Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

In modern times, individuals are frequently subjected to a wide range of environmental and chemical pollutants that are generated by industrial and agricultural activities. The contamination of food by pesticides, biogenic amines, and mycotoxins represents a significant concern for global food safety, and has economic and public health implications, particularly in newly industrialized nations. A growing body of evidence suggests that prolonged exposure to food contaminants, known as xenobiotics, can have adverse effects on human health. Although many strategies for food decontamination are frequently used, they require specific conditions that are often difficult to meet in many industrial sectors. Currently, a promising strategy for mitigating the potential hazards associated with xenobiotics in food items involves the implementation of a biological detoxification method utilizing probiotic strains and their corresponding enzymes. Numerous investigations have corroborated the efficacy, practicality, and cost-effectiveness of postbiotics in impeding xenobiotic-induced dysbiosis and mitigating their toxicological effects. This review aims to summarize the current knowledge of the direct mechanisms by which postbiotics can influence the detoxification of xenobiotics. Moreover, the effects of postbiotics on host response to exposure to xenobiotics were discussed.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013325225241211033631
2025-01-02
2025-10-10
Loading full text...

Full text loading...

References

  1. FungF. WangH.S. MenonS. Food safety in the 21st century.Biomed. J.2018412889510.1016/j.bj.2018.03.00329866604
    [Google Scholar]
  2. AbdelsalamN.A. RamadanA.T. ElRakaibyM.T. AzizR.K. Toxicomicrobiomics: the human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics.Front. Pharmacol.20201139010.3389/fphar.2020.0039032372951
    [Google Scholar]
  3. CarmodyR.N. TurnbaughP.J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics.J. Clin. Invest.2014124104173418110.1172/JCI7233525105361
    [Google Scholar]
  4. ŚrednickaP. Juszczuk-KubiakE. WójcickiM. AkimowiczM. RoszkoM.Ł. Probiotics as a biological detoxification tool of food chemical contamination: A review.Food Chem. Toxicol.202115311230610.1016/j.fct.2021.11230634058235
    [Google Scholar]
  5. ChoiJ.J. EumS.Y. RampersaudE. DaunertS. AbreuM.T. ToborekM. Exercise attenuates PCB-induced changes in the mouse gut microbiome.Environ. Health Perspect.2013121672573010.1289/ehp.130653423632211
    [Google Scholar]
  6. LuK. AboR.P. SchlieperK.A. GraffamM.E. LevineS. WishnokJ.S. SwenbergJ.A. TannenbaumS.R. FoxJ.G. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: An integrated metagenomics and metabolomics analysis.Environ. Health Perspect.2014122328429110.1289/ehp.130742924413286
    [Google Scholar]
  7. NishidaA. InoueR. InatomiO. BambaS. NaitoY. AndohA. Gut microbiota in the pathogenesis of inflammatory bowel disease.Clin. J. Gastroenterol.201811111010.1007/s12328‑017‑0813‑529285689
    [Google Scholar]
  8. AlshannaqA. YuJ.H. Occurrence, toxicity, and analysis of major mycotoxins in food.Int. J. Environ. Res. Public Health201714663210.3390/ijerph1406063228608841
    [Google Scholar]
  9. ChattopadhyayS. KhatunS. MaityM. JanaS. PerveenH. DashM. DeyA. JanaL.R. MaityP.P. Association of vitamin B 12, lactate dehydrogenase, and regulation of NF-κB in the mitigation of sodium arsenite-induced ROS generation in uterine tissue by commercially available probiotics.Probiotics Antimicrob. Proteins2019111304210.1007/s12602‑017‑9333‑328994024
