Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Compared to many other foods, cocoa and chocolate stand out for their high concentrations of polyphenols, particularly catechins, anthocyanidins, and procyanidins. These compounds possess antioxidant, anti-inflammatory, and vasodilatory properties that can confer multiple health benefits. This present study has been undertaken to assess the effects of polyphenol-rich chocolate consumption on various aspects of human health, including mood, cognition, cardiovascular health, insulin sensitivity, immune function, gut microbiota, and cancer risk. The high polyphenolic content in dark chocolates improves endothelial function, inhibits platelet aggregation, lowers blood pressure, enhances insulin sensitivity, . Cocoa polyphenols have been found to augment cognitive performance due to their ability to modulate gut microbiota. Potential antidepressant and anticarcinogenic activities were also reported.

Objective

The present study aimed to identify the impact of polyphenol-rich chocolate on human health.

Methods

Electronic searches were carried out using the databases . Google, Google Scholar, and PubMed for the study. The search was restricted for a period of 48 years, ranging from 1980 - 2022, to make it more systematic and concise. The obtained research and review articles were thoroughly studied and analyzed to present a comprehensive review.

Results

The results of the present study mainly focus on the impact of polyphenols on human health, especially cognitive status. Evidence indicates that polyphenol-rich dark chocolate might offer numerous advantages for cardiovascular and metabolic health, but its effects on cognition, mental health, gut microbiota, and cancer risk need to be studied further. More research, including animal experiments and human trials, is needed to understand the health impact and optimal dosages of dark chocolate. Understanding chocolate’s therapeutic benefits can open new avenues for human well-being.

Conclusion

The complex relationship between chocolate and emotion the gut-brain axis has been discussed. From the momentary sensory pleasures to the intriguing interplay between cravings and comfort-seeking behaviors, chocolate has a unique place in the realm of emotional indulgence.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013332631250130115501
2025-02-06
2025-10-09
Loading full text...

Full text loading...

References

  1. BentonD. NabbS. Carbohydrate, memory, and mood.Nutr Rev.2003615 Pt 2S616710.1301/nr.2003.may.S61‑S67
    [Google Scholar]
  2. RuxtonC.H.S. The impact of caffeine on mood, cognitive function, performance and hydration: A review of benefits and risks.Nutr. Bull.2008331152510.1111/j.1467‑3010.2007.00665.x
    [Google Scholar]
  3. FredholmB.B. SmitH.J. Theobromine and the pharmacology of cocoa.Handb Exp Pharmacol.2011201234
    [Google Scholar]
  4. KelmM.A. HammerstoneJ.F. BeecherG. HoldenJ. HaytowitzD. GebhardtS. GuL. PriorR.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption.J. Nutr.2004134361361710.1093/jn/134.3.61314988456
    [Google Scholar]
  5. SiesH. ScheweT. HeissC. KelmM. Cocoa polyphenols and inflammatory mediators.Am. J. Clin. Nutr.2005811Suppl.304S312S10.1093/ajcn/81.1.304S15640495
    [Google Scholar]
  6. DillingerT.L. BarrigaP. EscárcegaS. JimenezM. LoweD.S. GrivettiL.E. Food of the gods: Cure for humanity? A cultural history of the medicinal and ritual use of chocolate.J. Nutr.20001308Suppl.2057S2072S10.1093/jn/130.8.2057S10917925
    [Google Scholar]
