Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Lifestyle modifications lead to a number of pathological conditions of which colorectal cancer (CRC) has a greater consideration as the number of cases is constantly increasing. As the lifestyle changes, there is a tremendous change in the food habits of people worldwide. Consumption of fatty foods in excess amounts is a growing trend among people. This shift towards a high-fat diet (HFD) tends to increase the pathological burden on society. Recent investigations have reported the association of HFD consumption with CRC; it is very surprising that HFD can promote carcinogenesis, of which CRC is one of its kind. It has become evident that one modifiable risk factor of CRC is the diet we consume. Although fats are an important macromolecule in the normal functioning of the body, it is necessary to be aware of which type of fats we consume in a greater proportion. Consumption of saturated fats and ω-6 polyunsaturated fatty acids in a higher proportion with a lower proportion of polyunsaturated fatty acids and monounsaturated fatty acids can result in pathological conditions. In this review, we highlight the possible mechanistic pathways and biomarkers underlying HFD-induced CRC. HFD increases the fatty acid levels in the circulation and deposition of fat in various parts, which can result in a chronic inflammatory condition that gradually leads to cancer formation. Thus, it is essential to create awareness among society about the growing incidence of CRC and its association with HFD.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013326483250107091910
2025-02-12
2025-10-10
Loading full text...

Full text loading...

References

  1. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  2. ArnoldM. SierraM.S. LaversanneM. SoerjomataramI. JemalA. BrayF. Global patterns and trends in colorectal cancer incidence and mortality.Gut201766468369110.1136/gutjnl‑2015‑31091226818619
    [Google Scholar]
  3. WongM.C.S. HuangJ. LokV. WangJ. FungF. DingH. ZhengZ.J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location.Clin. Gastroenterol. Hepatol.2021195955966.e6110.1016/j.cgh.2020.02.02632088300
    [Google Scholar]
  4. DouaiherJ. RavipatiA. GramsB. ChowdhuryS. AlatiseO. AreC. Colorectal cancer global burden, trends, and geographical variations.J. Surg. Oncol.2017115561963010.1002/jso.2457828194798
    [Google Scholar]
  5. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  6. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  7. GajendranM. LoganathanP. JimenezG. CatinellaA.P. NgN. UmapathyC. ZiadeN. HashashJ.G. A comprehensive review and update on ulcerative colitis.Dis. Mon.2019651210085110.1016/j.disamonth.2019.02.00430837080
    [Google Scholar]
  8. WinA.K. MacInnisR.J. HopperJ.L. JenkinsM.A. Risk prediction models for colorectal cancer: A review.Cancer Epidemiol. Biomarkers Prev.201221339841010.1158/1055‑9965.EPI‑11‑077122169185
    [Google Scholar]
  9. MurphyN. MorenoV. HughesD.J. VodickaL. VodickaP. AglagoE.K. GunterM.J. JenabM. Lifestyle and dietary environmental factors in colorectal cancer susceptibility.Mol. Aspects Med.2019692910.1016/j.mam.2019.06.00531233770
    [Google Scholar]
  10. SilvaA. FariaG. AraújoA. MonteiroM.P. Impact of adiposity on staging and prognosis of colorectal cancer.Crit. Rev. Oncol. Hematol.202014510285710.1016/j.critrevonc.2019.10285731881452
    [Google Scholar]
  11. NigamA. Consumption of fat in indian diet.Int. J. Diab. Dev2000144450751410.4103/0971‑5916.20090428256458