    [Google Scholar]
  10. DaisleyB.A. MonacheseM. TrinderM. BisanzJ.E. ChmielJ.A. BurtonJ.P. ReidG. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium.Gut Microbes201910332133310.1080/19490976.2018.152658130426826
    [Google Scholar]
  11. RadA.H. MalekiL.A. KafilH.S. Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety.Biointerface Res. Appl. Chem.2021116145291454410.33263/BRIAC116.1452914544
    [Google Scholar]
  12. Aghebati-MalekiL. HasannezhadP. AbbasiA. Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: A review of mechanisms and therapeutic perspectives.Biointerface Res. Appl. Chem.20211222629264510.33263/BRIAC122.26292645
    [Google Scholar]
  13. KhaniN. Abedi SoleimaniR. ChadorshabiS. MoutabB.P. MilaniP.G. RadA.H. Postbiotics as candidates in biofilm inhibition in food industries.Lett. Appl. Microbiol.2024774ovad06910.1093/lambio/ovad06937309029
    [Google Scholar]
  14. KhaniN. ShkouhianS. KafilH.S. GilaniN. AbbasiA. RadA.H. Assessing the growth-inhibitory activity of postbiotics of Lactobacillus spp. against Staphylococcus aureus under in vitro circumstances and food model.Lett. Appl. Microbiol.2023762ovac05610.1093/lambio/ovac05636734084
    [Google Scholar]
  15. KhaniN. SoleimaniR.A. MilaniP.G. RadA.H. Evaluation of the antifungal and antibiofilm activity of postbiotics derived from Lactobacillus spp. on Penicillium expansoum in vitro and in food model.Lett. Appl. Microbiol.2023767ovad07010.1093/lambio/ovad07037339913
    [Google Scholar]
  16. BengoaA.A. DardisC. GarroteG.L. AbrahamA.G. Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains.Foods20211010223910.3390/foods1010223934681288
    [Google Scholar]
  17. Cabello-OlmoM. ArañaM. UrtasunR. EncioI.J. BarajasM. Role of postbiotics in diabetes mellitus: Current knowledge and future perspectives.Foods2021107159010.3390/foods1007159034359462
    [Google Scholar]
  18. SalminenS. ColladoM.C. EndoA. HillC. LebeerS. QuigleyE.M.M. SandersM.E. ShamirR. SwannJ.R. SzajewskaH. VinderolaG. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑633948025
    [Google Scholar]
  19. Homayouni-RadA. SoleimaniR.A. KhaniN. Can postbiotics prevent or improve SARS-CoV-2?Curr. Nutr. Food Sci.202319875675710.2174/1573401318666221004112500
    [Google Scholar]
  20. MoradiM. MolaeiR. GuimarãesJ.T. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria.Enzyme Microb. Technol.202114310972210.1016/j.enzmictec.2020.10972233375981
    [Google Scholar]
  21. KhaniN. Abedi SoleimaniR. NoorkhajaviG. Abedi SoleimaniA. AbbasiA. Homayouni RadA. Postbiotics as potential promising tools for SARS-CoV-2 disease adjuvant therapy.J. Appl. Microbiol.202213264097411110.1111/jam.1545735064987
    [Google Scholar]
  22. Aguilar-ToaláJ.E. Garcia-VarelaR. GarciaH.S. Mata-HaroV. González-CórdovaA.F. Vallejo-CordobaB. Hernández-MendozaA. Postbiotics: An evolving term within the functional foods field.Trends Food Sci. Technol.20187510511410.1016/j.tifs.2018.03.009
    [Google Scholar]
  23. KhaniN. NoorkhajaviG. SoleimanR.A. RaziabadR.H. RadA.H. AkhlaghiA.P. Aflatoxin biodetoxification strategies based on postbiotics.Probiotics Antimicrob. Proteins20241651673168610.1007/s12602‑024‑10242‑238478298
    [Google Scholar]
  24. HosseiniS.A. AbbasiA. SabahiS. Application of postbiotics produced by lactic acid bacteria in the development of active food packaging.Biointerface Res. Appl. Chem.20211256164618310.33263/BRIAC125.61646183
    [Google Scholar]
  25. MuhialdinB.J. SaariN. Meor HussinA.S. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply.Molecules20202511265510.3390/molecules2511265532517380