  7. HollenbergN.K. MartinezG. McCulloughM. MeinkingT. PassanD. PrestonM. RiveraA. TaplinD. Vicaria-ClementM. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama.Hypertension199729117117610.1161/01.HYP.29.1.1719039098
    [Google Scholar]
  8. McCulloughM.L. ChevauxK. JacksonL. PrestonM. MartinezG. SchmitzH.H. ColettiC. CamposH. HollenbergN.K. Hypertension, the Kuna, and the epidemiology of flavanols.J. Cardiovasc. Pharmacol.200647Suppl. 2S103S10910.1097/00005344‑200606001‑0000316794446
    [Google Scholar]
  9. MontagnaM.T. DiellaG. TriggianoF. CaponioG.R. GiglioO.D. CaggianoG. CiaulaA.D. PortincasaP. Chocolate,“food of the gods”: History, science, and human health.Int. J. Environ. Res. Public Health20191624496010.3390/ijerph1624496031817669
    [Google Scholar]
  10. BarišićV. KopjarM. JozinovićA. FlanjakI. AčkarĐ. MiličevićB. ŠubarićD. JokićS. BabićJ. The chemistry behind chocolate production.Molecules20192417316310.3390/molecules2417316331480281
    [Google Scholar]
  11. WollgastJ. AnklamE. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification.Food Res. Int.200033642344710.1016/S0963‑9969(00)00068‑5
    [Google Scholar]
  12. MengC.C. JalilA.M.M. IsmailA. Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market.Molecules200914120020910.3390/molecules1401020019127248
    [Google Scholar]
  13. McSheaA. LeissleK. SmithM.A. The essence of chocolate: A rich, dark, and well-kept secret.Nutrition20092511-121104110510.1016/j.nut.2009.05.01219818278
    [Google Scholar]
  14. WoodsideJ.V. McKinleyM.C. YoungI.S. Saturated and trans fatty acids and coronary heart disease.Curr. Atheroscler. Rep.200810646046610.1007/s11883‑008‑0072‑518937892
    [Google Scholar]
  15. BraccoU. Effect of triglyceride structure on fat absorption.Am. J. Clin. Nutr.1994606Suppl.1002S1009S10.1093/ajcn/60.6.1002S7977140
    [Google Scholar]
  16. LecumberriE. MateosR. RamosS. AlíaM. RúperezP. GoyaL. Izquierdo-PulidoM. BravoL. Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats.Nutr. Hosp.200621562262817044609
    [Google Scholar]
  17. WeickertM.O. PfeifferA.F.H. Metabolic effects of dietary fiber consumption and prevention of diabetes.J. Nutr.2008138343944210.1093/jn/138.3.43918287346
    [Google Scholar]
  18. ChakrabortiS. ChakrabortiT. MandalM. MandalA. DasS. GhoshS. Protective role of magnesium in cardiovascular diseases: A review.Mol. Cell. Biochem.20022381/216317910.1023/A:101999870294612349904
    [Google Scholar]
  19. AndoK. MatsuiH. FujitaM. FujitaT. Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: Possible role of its antioxidant action.Curr. Vasc. Pharmacol.201081596310.2174/15701611079022656119485915
    [Google Scholar]
  20. DinanT.G. StantonC. Long-SmithC. KennedyP. CryanJ.F. CowanC.S.M. CenitM.C. van der KampJ.W. SanzY. Feeding melancholic microbes: MyNewGut recommendations on diet and mood.Clin. Nutr.20193851995200110.1016/j.clnu.2018.11.01030497694
    [Google Scholar]
  21. SmithD.F. Benefits of flavanol-rich cocoa-derived products for mental well-being: A review.J. Funct. Foods201351101510.1016/j.jff.2012.09.002
    [Google Scholar]
  22. CryanJ.F. O’MahonyS.M. The microbiome-gut-brain axis: From bowel to behavior.Neurogastroenterol. Motil.201123318719210.1111/j.1365‑2982.2010.01664.x21303428
    [Google Scholar]
  23. CryanJ.F. O’RiordanK.J. CowanC.S.M. SandhuK.V. BastiaanssenT.F.S. BoehmeM. CodagnoneM.G. CussottoS. FullingC. GolubevaA.V. GuzzettaK.E. JaggarM. Long-SmithC.M. LyteJ.M. MartinJ.A. Molinero-PerezA. MoloneyG. MorelliE. MorillasE. O’ConnorR. Cruz-PereiraJ.S. PetersonV.L. ReaK. RitzN.L. SherwinE. SpichakS. TeichmanE.M. van de WouwM. Ventura-SilvaA.P. Wallace-FitzsimonsS.E. HylandN. ClarkeG. DinanT.G. The microbiota-gut-brain axis.Physiol. Rev.20199941877201310.1152/physrev.00018.201831460832