    [Google Scholar]
  12. WhiteB. Dietary fatty acids.Am. Fam. Physician200980434535019678602
    [Google Scholar]
  13. ArnoldD. The ‘discovery’ of malnutrition and diet in colonial india.Indian Econ. Soc. Hist. Rev.199431112610.1177/001946469403100101
    [Google Scholar]
  14. Fats and oils in human nutrition fao technical papers 3.FAORomeFAO Report of a Joint FAO/WHO Expert Consultation on Dietary1977116010.1111/j.1753‑48877494623
    [Google Scholar]
  15. Indian Council of Medical Research. Nutrient requirements and recommended dietary allowances for Indians. Report of the Expert Group of the Indian Council of Medical Research.HyderabadNational Institute of Nutrition2010141
    [Google Scholar]
  16. KahnS.E. HullR.L. UtzschneiderK.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes.Nature2006444712184084610.1038/nature0548217167471
    [Google Scholar]
  17. NormanJ.E. The adverse effects of obesity on reproduction.Reproduction2010140334334510.1530/REP‑10‑029720802106
    [Google Scholar]
  18. CalleE.E. ThunM.J. Obesity and cancer.Oncogene200423386365637810.1038/sj.onc.120775115322511
    [Google Scholar]
  19. BjerrumJ.T. NielsenO.H. HaoF. TangH. NicholsonJ.K. WangY. OlsenJ. Metabonomics in ulcerative colitis: Diagnostics, biomarker identification, and insight into the pathophysiology.J. Proteome Res.20109295496210.1021/pr900822319860486
    [Google Scholar]
  20. ZhangL. YeY. AnY. TianY. WangY. TangH. Systems responses of rats to aflatoxin b1 exposure revealed with metabonomic changes in multiple biological matrices.J. Proteome Res.201110261462310.1021/pr100792q21080729
    [Google Scholar]
  21. KimH.J. KimJ.H. NohS. HurH.J. SungM.J. HwangJ.T. ParkJ.H. YangH.J. KimM.S. KwonD.Y. YoonS.H. Metabolomic analysis of livers and serum from high-fat diet induced obese mice.J. Proteome Res.201110272273110.1021/pr100892r21047143
    [Google Scholar]
  22. TurnbaughP.J. LeyR.E. MahowaldM.A. MagriniV. MardisE.R. GordonJ.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature200644471221027103110.1038/nature0541417183312
    [Google Scholar]
  23. AnY. XuW. LiH. LeiH. ZhangL. HaoF. DuanY. YanX. ZhaoY. WuJ. WangY. TangH. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats.J. Proteome Res.20131283755376810.1021/pr400398b23746045
    [Google Scholar]
  24. KassoufT. SumaraG. Impact of conventional and atypical mapks on the development of metabolic diseases.Biomolecules2020109125610.3390/biom1009125632872540
    [Google Scholar]
  25. VerniaS. MorelC. MadaraJ.C. Cavanagh-KyrosJ. BarrettT. ChaseK. KennedyN.J. JungD.Y. KimJ.K. AroninN. FlavellR.A. LowellB.B. DavisR.J. Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress.eLife20165e1003110.7554/eLife.1003126910012
    [Google Scholar]
  26. VerniaS. Cavanagh-KyrosJ. BarrettT. JungD.Y. KimJ.K. DavisR.J. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway.Genes Dev.201327212345235510.1101/gad.223800.11324186979
    [Google Scholar]
  27. HuE. KimJ.B. SarrafP. SpiegelmanB.M. Inhibition of adipogenesis through map kinase-mediated phosphorylation of PPARgamma.Science199627452952100210310.1126/science.274.5295.21008953045
    [Google Scholar]
  28. BostF. AouadiM. CaronL. EvenP. BelmonteN. ProtM. DaniC. HofmanP. PagèsG. PouysségurJ. Le Marchand-BrustelY. BinétruyB. The extracellular signal-regulated kinase isoform erk1 is specifically required for in vitro and in vivo adipogenesis.Diabetes200554240241110.2337/diabetes.54.2.40215677498
    [Google Scholar]