    [Google Scholar]
  26. FengS. LiuY. HuangY. ZhaoJ. ZhangH. ZhaiQ. ChenW. Influence of oral administration of Akkermansia muciniphila on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice.FEMS Microbiol. Lett.201936613fnz16010.1093/femsle/fnz16031310663
    [Google Scholar]
  27. ChiL. TuP. RuH. LuK. Studies of xenobiotic-induced gut microbiota dysbiosis: From correlation to mechanisms.Gut Microbes2021131192191210.1080/19490976.2021.192191234313531
    [Google Scholar]
  28. RogowskaA. PomastowskiP. RafińskaK. Railean-PlugaruV. ZłochM. WalczakJ. BuszewskiB. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells.Toxicon2019169819010.1016/j.toxicon.2019.09.00831493420
    [Google Scholar]
  29. ShettyP.H. HaldB. JespersenL. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods.Int. J. Food Microbiol.20071131414610.1016/j.ijfoodmicro.2006.07.01316996157
    [Google Scholar]
  30. JuJ. ShenL. XieY. YuH. GuoY. ChengY. QianH. YaoW. Degradation potential of bisphenol A by Lactobacillus reuteri.Lebensm. Wiss. Technol.201910671410.1016/j.lwt.2019.02.022
    [Google Scholar]
  31. PreteR. TofaloR. FedericiE. CiarrocchiA. CenciG. CorsettiA. Food-associated Lactobacillus plantarum and yeasts inhibit the genotoxic effect of 4-nitroquinoline-1-oxide.Front. Microbiol.20178234910.3389/fmicb.2017.0234929234315
    [Google Scholar]
  32. BlanquetS. MeunierJ.P. MinekusM. Marol-BonninS. AlricM. Recombinant Saccharomyces cerevisiae expressing P450 in artificial digestive systems: A model for biodetoxication in the human digestive environment.Appl. Environ. Microbiol.20036952884289210.1128/AEM.69.5.2884‑2892.200312732562
    [Google Scholar]
  33. LiliZ. JunyanW. HongfeiZ. BaoqingZ. BolinZ. Detoxification of cancerogenic compounds by lactic acid bacteria strains.Crit. Rev. Food Sci. Nutr.201858162727274210.1080/10408398.2017.133966529053003
    [Google Scholar]
  34. KlisF.M. MolP. HellingwerfK. BrulS. Dynamics of cell wall structure in Saccharomyces cerevisiae.FEMS Microbiol. Rev.200226323925610.1111/j.1574‑6976.2002.tb00613.x12165426
    [Google Scholar]
  35. HaskardC. BinnionC. AhokasJ. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG.Chem. Biol. Interact.20001281394910.1016/S0009‑2797(00)00186‑110996299
    [Google Scholar]
  36. HatabS. YueT. MohamadO. Reduction of patulin in aqueous solution by lactic acid bacteria.J. Food Sci.2012774M238M24110.1111/j.1750‑3841.2011.02615.x22394296
    [Google Scholar]
  37. AmeenF.A. HamdanA.M. El-NaggarM.Y. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018.Sci. Rep.202010131410.1038/s41598‑019‑57210‑331941935
    [Google Scholar]
  38. KrólA. PomastowskiP. RafińskaK. Railean-PlugaruV. WalczakJ. BuszewskiB. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.Anal. Bioanal. Chem.2018410394395210.1007/s00216‑017‑0555‑828852794
    [Google Scholar]
  39. El-NezamiH. KankaanpaaP. SalminenS. AhokasJ. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1.Food Chem. Toxicol.199836432132610.1016/S0278‑6915(97)00160‑99651049
    [Google Scholar]
  40. VasamaM. KumarH. SalminenS. HaskardC. Removal of paralytic shellfish toxins by probiotic lactic acid bacteria.Toxins2014672127213610.3390/toxins607212725046082
    [Google Scholar]
  41. ClausS.P. GuillouH. Ellero-SimatosS. The gut microbiota: A major player in the toxicity of environmental pollutants?NPJ Biofilms Microbiom.2016211600310.1038/npjbiofilms.2016.328721242
    [Google Scholar]
  42. SwansonH.I. Drug metabolism by the host and gut microbiota: A partnership or rivalry?Drug Metab. Dispos.201543101499150410.1124/dmd.115.06571426261284