    [Google Scholar]
  24. LachmansinghD.A. LavelleA. CryanJ.F. ClarkeG. Microbiota-gut-brain axis and antidepressant treatment.Curr. Top. Behav. Neurosci.20236617521610.1007/7854_2023_44937962812
    [Google Scholar]
  25. MörklS. ButlerM. I. HollA. CryanJ. F. DinanT. G. Probiotics and the microbiota-gut-brain axis: Focus on psychiatry.Curr Nutr Rep.20209317118210.1007/s13668‑020‑00313‑5
    [Google Scholar]
  26. ShinJ.H. KimC.S. ChaJ. KimS. LeeS. ChaeS. ChunW.Y. ShinD.M. Consumption of 85% cocoa dark chocolate improves mood in association with gut microbial changes in healthy adults: A randomized controlled trial.J. Nutr. Biochem.20229910885410.1016/j.jnutbio.2021.10885434530112
    [Google Scholar]
  27. PaseM.P. ScholeyA.B. PipingasA. KrasM. NolidinK. GibbsA. WesnesK. StoughC. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial.J. Psychopharmacol.201327545145810.1177/026988111247379123364814
    [Google Scholar]
  28. WongM-L. InserraA. LewisM.D. MastronardiC.A. LeongL. ChooJ. KentishS. XieP. MorrisonM. WesselinghS.L. RogersG.B. LicinioJ. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.Mol. Psychiatry201621679780510.1038/mp.2016.4627090302
    [Google Scholar]
  29. LunaR.A. OezguenN. BalderasM. VenkatachalamA. RungeJ.K. VersalovicJ. Veenstra-VanderWeeleJ. AndersonG.M. SavidgeT. WilliamsK.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder.Cell. Mol. Gastroenterol. Hepatol.20173221823010.1016/j.jcmgh.2016.11.00828275689
    [Google Scholar]
  30. SerraD. AlmeidaL.M. DinisT.C.P. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis.Trends Food Sci. Technol.20187822423310.1016/j.tifs.2018.06.007
    [Google Scholar]
  31. SokolovA.N. PavlovaM.A. KlosterhalfenS. EnckP. Chocolate and the brain: Neurobiological impact of cocoa flavanols on cognition and behavior.Neurosci. Biobehav. Rev.201337102445245310.1016/j.neubiorev.2013.06.01323810791
    [Google Scholar]
  32. CarmodyR.N. TurnbaughP.J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics.J. Clin. Invest.2014124104173418110.1172/JCI7233525105361
    [Google Scholar]
  33. KingS.J. IsaacsA.M. O’FarrellE. AbizaidA. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area.Horm. Behav.201160557258010.1016/j.yhbeh.2011.08.00621872601
    [Google Scholar]
  34. MacdiarmidJ.I. HetheringtonM.M. Mood modulation by food: An exploration of affect and cravings in ‘chocolate addicts’.Br. J. Clin. Psychol.199534112913810.1111/j.2044‑8260.1995.tb01445.x7757035
    [Google Scholar]
  35. MasseeL.A. RiedK. PaseM. TravicaN. YoganathanJ. ScholeyA. MacphersonH. KennedyG. SaliA. PipingasA. The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: A randomized, controlled trial.Front. Pharmacol.201569310.3389/fphar.2015.0009326042037
    [Google Scholar]
  36. YadavH. Jaldhi, Bhardwaj R. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review.Life Sci.2023330122022
    [Google Scholar]
  37. BasijiK. SendaniA.A. GhavamiS.B. FarmaniM. KazemifardN. SadeghiA. LotfaliE. AghdaeiH.A. The critical role of gut-brain axis microbiome in mental disorders.Metab. Brain Dis.20233882547256110.1007/s11011‑023‑01248‑w37436588
    [Google Scholar]
  38. VermaA. InslichtS.S. BhargavaA. Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders.Cells20241317143610.3390/cells1317143639273008
    [Google Scholar]
  39. AppletonJ. The gut-brain Axis: Influence of microbiota on mood and mental health.Integr. Med.2018174283231043907