  29. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.2717330263000
    [Google Scholar]
  30. HemmingsB.A. RestucciaD.F. PI3K-PKb/AKT pathway.Cold Spring Harb. Perspect. Biol.201249a01118910.1101/cshperspect.a01118922952397
    [Google Scholar]
  31. KwonO. KimK.W. KimM.S. Leptin signalling pathways in hypothalamic neurons.Cell. Mol. Life Sci.20167371457147710.1007/s00018‑016‑2133‑126786898
    [Google Scholar]
  32. ChenT. ZhangY. LiuY. ZhuD. YuJ. LiG. SunZ. WangW. JiangH. HongZ. Mir-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling.Aging (Albany NY)201911187510752410.18632/aging.10226331562809
    [Google Scholar]
  33. CotaD. ProulxK. SmithK.A.B. KozmaS.C. ThomasG. WoodsS.C. SeeleyR.J. Hypothalamic mtor signaling regulates food intake.Science2006312577592793010.1126/science.112414716690869
    [Google Scholar]
  34. TsuboneT. MasakiT. KatsuragiI. TanakaK. KakumaT. YoshimatsuH. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice.Regul. Pept.20051301-29710310.1016/j.regpep.2005.04.00415946750
    [Google Scholar]
  35. HorvathC.M. Stat proteins and transcriptional responses to extracellular signals.Trends Biochem. Sci.2000251049650210.1016/S0968‑0004(00)01624‑811050435
    [Google Scholar]
  36. HuangH. KongD. ByunK.H. YeC. KodaS. LeeD.H. OhB.C. LeeS.W. LeeB. ZabolotnyJ.M. KimM.S. BjørbækC. LowellB.B. KimY.B. Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling.Nat. Neurosci.201215101391139810.1038/nn.320722941110
    [Google Scholar]
  37. BatesS.H. StearnsW.H. DundonT.A. SchubertM. TsoA.W.K. WangY. BanksA.S. LaveryH.J. HaqA.K. Maratos-FlierE. NeelB.G. SchwartzM.W. MyersM.G.Jr STAT3 signalling is required for leptin regulation of energy balance but not reproduction.Nature2003421692585685910.1038/nature0138812594516
    [Google Scholar]
  38. InoueH. OgawaW. OzakiM. HagaS. MatsumotoM. FurukawaK. HashimotoN. KidoY. MoriT. SakaueH. TeshigawaraK. JinS. IguchiH. HiramatsuR. LeRoithD. TakedaK. AkiraS. KasugaM. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo.Nat. Med.200410216817410.1038/nm98014716305
    [Google Scholar]
  39. LeeM.J. Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity.Biochim. Biophys. Acta Mol. Basis Dis.2018186441160117110.1016/j.bbadis.2018.01.02529409985
    [Google Scholar]
  40. PatelS. Alvarez-GuaitaA. MelvinA. RimmingtonD. DattiloA. MiedzybrodzkaE.L. CiminoI. MaurinA.C. RobertsG.P. MeekC.L. VirtueS. SparksL.M. ParsonsS.A. RedmanL.M. BrayG.A. LiouA.P. WoodsR.M. ParryS.A. JeppesenP.B. KolnesA.J. HardingH.P. RonD. Vidal-PuigA. ReimannF. GribbleF.M. HulstonC.J. FarooqiI.S. FafournouxP. SmithS.R. JensenJ. BreenD. WuZ. ZhangB.B. CollA.P. SavageD.B. O’RahillyS. GDF15 provides an endocrine signal of nutritional stress in mice and humans.Cell Metab.2019293707718.e810.1016/j.cmet.2018.12.01630639358
    [Google Scholar]
  41. LaudesM. Role of wnt signalling in the determination of human mesenchymal stem cells into preadipocytes.J. Mol. Endocrinol.2011462R65R7221247979
    [Google Scholar]
  42. ChenM. LuP. MaQ. CaoY. ChenN. LiW. ZhaoS. ChenB. ShiJ. SunY. ShenH. SunL. ShenJ. LiaoQ. ZhangY. HongJ. GuW. LiuR. NingG. WangW. WangJ. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes.Sci. Adv.202062eaax960510.1126/sciadv.aax960531934629
    [Google Scholar]
  43. ReddyB.S. Types and amount of dietary fat and colon cancer risk: Prevention by omega-3 fatty acid-rich diets.Environ. Health Prev. Med.2002739510210.1265/ehpm.2002.9521432290
    [Google Scholar]