    [Google Scholar]
  43. KoppelN. Maini RekdalV. BalskusE.P. Chemical transformation of xenobiotics by the human gut microbiota.Science20173566344eaag277010.1126/science.aag277028642381
    [Google Scholar]
  44. ClarkeG. SandhuK.V. GriffinB.T. DinanT.G. CryanJ.F. HylandN.P. Gut reactions: Breaking down xenobiotic–microbiome interactions.Pharmacol. Rev.201971219822410.1124/pr.118.01576830890566
    [Google Scholar]
  45. SpanogiannopoulosP. BessE.N. CarmodyR.N. TurnbaughP.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism.Nat. Rev. Microbiol.201614527328710.1038/nrmicro.2016.1726972811
    [Google Scholar]
  46. TralauT. SowadaJ. LuchA. Insights on the human microbiome and its xenobiotic metabolism: What is known about its effects on human physiology?Expert Opin. Drug Metab. Toxicol.201511341142510.1517/17425255.2015.99043725476418
    [Google Scholar]
  47. BarzegarF. KamankeshM. MohammadiA. Heterocyclic aromatic amines in cooked food: A review on formation, health risk-toxicology and their analytical techniques.Food Chem.201928024025410.1016/j.foodchem.2018.12.05830642492
    [Google Scholar]
  48. EngelsC. SchwabC. ZhangJ. StevensM.J.A. BieriC. EbertM.O. McNeillK. SturlaS.J. LacroixC. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin.Sci. Rep.2016613624610.1038/srep3624627819285
    [Google Scholar]
  49. VanhaeckeL. KnizeM.G. NoppeH. De BrabanderH. VerstraeteW. Van de WieleT. Intestinal bacteria metabolize the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine following consumption of a single cooked chicken meal in humans.Food Chem. Toxicol.200846114014810.1016/j.fct.2007.07.00817766021
    [Google Scholar]
  50. BeerF. UrbatF. SteckJ. HuchM. BunzelD. BunzelM. KullingS.E. Metabolism of foodborne heterocyclic aromatic amines by Lactobacillus reuteri DSM 20016.J. Agric. Food Chem.201765326797681110.1021/acs.jafc.7b0166328679205
    [Google Scholar]
  51. BeerF. UrbatF. FranzC.M.A.P. HuchM. KullingS.E. BunzelM. BunzelD. The human fecal microbiota metabolizes foodborne heterocyclic aromatic amines by reuterin conjugation and further transformations.Mol. Nutr. Food Res.20196310180117710.1002/mnfr.20180117730815965
    [Google Scholar]
  52. GenchiG. SinicropiM. CarocciA. LauriaG. CatalanoA. Mercury exposure and heart diseases.Int. J. Environ. Res. Public Health20171417410.3390/ijerph1401007428085104
    [Google Scholar]
  53. FuZ.D. SelwynF.P. CuiJ.Y. KlaassenC.D. RNA-Seq profiling of intestinal expression of xenobiotic processing genes in germ-free mice.Drug Metab. Dispos.201745121225123810.1124/dmd.117.07731328939687
    [Google Scholar]
  54. Czajkowska-MysłekA. LeszczyńskaJ. Risk assessment related to biogenic amines occurrence in ready-to-eat baby foods.Food Chem. Toxicol.2017105829210.1016/j.fct.2017.03.06128366843
    [Google Scholar]
  55. ÖzogulY. ÖzogulF. Biogenic amines formation, toxicity, regulations in food.Food chemistry, function and analysisThe Royal Society of Chemistry2019117
    [Google Scholar]
  56. MolaeiR. TajikH. MoradiM. Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product; Kashk.Food. Cont.20191011810.1016/j.foodcont.2019.02.011
    [Google Scholar]
  57. BarbieriF. MontanariC. GardiniF. TabanelliG. Biogenic amine production by lactic acid bacteria: A review.Foods2019811710.3390/foods801001730621071
    [Google Scholar]
  58. NailaA. FlintS. FletcherG. BremerP. MeerdinkG. Control of biogenic amines in food--existing and emerging approaches.J. Food Sci.2010757R139R15010.1111/j.1750‑3841.2010.01774.x21535566
    [Google Scholar]