    [Google Scholar]
  40. Lewandowska-PietruszkaZ. FiglerowiczM. Mazur-MelewskaK. The history of the intestinal microbiota and the gut-brain axis.Pathogens20221112154010.3390/pathogens1112154036558874
    [Google Scholar]
  41. ZhuS. JiangY. XuK. CuiM. YeW. ZhaoG. JinL. ChenX. The progress of gut microbiome research related to brain disorders.J. Neuroinflammation20201712510.1186/s12974‑020‑1705‑z31952509
    [Google Scholar]
  42. ParkerG. ParkerI. BrotchieH. Mood state effects of chocolate.J. Affect. Disord.2006922-314915910.1016/j.jad.2006.02.00716546266
    [Google Scholar]
  43. SmitH.J. GaffanE.A. RogersP.J. Methylxanthines are the psycho-pharmacologically active constituents of chocolate.Psychopharmacology20041763-441241910.1007/s00213‑004‑1898‑315549276
    [Google Scholar]
  44. SpencerJ.P.E. Flavonoids and brain health: Multiple effects underpinned by common mechanisms.Genes Nutr.20094424325010.1007/s12263‑009‑0136‑319685255
    [Google Scholar]
  45. JosephJ.A. Shukitt-HaleB. DenisovaN.A. BielinskiD. MartinA. McEwenJ.J. BickfordP.C. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation.J. Neurosci.199919188114812110.1523/JNEUROSCI.19‑18‑08114.199910479711
    [Google Scholar]
  46. SorondF.A. LipsitzL.A. HollenbergN.K. FisherN.D. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans.Neuropsychiatr. Dis. Treat.20084243344018728792
    [Google Scholar]
  47. SpencerJ.P.E. Abd El MohsenM.M. Rice-EvansC. Cellular uptake and metabolism of flavonoids and their metabolites: Implications for their bioactivity.Arch. Biochem. Biophys.2004423114816110.1016/j.abb.2003.11.01014989269
    [Google Scholar]
  48. SteinbergF.M. BeardenM.M. KeenC.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health.J. Am. Diet. Assoc.2003103221522310.1053/jada.2003.5002812589329
    [Google Scholar]
  49. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: Food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.72715113710
    [Google Scholar]
  50. KatzD.L. DoughtyK. AliA. Cocoa and chocolate in human health and disease.Antioxid. Redox Signal.201115102779281110.1089/ars.2010.369721470061
    [Google Scholar]
  51. ShahZ.A. LiR.C. AhmadA.S. KenslerT.W. YamamotoM. BiswalS. DoréS. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway.J. Cereb. Blood Flow Metab.201030121951196110.1038/jcbfm.2010.5320442725
    [Google Scholar]
  52. RollsE.T. Taste, olfactory and food texture reward processing in the brain and obesity.Int. J. Obes.201135455056110.1038/ijo.2010.15520680018
    [Google Scholar]
  53. ManachC. WilliamsonG. MorandC. ScalbertA. RémésyC. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.Am. J. Clin. Nutr.2005811Suppl.230S242S10.1093/ajcn/81.1.230S15640486
    [Google Scholar]
  54. WangJ.F. SchrammD.D. HoltR.R. EnsunsaJ.L. FragaC.G. SchmitzH.H. KeenC.L. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage.J. Nutr.20001308Suppl.2115S2119S10.1093/jn/130.8.2115S10917932
    [Google Scholar]
  55. HoltR.R. LazarusS.A. SullardsM.C. ZhuQ.Y. SchrammD.D. HammerstoneJ.F. FragaC.G. SchmitzH.H. KeenC.L. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa.Am. J. Clin. Nutr.200276479880410.1093/ajcn/76.4.79812324293
    [Google Scholar]
  56. SachdevaA.K. KuhadA. ChopraK. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome.Brain Res. Bull.2011863-416517210.1016/j.brainresbull.2011.06.00721821105
    [Google Scholar]
  57. MaesM. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression.Prog. Neuropsychopharmacol. Biol. Psychiatry201135366467510.1016/j.pnpbp.2010.06.01420599581
