899810.1016/j.critrevonc.2017.02.00628693803
    [Google Scholar]
  47. TaguchiK. YamamotoM. The keap1–nrf2 system as a molecular target of cancer treatment.Cancers (Basel)20201314610.3390/cancers1301004633375248
    [Google Scholar]
  48. TaguchiK. YamamotoM. K T The KEAP1–NRF2 system in cancer.Front. Oncol.20177MAY8510.3389/fonc.2017.00085
    [Google Scholar]
  49. RajgopalA. RoloffS.J. BurnsC.R. FastD.J. ScholtenJ.D. The cytoprotective benefits of a turmeric, quercetin, and rosemary blend through activation of the oxidative stress pathway.Pharmacogn. Mag.2019156644910.4103/pm.pm_556_18
    [Google Scholar]
  50. WangH. ChengJ. YangS. CuiS.W. WangM. HaoW. Rosemary extract reverses oxidative stress through activation of Nrf2 signaling pathway in hamsters fed on high fat diet and HepG2 cells.J. Funct. Foods20207410413610.1016/j.jff.2020.104136
    [Google Scholar]
  51. AruomaO.I. HalliwellB. AeschbachR. LöligersJ. OI A Antioxidant and pro-oxidant properties of active rosemary constituents: Carnosol and carnosic acid.Xenobiotica199222225726810.3109/004982592090466241378672
    [Google Scholar]
  52. GordoJ. MáximoP. CabritaE. LourençoA. OlivaA. AlmeidaJ. FilipeM. CruzP. BarciaR. SantosM. CruzH. Thymus mastichina: Chemical constituents and their anti-cancer activity.Nat. Prod. Commun.20127111934578X120070112010.1177/1934578X120070112023285814
    [Google Scholar]
  53. AndradeJ.M. FaustinoC. GarciaC. LadeirasD. ReisC.P. RijoP. JM A Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity.Future Sci. OA201844FSO28310.4155/fsoa‑2017‑0124
    [Google Scholar]
  54. ChoAe-Sim Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese miceFood Chem Toxicol201048393794310.1016/j.fct.2010.01.003
    [Google Scholar]
  55. NadeemM ImranM GondalTA Therapeutic potential of rosmarinic acid: A comprehensive reviewAppl. Sci.2019915313910.3390/app9153139
    [Google Scholar]
  56. PapettiL. ParisiP. LeuzziV. NardecchiaF. NicitaF. UrsittiF. MarraF. PaolinoM.C. SpaliceA. Metabolic epilepsy: An update.Brain Dev.201335982784110.1016/j.braindev.2012.11.01023273990
    [Google Scholar]
  57. HanS. YangS. CaiZ. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells.Drug Des Devel Ther2015926952703
    [Google Scholar]
  58. WuC. HongC. KlauckS. LinY. Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells.J Ethnopharmacol20151765568
    [Google Scholar]
  59. WuJ ZhuY LiF Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cellsJ Ethnopharmacol2016193111
    [Google Scholar]
  60. FetoniA. PacielloF. RolesiR. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea.Free Radic Biol Med201585269281
    [Google Scholar]
  61. CaiX YangF ZhuL Rosmarinic acid, the main effective constituent of Orthosiphon stamineus, inhibits intestinal Epithelial apoptosis via regulation of the Nrf2 pathway in mice.Molecules20192417302710.3390/molecules24173027
    [Google Scholar]
  62. ChengA. LeeM. TsaiM. LaiC. Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells.Food Chem Toxicol2011492485493
    [Google Scholar]
  63. SamarghandianS. ShoshtariM.E. SargolzaeiJ. HossinimoghadamH. FarahzadJ.A. Anti-tumor activity of safranal against neuroblastoma cells.Pharmacognosy Magazine.201410Suppl 2S419
    [Google Scholar]
  64. TsaiC.W. LinC.Y. LinH.H. ChenJ.H. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells.Neurochem. Res.201136122442245110.1007/s11064‑011‑0573‑421833842
    [Google Scholar]
  65. Yesil-CeliktasO. SevimliC. BedirE. Vardar-SukanF. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines.Plant Foods Hum. Nutr.201065215816310.1007/s11130‑010‑0166‑420449663
    [Google Scholar]