  59. ToyN. ÖzogulF. ÖzogulY. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth.Food Chem.2015173455310.1016/j.foodchem.2014.10.00125465993
    [Google Scholar]
  60. García-RuizA. González-RompinelliE.M. BartoloméB. Moreno-ArribasM.V. Potential of wine-associated lactic acid bacteria to degrade biogenic amines.Int. J. Food Microbiol.2011148211512010.1016/j.ijfoodmicro.2011.05.00921641669
    [Google Scholar]
  61. NiuT. LiX. GuoY. MaY. Identification of a lactic acid bacteria to degrade biogenic amines in Chinese rice wine and its enzymatic mechanism.Foods20198831210.3390/foods808031231382407
    [Google Scholar]
  62. FaddaS. VignoloG. OliverG. Tyramine degradation and tyramine/histamine production by lactic acid bacteria and Kocuria strains.Biotechnol. Lett.200123242015201910.1023/A:1013783030276
    [Google Scholar]
  63. XieC. WangH. DengS. XuX-L. The inhibition of cell-free supernatant of Lactobacillus plantarum on production of putrescine and cadaverine by four amine-positive bacteria in vitro Lebensm. Wiss. Technol.20166710611110.1016/j.lwt.2015.11.028
    [Google Scholar]
  64. NailaA. FlintS. Histamine degradation by diamine oxidase, Lactobacillus and Vergibacillus halodonitrificans Nai18.J. Food Process. Technol.20123610.4172/2157‑7110.1000158
    [Google Scholar]
  65. FreidingS. GutscheK.A. EhrmannM.A. VogelR.F. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism, and comparison of their volatilomes in a model system.Syst. Appl. Microbiol.201134531132010.1016/j.syapm.2010.12.00621570226
    [Google Scholar]
  66. ÖzogulF. ToyN. ÖzogulY. The impact of the cell-free solution of lactic acid bacteria on cadaverine production by Listeria monocytogenes and Staphylococcus aureus in lysine-decarboxylase broth.Int. J. Food Eng.201593309317
    [Google Scholar]
  67. ÖzogulF. ToyN. ÖzogulY. HamedI. Function of cell-free supernatants of Leuconostoc, Lactococcus, Streptococcus, Pediococcus strains on histamine formation by foodborne pathogens in histidine decarboxylase broth.J. Food Process. Preserv.2017415e1320810.1111/jfpp.13208
    [Google Scholar]
  68. KuleyE. DurmusM. UcarY. KoskerA.R. Aksun TumerkanE.T. RegensteinJ.M. OzogulF. Combined effects of plant and cell-free extracts of lactic acid bacteria on biogenic amines and bacterial load of fermented sardine stored at 3 ± 1 °C.Food Biosci.20182412713610.1016/j.fbio.2018.06.008
    [Google Scholar]
  69. DasD.N. BhutiaS.K. Inevitable dietary exposure of Benzo[a]pyrene: Carcinogenic risk assessment an emerging issues and concerns.Curr. Opin. Food Sci.201824162510.1016/j.cofs.2018.10.008
    [Google Scholar]
  70. TungE.W.Y. PhilbrookN.A. BelangerC.L. AnsariS. WinnL.M. Benzo[a]pyrene increases DNA double strand break repair in vitro and in vivo: A possible mechanism for benzo[a]pyrene-induced toxicity.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2014760646910.1016/j.mrgentox.2013.12.00324412381
    [Google Scholar]
  71. VermaN. PinkM. RettenmeierA.W. Schmitz-SpankeS. Review on proteomic analyses of benzo[a]pyrene toxicity.Proteomics201212111731175510.1002/pmic.20110046622623321
    [Google Scholar]
  72. ZhouX.W. ZhaoX.H. Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters.J. Sci. Food Agric.201595226026610.1002/jsfa.671024777955
    [Google Scholar]
  73. ApásA.L. GonzálezS.N. ArenaM.E. Potential of goat probiotic to bind mutagens.Anaerobe20142881210.1016/j.anaerobe.2014.04.00424785349
    [Google Scholar]
  74. ShoukatS. LiuY. RehmanA. ZhangB. Screening of Bifidobacterium strains with assignment of functional groups to bind with benzo[a]pyrene under food stress factors.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20191114-111510010910.1016/j.jchromb.2019.03.02430947130