  44. WanY. WuK. WangL. YinK. SongM. GiovannucciE.L. WillettW.C. Dietary fat and fatty acids in relation to risk of colorectal cancer.Eur. J. Nutr.20226141863187310.1007/s00394‑021‑02777‑935048194
    [Google Scholar]
  45. La MerrillM. BastonD.S. DenisonM.S. BirnbaumL.S. PompD. ThreadgillD.W. Mouse breast cancer model-dependent changes in metabolic syndrome-associated phenotypes caused by maternal dioxin exposure and dietary fat.Am. J. Physiol. Endocrinol. Metab.20092961E203E21010.1152/ajpendo.90368.200818840765
    [Google Scholar]
  46. YangJ.J. YuD. TakataY. Smith-WarnerS.A. BlotW. WhiteE. RobienK. ParkY. XiangY.B. SinhaR. LazovichD. StampferM. TuminoR. AuneD. OvervadK. LiaoL. ZhangX. GaoY.T. JohanssonM. WillettW. ZhengW. ShuX.O. Dietary fat intake and lung cancer risk: A pooled analysis.J. Clin. Oncol.201735263055306410.1200/JCO.2017.73.332928742456
    [Google Scholar]
  47. GoncalvesM.D. HopkinsB.D. CantleyL.C. Dietary fat and sugar in promoting cancer development and progression.Annu. Rev. Cancer Biol.20193125527310.1146/annurev‑cancerbio‑030518‑055855
    [Google Scholar]
  48. Lauby-SecretanB. ScocciantiC. LoomisD. GrosseY. BianchiniF. StraifK. Body fatness and cancer — viewpoint of the iarc working group.N. Engl. J. Med.2016375879479810.1056/NEJMsr160660227557308
    [Google Scholar]
  49. OgdenC.L. CarrollM.D. KitB.K. FlegalK.M. Prevalence of childhood and adult obesity in the united states, 2011-2012.JAMA2014311880681410.1001/jama.2014.73224570244
    [Google Scholar]
  50. Cancer stat facts: Cancer of any site.2018Available from: https://seer.cancer.gov/statfacts/html/all.html
  51. AkimotoN. UgaiT. ZhongR. HamadaT. FujiyoshiK. GiannakisM. WuK. CaoY. NgK. OginoS. Rising incidence of early-onset colorectal cancer — a call to action.Nat. Rev. Clin. Oncol.202118423024310.1038/s41571‑020‑00445‑133219329
    [Google Scholar]
  52. Hasanpour-HeidariS. FazelA. SemnaniS. KhandooziS.R. AmirianiT. SedaghatS. HosseinpoorR. AzarhoushR. PoorabbasiM. Naeimi-TabieiM. RoshandelG. BrayF. WeiderpassE. Temporal and geographical variations in colorectal cancer incidence in northern iran 2004–2013.Cancer Epidemiol.20195914314710.1016/j.canep.2019.02.00330771699
    [Google Scholar]
  53. ZamaninourN. YoosefiM. SoleimanzadehkhayatM. PazhuheianF. Saeedi MoghaddamS. DjalaliniaS. ShahbalN. HaghshenasR. MarzbanM. Dilmaghani-MarandA. KazemiA. HadianN. ZokaeiH. ParianiA. HajipourM.J. Hasani-RanjbarS. FarzadfarF. Distribution of dietary risk factors in iran: National and sub-national burden of disease.Arch. Iran Med.2021241485710.34172/aim.2021.0833588568
    [Google Scholar]
  54. RafieeP. ShivappaN. HébertJ.R. Jaafari NasabS. BahramiA. HekmatdoostA. RashidkhaniB. SadeghiA. HoushyariM. HejaziE. Dietary inflammatory index and odds of colorectal cancer and colorectal adenomatous polyps in a case-control study from iran.Nutrients2019116121310.3390/nu1106121331142015
    [Google Scholar]
  55. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  56. Martin-PerezM. Urdiroz-UrricelquiU. BigasC. BenitahS.A. The role of lipids in cancer progression and metastasis.Cell Metab.202234111675169910.1016/j.cmet.2022.09.02336261043
    [Google Scholar]
  57. LiB. MiJ. YuanQ. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: From biological function to molecular mechanism.Cell Death Discov.202410135010.1038/s41420‑024‑02126‑939103344
    [Google Scholar]
  58. SantarpiaL. GrandoneI. ContaldoF. PasanisiF. Butyrylcholinesterase as a prognostic marker: A review of the literature.J. Cachexia Sarcopenia Muscle201341313910.1007/s13539‑012‑0083‑522956442