    [Google Scholar]
  58. RacagniG. PopoliM. The pharmacological properties of antidepressants.Int. Clin. Psychopharmacol.201025311713110.1097/YIC.0b013e3283311acd20305568
    [Google Scholar]
  59. RogersP.J. SmitH.J. Food craving and food “addiction”: A critical review of the evidence from a biopsychosocial perspective.Pharmacol. Biochem. Behav.200066131410.1016/S0091‑3057(00)00197‑010837838
    [Google Scholar]
  60. HillA.J. Heaton-BrownL. The experience of food craving: A prospective investigation in healthy women.J. Psychosom. Res.199438880181410.1016/0022‑3999(94)90068‑X7722960
    [Google Scholar]
  61. LafayL. ThomasF. MennenL. CharlesM.A. EschwegeE. BorysJ.M. BasdevantA. Gender differences in the relation between food cravings and mood in an adult community: Results from the fleurbaix laventie ville santé study.Int. J. Eat. Disord.200129219520410.1002/1098‑108X(200103)29:2<195::AID‑EAT1009>3.0.CO;2‑N11429982
    [Google Scholar]
  62. KingG.A. HermanC.P. PolivyJ. Food perception in dieters and non-dieters.Appetite19878214715810.1016/S0195‑6663(87)80007‑73592651
    [Google Scholar]
  63. YusufS. HawkenS. ÔunpuuS. DansT. AvezumA. LanasF. McQueenM. BudajA. PaisP. VarigosJ. LishengL. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study.Lancet2004364943893795210.1016/S0140‑6736(04)17018‑915364185
    [Google Scholar]
  64. CortiR. FlammerA. J. HollenbergN. K. LüscherT. F. Cocoa and cardiovascular health.Circulation2009119101433144110.1161/CIRCULATIONAHA.108.827022
    [Google Scholar]
  65. BerryN.M. DavisonK. CoatesA.M. BuckleyJ.D. HoweP.R.C. Impact of cocoa flavanol consumption on blood pressure responsiveness to exercise.Br. J. Nutr.2010103101480148410.1017/S000711450999338220082737
    [Google Scholar]
  66. MartinM. Á. RamosS. Impact of cocoa flavanols on human health.Food Chem Toxicol.202115111212110.1016/j.fct.2021.112121
    [Google Scholar]
  67. NehligA. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance.Br. J. Clin. Pharmacol.201375371672710.1111/j.1365‑2125.2012.04378.x22775434
    [Google Scholar]
  68. RossR. Atherosclerosis--an inflammatory disease.N. Engl. J. Med.1999340211512610.1056/NEJM1999011434002079887164
    [Google Scholar]
  69. DeschS. SchmidtJ. KoblerD. SonnabendM. EitelI. SarebanM. RahimiK. SchulerG. ThieleH. Effect of cocoa products on blood pressure: Systematic review and meta-analysis.Am. J. Hypertens.20102319710310.1038/ajh.2009.21319910929
    [Google Scholar]
  70. HooperL. KayC. AbdelhamidA. KroonP.A. CohnJ.S. RimmE.B. CassidyA. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials.Am. J. Clin. Nutr.201295374075110.3945/ajcn.111.02345722301923
    [Google Scholar]
  71. Barrera-ReyesP.K. de LaraJ.C.F. González-SotoM. TejeroM.E. Effects of cocoa-derived polyphenols on cognitive function in humans. Systematic review and analysis of methodological aspects.Plant Foods Hum. Nutr.202075111110.1007/s11130‑019‑00779‑x31933112
    [Google Scholar]
  72. FerriC. DesideriG. FerriL. ProiettiI. Di AgostinoS. MartellaL. MaiF. Di GiosiaP. GrassiD. Cocoa, blood pressure, and cardiovascular health.J. Agric. Food Chem.201563459901990910.1021/acs.jafc.5b0106426125676
    [Google Scholar]
  73. CortiR. HutterR. BadimonJ.J. FusterV. Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis.J. Thromb. Thrombolysis2004171354410.1023/B:THRO.0000036027.39353.7015277786
    [Google Scholar]
  74. QuZ. LiuA. LiP. LiuC. XiaoW. HuangJ. LiuZ. ZhangS. Advances in physiological functions and mechanisms of (−)-epicatechin.Crit. Rev. Food Sci. Nutr.202161221123310.1080/10408398.2020.172305732090598