    [Google Scholar]
  75. MarinS. RamosA.J. Cano-SanchoG. SanchisV. Mycotoxins: Occurrence, toxicology, and exposure assessment.Food Chem. Toxicol.20136021823710.1016/j.fct.2013.07.04723907020
    [Google Scholar]
  76. Greeff-LaubscherM.R. BeukesI. MaraisG.J. JacobsK. Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins.Mycology202011210511710.1080/21501203.2019.160457532923019
    [Google Scholar]
  77. KhaniN. NoorkhajaviG. ReziabadR.H. Postbiotics as potential detoxification tools for mitigation of pesticides.Probiotics Antimicrob. Proteins202311337934379
    [Google Scholar]
  78. RaiA. DasM. TripathiA. Occurrence and toxicity of a fusarium mycotoxin, zearalenone.Crit. Rev. Food Sci. Nutr.202060162710272910.1080/10408398.2019.165538831446772
    [Google Scholar]
  79. RushingB.R. SelimM.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods.Food Chem. Toxicol.20191248110010.1016/j.fct.2018.11.04730468841
    [Google Scholar]
  80. YangS. GongP. PanJ. WangN. TongJ. WangM. LongM. LiP. HeJ. Pediococcus pentosaceus xy46 can absorb zearalenone and alleviate its toxicity to the reproductive systems of male mice.Microorganisms20197826610.3390/microorganisms708026631426404
    [Google Scholar]
  81. NiderkornV. BoudraH. MorgaviD.P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro.J. Appl. Microbiol.2006101484985610.1111/j.1365‑2672.2006.02958.x16968296
    [Google Scholar]
  82. Mogahed FahimK. Noah BadrA. Gamal ShehataM. Ibrahim HassanenE. Ibrahim AhmedL. Innovative application of postbiotics, parabiotics and encapsulated Lactobacillus plantarum RM1 and Lactobacillus paracasei KC39 for detoxification of aflatoxin M1 in milk powder.J. Dairy Res.202188442943510.1017/S002202992100090X34937580
    [Google Scholar]
  83. ChlebiczA. ŚliżewskaK. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 toxin and Zearalenone by probiotic bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast.Probiotics Antimicrob. Proteins2019201911330721525
    [Google Scholar]
  84. ArmandoM. DogiC. PizzolittoR. EscobarF. PeiranoM. SalvanoM. SabiniL. CombinaM. DalceroA. CavaglieriL. Saccharomyces cerevisiae strains from animal environment with in vitro aflatoxin B1 binding ability and anti-pathogenic bacterial influence.World Mycotoxin J.201141596810.3920/WMJ2010.1208
    [Google Scholar]
  85. GonçalvesB.L. MuazK. CoppaC.F.S.C. RosimR.E. KamimuraE.S. OliveiraC.A.F. CorassinC.H. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese.Food Res. Int.202013610960410.1016/j.foodres.2020.10960432846626
    [Google Scholar]
  86. ČvekD. MarkovK. DelašF. Adhesion of zearalenone to the surface of lactic acid bacteria cells.CJFST201274952
    [Google Scholar]
  87. El-KadyA.A. Abdel-WahhabM.A. Occurrence of trace metals in foodstuffs and their health impact.Trends Food Sci. Technol.201875364510.1016/j.tifs.2018.03.001
    [Google Scholar]
  88. GiriS.S. YunS. JunJ.W. KimH.J. KimS.G. KangJ.W. KimS.W. HanS.J. SukumaranV. ParkS.C. Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio.Front. Immunol.20189182410.3389/fimmu.2018.0182430131809
    [Google Scholar]
  89. ZhangJ. YangY. LiuW. SchlenkD. LiuJ. Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals.Environ. Int.2019133Pt A10513310.1016/j.envint.2019.10513331520960
    [Google Scholar]
  90. KumarS. PrasadS. YadavK.K. ShrivastavaM. GuptaN. NagarS. BachQ.V. KamyabH. KhanS.A. YadavS. MalavL.C. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review.Environ. Res.2019179Pt A10879210.1016/j.envres.2019.10879231610391