    [Google Scholar]
  59. PaesA.M.A. CarniattoS.R. FranciscoF.A. BritoN.A. MathiasP.C.F. Acetylcholinesterase activity changes on visceral organs of vmh lesion-induced obese rats.Int. J. Neurosci.2006116111295130210.1080/0020745060092091017000530
    [Google Scholar]
  60. PrabhuK. KumarR. RazabS. RayS. PrakashB. Serum butyrylcholinesterase and zinc in breast cancer.J. Cancer Res. Ther.201713236737010.4103/0973‑1482.16586928643762
    [Google Scholar]
  61. CoulterD.W. BoettnerA.D. KortylewiczZ.P. EnkeS.P. LutherJ.A. VermaV. Baranowska-KortylewiczJ. Butyrylcholinesterase as a blood biomarker in neuroblastoma.J. Pediatr. Hematol. Oncol.201739427228110.1097/MPH.000000000000082828375942
    [Google Scholar]
  62. LiuJ. TianT. LiuX. CuiZ. Bche as a prognostic biomarker in endometrial cancer and its correlation with immunity.J. Immunol. Res.2022202212010.1155/2022/605109235915658
    [Google Scholar]
  63. PrabhuK. NaikD. RayS. VadirajR.A. RaoA. KamathA. Significance of serum butyrylcholinesterase levels in oral cancer.Australas. Med. J.20114737437810.4066/AMJ.2011.56923393522
    [Google Scholar]
  64. VerrasG.I. MulitaF. Butyrylcholinesterase levels correlate with surgical site infection risk and severity after colorectal surgery: A prospective single-center study.Front. Surg.202411137941010.3389/fsurg.2024.137941039229253
    [Google Scholar]
  65. KuipersE.J. GradyW.M. LiebermanD. SeufferleinT. SungJ.J. BoelensP.G. van de VeldeC.J.H. WatanabeT. Colorectal cancer.Nat. Rev. Dis. Primers2015111506510.1038/nrdp.2015.6527189416
    [Google Scholar]
  66. GradyW.M. CarethersJ.M. Genomic and epigenetic instability in colorectal cancer pathogenesis.Gastroenterology200813541079109910.1053/j.gastro.2008.07.07618773902
    [Google Scholar]
  67. JonesS. ChenW. ParmigianiG. DiehlF. BeerenwinkelN. AntalT. TraulsenA. NowakM.A. SiegelC. VelculescuV.E. KinzlerK.W. VogelsteinB. WillisJ. MarkowitzS.D. Comparative lesion sequencing provides insights into tumor evolution.Proc. Natl. Acad. Sci. USA2008105114283428810.1073/pnas.071234510518337506
    [Google Scholar]
  68. LuoY. WongC.J. KazA.M. DzieciatkowskiS. CarterK.T. MorrisS.M. WangJ. WillisJ.E. MakarK.W. UlrichC.M. LutterbaughJ.D. ShrubsoleM.J. ZhengW. MarkowitzS.D. GradyW.M. Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer.Gastroenterology20141472418429.e810.1053/j.gastro.2014.04.03924793120
    [Google Scholar]
  69. ZekiS.S. GrahamT.A. WrightN.A. Stem cells and their implications for colorectal cancer.Nat. Rev. Gastroenterol. Hepatol.2011829010010.1038/nrgastro.2010.21121293509
    [Google Scholar]
  70. HamiltonS.R. BosmanF.T. BoffettaP. Carcinoma of the colon and rectum.WHO Classification of Tumours of the Digestive System. BosmanF.T. CarneiroF. HrubanR.H. TheiseN.D. LyonIARC Press2010134146
    [Google Scholar]
  71. FlemingM. RavulaS. TatishchevS.F. WangH.L. Colorectal carcinoma: Pathologic aspects.J. Gastrointest. Oncol.20123315317322943008
    [Google Scholar]
  72. LeopoldoS. LorenaB. CinziaA. GabriellaD.C. Angela LucianaB. RenatoC. AntonioM. CarloS. CristinaP. StefanoC. MaurizioT. LuigiR. CesareB. Two subtypes of mucinous adenocarcinoma of the colorectum: Clinicopathological and genetic features.Ann. Surg. Oncol.20081551429143910.1245/s10434‑007‑9757‑118301950
    [Google Scholar]
  73. ChenJ.S. HsiehP.S. ChiangJ.M. YehC.Y. TsaiW.S. TangR. ChangchienC.R. WuR.C. Clinical outcome of signet ring cell carcinoma and mucinous adenocarcinoma of the colon.Chang Gung Med. J.2010331515720184795