    [Google Scholar]
  75. CookN. C. SammanS. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources.J. Nutr. Biochem.199672667610.1016/S0955‑2863(95)00168‑9
    [Google Scholar]
  76. RenaudS. de LorgerilM. Wine, alcohol, platelets, and the French paradox for coronary heart disease.Lancet199233988081523152610.1016/0140‑6736(92)91277‑F1351198
    [Google Scholar]
  77. LinX. ZhangI. LiA. MansonJ.E. SessoH.D. WangL. LiuS. Cocoa flavanol intake and biomarkers for cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials.J. Nutr.2016146112325233310.3945/jn.116.23764427683874
    [Google Scholar]
  78. VictorV. RochaM. SoláE. BañulsC. Garcia-MalpartidaK. Hernández- MijaresA. V. VM Oxidative stress, endothelial dysfunction and atherosclerosis.Curr. Pharm. Des.200915262988300210.2174/13816120978905809319754375
    [Google Scholar]
  79. BabaS. OsakabeN. KatoY. NatsumeM. YasudaA. KidoT. FukudaK. MutoY. KondoK. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans.Am. J. Clin. Nutr.200785370971710.1093/ajcn/85.3.70917344491
    [Google Scholar]
  80. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  81. KangC.H. ChoiY.H. MoonS.K. KimW.J. KimG.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway.Int. Immunopharmacol.201317380881310.1016/j.intimp.2013.09.00924076371
    [Google Scholar]
  82. SaidR.S. El-DemerdashE. NadaA.S. KamalM.M. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1).Biochem. Pharmacol.201610314015010.1016/j.bcp.2016.01.01926827941
    [Google Scholar]
  83. XuL. BotchwayB.O.A. ZhangS. ZhouJ. LiuX. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury.Front. Neurosci.20181269010.3389/fnins.2018.0069030337851
    [Google Scholar]
  84. AggarwalB.B. SundaramC. MalaniN. IchikawaH. Curcumin: The Indian solid gold.Adv. Exp. Med. Biol.200759517510.1007/978‑0‑387‑46401‑5_117569205
    [Google Scholar]
  85. WangY. TangQ. DuanP. YangL. Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis.Immunopharmacol. Immunotoxicol.201840647648210.1080/08923973.2018.146914530111198
    [Google Scholar]
  86. KatiyarS.K. AfaqF. PerezA. MukhtarH. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress.Carcinogenesis200122228729410.1093/carcin/22.2.28711181450
    [Google Scholar]
  87. ChackoS.M. ThambiP.T. KuttanR. NishigakiI. Beneficial effects of green tea: A literature review.Chin. Med.2010511310.1186/1749‑8546‑5‑1320370896
    [Google Scholar]
  88. CoryH. PassarelliS. SzetoJ. TamezM. MatteiJ. The role of polyphenols in human health and food systems: A mini-review.Front. Nutr.201858710.3389/fnut.2018.0008730298133
    [Google Scholar]
  89. BauerS. R. DingE. L. SmitL. A. Cocoa consumption, cocoa flavonoids, and effects on cardiovascular risk factors: An evidence-based reviewCurr. Cardiovasc.20115212012710.1007/s12170‑011‑0157‑5
    [Google Scholar]
  90. Ramiro-PuigE. CastellM. Cocoa: Antioxidant and immunomodulator.Br. J. Nutr.2009101793194010.1017/S000711450816989619126261
    [Google Scholar]
  91. ShapiroH. LevS. CohenJ. SingerP. Polyphenols in the prevention and treatment of sepsis syndromes: Rationale and pre-clinical evidence.Nutrition2009251098199710.1016/j.nut.2009.02.01019502006
    [Google Scholar]
  92. GurbelP.A. SerebruanyV.L. Adhesion molecules, platelet activation, and cardiovascular risk.Am. Heart J.2002143219619810.1067/mhj.2002.12030411835020
    [Google Scholar]
  93. ReinD. PaglieroniT.G. PearsonD.A. WunT. SchmitzH.H. GosselinR. KeenC.L. Cocoa and wine polyphenols modulate platelet activation and function.J. Nutr.20001308Suppl.2120S2126S10.1093/jn/130.8.2120S10917933