  66. ReuterS. GuptaS. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic Biol Med2010491116031616
    [Google Scholar]
  67. SH-SY5Y: Human neuroblastoma cell line (ATCC CRL-2266)2021Available from: https://www.mskcc.org/research-advantage/support/technology/tangible-material/human-neuroblastoma-cell-line-sh-sy5y
  68. de OliveiraM.R. PeresA. FerreiraG.C. SchuckP.F. BoscoS.M.D. Carnosic acid affords mitochondrial protection in Chlorpyrifos-treated Sh-Sy5y cells.Neurotox. Res.201630336737910.1007/s12640‑016‑9620‑x27083155
    [Google Scholar]
  69. ZhangD. LeeB. NutterA. SongP. DolatabadiN. ParkerJ. Sanz-BlascoS. NewmeyerT. AmbasudhanR. McKercherS.R. MasliahE. LiptonS.A. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.J. Neurochem.2015133689890810.1111/jnc.1307425692407
    [Google Scholar]
  70. de OliveiraMR de SouzaICC FürstenauCR Carnosic acid induces anti-inflammatory effects in Paraquat-treated SH-SY5Y cells through a mechanism involving a crosstalk between the Nrf2/HO-1 axis and NF-κBMol Neurobiol201855189089710.1007/s12035‑017‑0389‑6
    [Google Scholar]
  71. MimuraJ Inose-MaruyamaA TaniuchiS Concomitant Nrf2- and ATF4-activation by Carnosic acid cooperatively induces expression of cytoprotective genesInt J Mol Sci2019207170610.3390/ijms20071706
    [Google Scholar]
  72. Gülçinİ. Antioxidant activity of food constituents: An overviewArch Toxicol201286334539110.1007/s00204‑011‑0774‑2
    [Google Scholar]
  73. JaiswalA.K. Nrf2 signaling in coordinated activation of antioxidant gene expression.Free Radic. Biol. Med.200436101199120710.1016/j.freeradbiomed.2004.02.07415110384
    [Google Scholar]
  74. KitamuraY. UmemuraT. KankiK. YK-C, 2007‏ undefined. Increased susceptibility to hepatocarcinogenicity of Nrf2-deficient mice exposed to 2-amino-3-methylimidazoquinoline‏.Wiley Online Library2007981192410.1111/j.1349‑7006.2006.00352.x17083568
    [Google Scholar]
  75. ButlerS. RichardsonL. FariasN. Characterization of cancer stem cell drug resistance in the human colorectal cancer cell lines HCT116 and SW480.Biochem Biophys Res Commun201749012935
    [Google Scholar]
  76. YanM. LiG. PetiwalaS.M. HouseholterE. JohnsonJ.J. Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells.J. Funct. Foods20151313714710.1016/j.jff.2014.12.038
    [Google Scholar]
  77. Carnosol: A promising anti-cancer and anti-inflammatory agentCancer Lett2011305117
    [Google Scholar]
  78. BrieskornC.H. FuchsA. BredenbergJ.B. McChesneyJ.D. WenkertE. The structure of carnosol.J. Org. Chem.19642982293229810.1021/jo01031a044
    [Google Scholar]
  79. JohnsonJ.J. SyedD.N. HerenC.R. SuhY. AdhamiV.M. MukhtarH. Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5′-AMP-activated protein kinase (AMPK) pathway.Pharm. Res.20082592125213410.1007/s11095‑008‑9552‑018286356
    [Google Scholar]
  80. ParkK KunduJ Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells.Int J Oncol201444413091315
    [Google Scholar]
  81. NitureS.K. KhatriR. JaiswalA.K. Regulation of Nrf2—an update.Free Radic. Biol. Med.201466364410.1016/j.freeradbiomed.2013.02.00823434765
    [Google Scholar]
  82. ItohK. MimuraJ. YamamotoM. Discovery of the negative regulator of Nrf2, Keap1: A historical overviewAntioxid Redox Signal201013111665167810.1089/ars.2010.3222
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013328720241112032005
Loading
/content/journals/cnf/10.2174/0115734013328720241112032005
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; carbonic acid; Nrf2; nuclear factor erythroid 2; rosanol; rosemary; rosmarinic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test