    [Google Scholar]
  74. ThirunavukarasuP. SathaiahM. SinglaS. SukumarS. KarunamurthyA. PragatheeshwarK.D. LeeK.K. ZehH.III KaneK.M. BartlettD.L. Medullary carcinoma of the large intestine: A population based analysis.Int. J. Oncol.201037490190720811712
    [Google Scholar]
  75. HampelH. FrankelW.L. MartinE. ArnoldM. KhandujaK. KueblerP. NakagawaH. SotamaaK. PriorT.W. WestmanJ. PanescuJ. FixD. LockmanJ. ComerasI. de la ChapelleA. Screening for the lynch syndrome (hereditary nonpolyposis colorectal cancer).N. Engl. J. Med.2005352181851186010.1056/NEJMoa04314615872200
    [Google Scholar]
  76. HalfE. BercovichD. RozenP. Familial adenomatous polyposis.Orphanet J. Rare Dis.2009412210.1186/1750‑1172‑4‑2219822006
    [Google Scholar]
  77. BülowS. BjörkJ. ChristensenI.J. FausaO. JärvinenH. MoesgaardF. VasenH.F. DAF Study Group Duodenal adenomatosis in familial adenomatous polyposis.Gut200453338138610.1136/gut.2003.02777114960520
    [Google Scholar]
  78. GiardielloF.M. BurtR.W. JävinenH.J. Familial adenomatous polyposis.WHO classification of tumours of the digestive system. BosmanF.T. CarneiroF. HrubanR.H. TheiseN.D. LyonIARC Press2010147151
    [Google Scholar]
  79. KopacovaM. TacheciI. RejchrtS. BuresJ. Peutz-jeghers syndrome: Diagnostic and therapeuticapproach.World J. Gastroenterol.200915435397540810.3748/wjg.15.539719916169
    [Google Scholar]
  80. KarumanP. GozaniO. OdzeR.D. ZhouX.C. ZhuH. ShawR. BrienT.P. BozzutoC.D. OoiD. CantleyL.C. YuanJ. The peutz-jegher gene product LKB1 is a mediator of p53-dependent cell death.Mol. Cell2001761307131910.1016/S1097‑2765(01)00258‑111430832
    [Google Scholar]
  81. ChenJ. HuangX.F. High fat diet-induced obesity increases the formation of colon polyps induced by azoxymethane in mice.Ann. Transl. Med.2015367925992378
    [Google Scholar]
  82. YangJ. WeiH. ZhouY. SzetoC.H. LiC. LinY. CokerO.O. LauH.C.H. ChanA.W.H. SungJ.J.Y. YuJ. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites.Gastroenterology20221621135149.e210.1053/j.gastro.2021.08.04134461052
    [Google Scholar]
  83. NimriL. SaadiJ. PeriI. Yehuda-ShnaidmanE. SchwartzB. Mechanisms linking obesity to altered metabolism in mice colon carcinogenesis.Oncotarget2015635381953820910.18632/oncotarget.556126472027
    [Google Scholar]
  84. KimT.Y. KimS. KimY. LeeY.S. LeeS. LeeS.H. KweonM.N. A high-fat diet activates the bas-fxr axis and triggers cancer-associated fibroblast properties in the colon.Cell. Mol. Gastroenterol. Hepatol.20221341141115910.1016/j.jcmgh.2021.12.01534971821
    [Google Scholar]
  85. O’NeillA.M. BurringtonC.M. GillaspieE.A. LynchD.T. HorsmanM.J. GreeneM.W. High-fat western diet–induced obesity contributes to increased tumor growth in mouse models of human colon cancer.Nutr. Res.201636121325133410.1016/j.nutres.2016.10.005
    [Google Scholar]
  86. PietrzykL. TorresA. MaciejewskiR. TorresK. Obesity and obese-related chronic low-grade inflammation in promotion of colorectal cancer development.Asian Pac. J. Cancer Prev.201516104161416810.7314/APJCP.2015.16.10.416126028066
    [Google Scholar]
  87. LyonC.J. LawR.E. HsuehW.A. Minireview: Adiposity, inflammation, and atherogenesis.Endocrinology200314462195220010.1210/en.2003‑028512746274
    [Google Scholar]
  88. PenroseH.M. HellerS. CableC. NakhoulH. BaddooM. FlemingtonE. CrawfordS.E. SavkovicS.D. High-fat diet induced leptin and wnt expression: Rna-sequencing and pathway analysis of mouse colonic tissue and tumors.Carcinogenesis201738330231110.1093/carcin/bgx00128426873