    [Google Scholar]
  94. NatellaF. NardiniM. BelelliF. PignatelliP. Di SantoS. GhiselliA. VioliF. ScacciniC. Effect of coffee drinking on platelets: Inhibition of aggregation and phenols incorporation.Br. J. Nutr.200810061276128210.1017/S000711450898145918439332
    [Google Scholar]
  95. BordeauxB. YanekL.R. MoyT.F. WhiteL.W. BeckerL.C. FaradayN. BeckerD.M. Casual chocolate consumption and inhibition of platelet function.Prev. Cardiol.200710417518010.1111/j.1520‑037X.2007.06693.x17917513
    [Google Scholar]
  96. HeptinstallS. MayJ. FoxS. Kwik-UribeC. ZhaoL. Cocoa flavanols and platelet and leukocyte function: Recent in vitro and ex vivo studies in healthy adults.J. Cardiovasc. Pharmacol.200647Suppl. 2S197S20510.1097/00005344‑200606001‑0001516794458
    [Google Scholar]
  97. PearsonD.A. HoltR.R. ReinD. PaglieroniT. SchmitzH.H. KeenC.L. Flavanols and platelet reactivity.Clin. Dev. Immunol.20051211915712593
    [Google Scholar]
  98. AlmoosawiS. FyfeL. HoC. Al-DujailiE. The effect of polyphenol-rich dark chocolate on fasting capillary whole blood glucose, total cholesterol, blood pressure and glucocorticoids in healthy overweight and obese subjects.Br. J. Nutr.2010103684285010.1017/S000711450999243119825207
    [Google Scholar]
  99. DavisonK. BerryN.M. MisanG. CoatesA.M. BuckleyJ.D. HoweP.R.C. Dose-related effects of flavanol-rich cocoa on blood pressure.J. Hum. Hypertens.201024956857610.1038/jhh.2009.10520090776
    [Google Scholar]
  100. CrewsW.D.Jr HarrisonD.W. WrightJ.W. A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: Clinical findings from a sample of healthy, cognitively intact older adults.Am. J. Clin. Nutr.200887487288010.1093/ajcn/87.4.87218400709
    [Google Scholar]
  101. GrassiD. NecozioneS. LippiC. CroceG. ValeriL. PasqualettiP. DesideriG. BlumbergJ.B. FerriC. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives.Hypertension200546239840510.1161/01.HYP.0000174990.46027.7016027246
    [Google Scholar]
  102. RiedK. SullivanT.R. FaklerP. FrankO.R. StocksN.P. Effect of cocoa on blood pressure.Cochrane Database Syst. Rev.2012158CD00889322895979
    [Google Scholar]
  103. BuijsseB. WeikertC. DroganD. BergmannM. BoeingH. Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults.Eur. Heart J.201031131616162310.1093/eurheartj/ehq06820354055
    [Google Scholar]
  104. NapoliC. IgnarroL.J. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases.Arch. Pharm. Res.20093281103110810.1007/s12272‑009‑1801‑119727602
    [Google Scholar]
  105. LavoieJ.L. SigmundC.D. Minireview: Overview of the renin-angiotensin system--An endocrine and paracrine system.Endocrinology200314462179218310.1210/en.2003‑015012746271
    [Google Scholar]
  106. CerielloA. MotzE. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited.Arterioscler. Thromb. Vasc. Biol.200424581682310.1161/01.ATV.0000122852.22604.7814976002
    [Google Scholar]
  107. MillerK.B. StuartD.A. SmithN.L. LeeC.Y. McHaleN.L. FlanaganJ.A. OuB. HurstW.J. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States.J. Agric. Food Chem.200654114062406810.1021/jf060290o16719535
    [Google Scholar]
  108. ChakravarthyB.K. GuptaS. GodeK.D. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (−)-epicatechin.Life Sci.198231242693269710.1016/0024‑3205(82)90713‑56759833
    [Google Scholar]
  109. RuzaidiA. AminI. NawalyahA.G. HamidM. FaizulH.A. The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats.J. Ethnopharmacol.2005981-2556010.1016/j.jep.2004.12.01815763363
    [Google Scholar]