    [Google Scholar]
  91. DuanH. YuL. TianF. ZhaiQ. FanL. ChenW. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy.Sci. Total Environ.202074214042910.1016/j.scitotenv.2020.14042932629250
    [Google Scholar]
  92. WuJ. WenX.W. FaulkC. BoehnkeK. ZhangH. DolinoyD.C. XiC. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice.Toxicol. Sci.2016151232433310.1093/toxsci/kfw04626962054
    [Google Scholar]
  93. ZhangS. JinY. ZengZ. LiuZ. FuZ. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome.Chem. Res. Toxicol.201528102000200910.1021/acs.chemrestox.5b0023726352046
    [Google Scholar]
  94. TengY. RenY. SayedM. Plant-derived exosomal microRNAs shape the gut microbiota.Cell Host Microbe.201824563765210.1016/j.chom.2018.10.001
    [Google Scholar]
  95. WuG. XiaoX. FengP. XieF. YuZ. YuanW. LiuP. LiX. Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1.Sci. Rep.2017711500010.1038/s41598‑017‑15216‑929118411
    [Google Scholar]
  96. GophnaU. KonikoffT. NielsenH.B. Oscillospira and related bacteria – From metagenomic species to metabolic features.Environ. Microbiol.201719383584110.1111/1462‑2920.1365828028921
    [Google Scholar]
  97. AlcántaraC. Jadán-PiedraC. VélezD. DevesaV. ZúñigaM. MonederoV. Characterization of the binding capacity of mercurial species in Lactobacillus strains.J. Sci. Food Agric.201797155107511310.1002/jsfa.838828423187
    [Google Scholar]
  98. Abdel-MegeedR.M. Probiotics: A promising generation of heavy metal detoxification.Biol. Trace Elem. Res.202119962406241310.1007/s12011‑020‑02350‑132821997
    [Google Scholar]
  99. KumarN. KumariV. RamC. ThakurK. TomarS.K. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts.Appl. Microbiol. Biotechnol.201810241599161510.1007/s00253‑018‑8743‑929352397
    [Google Scholar]
  100. XingS. SongY. LiangJ.B. Faseleh JahromiM. ShokryazdaP. MiJ. ZhuC. WangJ. LiaoX. In vitro assessment on effect of duodenal contents on the lead (Pb 2+) binding capacity of two probiotic bacterial strains.Ecotoxicol. Environ. Saf.2017139788210.1016/j.ecoenv.2017.01.01628113114
    [Google Scholar]
  101. KirillovaA.V. DanilushkinaA.A. IrisovD.S. Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium.Int J. Microbiol201720179869145
    [Google Scholar]
  102. ZhaiQ. WangG. ZhaoJ. LiuX. TianF. ZhangH. ChenW. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice.Appl. Environ. Microbiol.20137951508151510.1128/AEM.03417‑1223263961
    [Google Scholar]
  103. ZhaiQ. XiaoY. TianF. WangG. ZhaoJ. LiuX. ChenY.Q. ZhangH. ChenW. Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice.RSC Advances2015564648465810.1039/C4RA12865F
    [Google Scholar]
  104. ZhaiQ. YuL. LiT. ZhuJ. ZhangC. ZhaoJ. ZhangH. ChenW. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure.Antonie van Leeuwenhoek2017110450151310.1007/s10482‑016‑0819‑x28028640
    [Google Scholar]
  105. KimB. ShynlovaO. LyeS. Probiotic Lactobacillus rhamnosus GR-1 is a unique prophylactic agent that suppresses infection-induced myometrial cell responses.Sci. Rep.201991469810.1038/s41598‑019‑41133‑030886179
    [Google Scholar]
  106. KrautkramerK.A. ReyF.E. DenuJ.M. Chemical signaling between gut microbiota and host chromatin: What is your gut really saying?J. Biol. Chem.2017292218582859310.1074/jbc.R116.76157728389558
    [Google Scholar]
  107. HoutkooperR.H. CantóC. WandersR.J. AuwerxJ. The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways.Endocr. Rev.201031219422310.1210/er.2009‑002620007326
    [Google Scholar]