    [Google Scholar]
  89. SitaramanS. LiuX. CharrierL. GuL.H. ZieglerT.R. GewirtzA. MerlinD. Colonic leptin: Source of a novel proinflammatory cytokine involved in ibd.FASEB J.200418669669810.1096/fj.03‑0422fje14977884
    [Google Scholar]
  90. EndoH. HosonoK. UchiyamaT. SakaiE. SugiyamaM. TakahashiH. NakajimaN. WadaK. TakedaK. NakagamaH. NakajimaA. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis.Gut201160101363137110.1136/gut.2010.23575421406387
    [Google Scholar]
  91. FujisawaT. EndoH. TomimotoA. SugiyamaM. TakahashiH. SaitoS. InamoriM. NakajimaN. WatanabeM. KubotaN. YamauchiT. KadowakiT. WadaK. NakagamaH. NakajimaA. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition.Gut200857111531153810.1136/gut.2008.15929318676419
    [Google Scholar]
  92. TaharaT. InoueN. HisamatsuT. KashiwagiK. TakaishiH. KanaiT. WatanabeM. IshiiH. HibiT. Clinical significance of microsatellite instability in the inflamed mucosa for the prediction of colonic neoplasms in patients with ulcerative colitis.J. Gastroenterol. Hepatol.200520571071510.1111/j.1440‑1746.2005.03803.x15853983
    [Google Scholar]
  93. LiuZ. BrooksR.S. CiappioE.D. KimS.J. CrottJ.W. BennettG. GreenbergA.S. MasonJ.B. Diet-induced obesity elevates colonic tnf-α in mice and is accompanied by an activation of wnt signaling: A mechanism for obesity-associated colorectal cancer.J. Nutr. Biochem.201223101207121310.1016/j.jnutbio.2011.07.00222209007
    [Google Scholar]
  94. CorvinusF.M. OrthC. MorigglR. TsarevaS.A. WagnerS. PfitznerE.B. BausD. KaufmanR. HuberL.A. ZatloukalK. BeugH. ÖhlschlägerP. SchützA. HalbhuberK.J. FriedrichK. Persistent STAT-3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth.Neoplasia20057654555510.1593/neo.0457116036105
    [Google Scholar]
  95. SchuringaJ.J. WierengaA.T.J. KruijerW. VellengaE. Constitutive STAT3, TYR705, and SER727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6.Blood200095123765377010.1182/blood.V95.12.3765.012k50_3765_377010845908
    [Google Scholar]
  96. AngeloL.S. TalpazM. KurzrockR. Autocrine interleukin-6 production in renal cell carcinoma: Evidence for the involvement of p53.Cancer Res.200262393294011830554
    [Google Scholar]
  97. GiriD. OzenM. IttmannM. Interleukin-6 is an autocrine growth factor in human prostate cancer.Am. J. Pathol.200115962159216510.1016/S0002‑9440(10)63067‑211733366
    [Google Scholar]
  98. IkutaT. KurosumiM. YatsuokaT. NishimuraY. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression.Exp. Cell Res.2016343212613410.1016/j.yexcr.2016.03.01226973338
    [Google Scholar]
  99. Díaz-DíazC.J. Ronnekleiv-KellyS.M. NukayaM. GeigerP.G. BalboS. DatorR. MegnaB.W. CarneyP.R. BradfieldC.A. KennedyG.D. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse.Ann. Surg.2016264342943610.1097/SLA.000000000000187427433903
    [Google Scholar]
  100. Garcia-VillatoroE.L. DeLucaJ.A.A. CallawayE.S. AllredK.F. DavidsonL.A. HenselM.E. MenonR. IvanovI. SafeS.H. JayaramanA. ChapkinR.S. AllredC.D. Effects of high-fat diet and intestinal aryl hydrocarbon receptor deletion on colon carcinogenesis.Am. J. Physiol. Gastrointest. Liver Physiol.20203183G451G46310.1152/ajpgi.00268.201931905023
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013326483250107091910
Loading
/content/journals/cnf/10.2174/0115734013326483250107091910
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Colorectal cancer; epidemiology; high-fat diet; inflammation; obesity; saturated fats
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test