  110. KimJ. MontagnaniM. KohK.K. QuonM.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms.Circulation2006113151888190410.1161/CIRCULATIONAHA.105.56321316618833
    [Google Scholar]
  111. SydowK. MondonC.E. CookeJ.P. Insulin resistance: Potential role of the endogenous nitric oxide synthase inhibitor ADMA.Vasc. Med.2005101_supplSuppl. 1S35S4310.1177/1358836X050100010616444867
    [Google Scholar]
  112. Ramiro-PuigE. Urpí-SardàM. Pérez-CanoF.J. FranchÀ. CastelloteC. Andrés-LacuevaC. Izquierdo-PulidoM. CastellM. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.J. Agric. Food Chem.200755166431643810.1021/jf070487w17630760
    [Google Scholar]
  113. KennyT.P. ShuS. MoritokiY. KeenC.L. GershwinM.E. Cocoa flavanols and procyanidins can modulate the lipopolysaccharide activation of polymorphonuclear cells in vitro.J. Med. Food20091211710.1089/jmf.2007.026319298189
    [Google Scholar]
  114. KennyT.P. KeenC.L. SchmitzH.H. GershwinM.E. Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells.Exp. Biol. Med.2007232229330017259337
    [Google Scholar]
  115. RamiroE. FranchÀ. CastelloteC. Andrés-LacuevaC. Izquierdo-PulidoM. CastellM. Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line.Br. J. Nutr.200593685986610.1079/BJN2005144316022755
    [Google Scholar]
  116. FedericoA. MorgilloF. TuccilloC. CiardielloF. LoguercioC. Chronic inflammation and oxidative stress in human carcinogenesis.Int. J. Cancer2007121112381238610.1002/ijc.2319217893868
    [Google Scholar]
  117. MackenzieG.G. CarrasquedoF. DelfinoJ.M. KeenC.L. FragaC.G. OteizaP.I. Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in Jurkat T cells.FASEB J.200418116716910.1096/fj.03‑0402fje14630700
    [Google Scholar]
  118. SpadafrancaA. Martinez ConesaC. SiriniS. TestolinG. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects.Br. J. Nutr.201010371008101410.1017/S000711450999269819889244
    [Google Scholar]
  119. MyungS-K. JuW. ChoiH.J. KimS.C. GroupK.M.A.S. Soy intake and risk of endocrine-related gynaecological cancer: A meta-analysis.BJOG2009116131697170510.1111/j.1471‑0528.2009.02322.x19775307
    [Google Scholar]
  120. MaskarinecG. Cancer protective properties of cocoa: A review of the epidemiologic evidence.Nutr. Cancer200961557357910.1080/0163558090282566219838930
    [Google Scholar]
  121. SelmiC. CocchiC.A. LanfrediniM. KeenC.L. GershwinM.E. Chocolate at heart: The anti-inflammatory impact of cocoa flavanols.Mol. Nutr. Food Res.200852111340134810.1002/mnfr.20070043518991246
    [Google Scholar]
  122. Wang-PolagrutoJ.F. VillablancaA.C. PolagrutoJ.A. LeeL. HoltR.R. SchraderH.R. EnsunsaJ.L. SteinbergF.M. SchmitzH.H. KeenC.L. Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women.J. Cardiovasc. Pharmacol.200647Suppl. 2S177S18610.1097/00005344‑200606001‑0001316794456
    [Google Scholar]
  123. SuganumaM. OkabeS. KaiY. SueokaN. SueokaE. FujikiH. Synergistic effects of (-)-epigallocatechin gallate with (-)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9.Cancer Res.199959144479892181
    [Google Scholar]
  124. ArlorioM. BottiniC. TravagliaF. LocatelliM. BordigaM. CoïssonJ.D. MartelliA. TessitoreL. Protective activity of Theobroma cacao L. phenolic extract on AML12 and MLP29 liver cells by preventing apoptosis and inducing autophagy.J. Agric. Food Chem.20095722106121061810.1021/jf902419t19883072
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013332631250130115501
Loading
/content/journals/cnf/10.2174/0115734013332631250130115501
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidant; cancer; Chocolate; cocoa beans; microbiome; polyphenols
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test