  108. DalmassoG. NguyenH.T.T. YanY. LarouiH. CharaniaM.A. AyyaduraiS. SitaramanS.V. MerlinD. Microbiota modulate host gene expression via microRNAs.PLoS One201164e1929310.1371/journal.pone.001929321559394
    [Google Scholar]
  109. BehrouziA. AshrafianF. MazaheriH. LariA. NouriM. Riazi RadF. Hoseini TavassolZ. SiadatS.D. The importance of interaction between MicroRNAs and gut microbiota in several pathways.Microb. Pathog.202014410420010.1016/j.micpath.2020.10420032289465
    [Google Scholar]
  110. ChenQ. TongC. MaS. ZhouL. ZhaoL. ZhaoX. Involvement of microRNAs in probiotics-induced reduction of the cecal inflammation by Salmonella typhimurium.Front. Immunol.2017870410.3389/fimmu.2017.0070428659929
    [Google Scholar]
  111. ZhaoJ. YuL. ZhaiQ. TianF. ZhangH. ChenW. Effects of probiotic administration on hepatic antioxidative parameters depending on oxidative stress models: A meta-analysis of animal experiments.J. Funct. Foods20207110393610.1016/j.jff.2020.103936
    [Google Scholar]
  112. RichardsonJ.B. DancyB.C.R. HortonC.L. LeeY.S. MadejczykM.S. XuZ.Z. AckermannG. HumphreyG. PalaciosG. KnightR. LewisJ.A. Exposure to toxic metals triggers unique responses from the rat gut microbiota.Sci. Rep.201881657810.1038/s41598‑018‑24931‑w29700420
    [Google Scholar]
  113. LiC. MaY. MiZ. HuoR. ZhouT. HaiH. KwokL. SunZ. ChenY. ZhangH. Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation.Front. Microbiol.20189204810.3389/fmicb.2018.0204830233531
    [Google Scholar]
  114. TodaT. SaitoN. IkarashiN. ItoK. YamamotoM. IshigeA. WatanabeK. SugiyamaK. Intestinal flora induces the expression of Cyp3a in the mouse liver.Xenobiotica200939432333410.1080/0049825080265198419350455
    [Google Scholar]
  115. SelwynF.P. ChengS.L. KlaassenC.D. CuiJ.Y. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics.Drug Metab. Dispos.201644226227410.1124/dmd.115.06750426586378
    [Google Scholar]
  116. SelwynF.P. ChengS.L. BammlerT.K. PrasadB. VranaM. KlaassenC. CuiJ.Y. Developmental regulation of drug-processing genes in livers of germ-free mice.Toxicol. Sci.201514718410310.1093/toxsci/kfv11026032512
    [Google Scholar]
  117. Adjei-FremahS. EkwemalorK. AsiamahE.K. IsmailH. IbrahimS. WorkuM. Effect of probiotic supplementation on growth and global gene expression in dairy cows.J. Appl. Anim. Res.201846125726310.1080/09712119.2017.1292913
    [Google Scholar]
  118. SofuA. SayilganE. GuneyG. Experimental design for removal of Fe (II) and Zn (II) ions by different lactic acid bacteria biomasses.Int. J. Environ. Res.20159193100
    [Google Scholar]
  119. JiangX. GuS. LiuD. ZhaoL. XiaS. HeX. ChenH. GeJ. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades.Front. Microbiol.20189242510.3389/fmicb.2018.0242530369917
    [Google Scholar]
  120. CamilleriM. Leaky gut: Mechanisms, measurement and clinical implications in humans.Gut20196881516152610.1136/gutjnl‑2019‑31842731076401
    [Google Scholar]
  121. WangJ. JiH. WangS. LiuH. ZhangW. ZhangD. WangY. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota.Front. Microbiol.20189195310.3389/fmicb.2018.0195330197632
    [Google Scholar]
  122. LiewW.P.P. Mohd-RedzwanS. Mycotoxin: Its impact on gut health and microbiota.Front. Cell. Infect. Microbiol.201886010.3389/fcimb.2018.0006029535978
    [Google Scholar]
  123. CollinsS.L. PattersonA.D. The gut microbiome: An orchestrator of xenobiotic metabolism.Acta Pharm. Sin. B2020101193210.1016/j.apsb.2019.12.00131998605
    [Google Scholar]
  124. Joly CondetteC. Khorsi-CauetH. MorlièreP. ZabijakL. ReygnerJ. BachV. Gay-QuéheillardJ. Increased gut permeability and bacterial translocation after chronic chlorpyrifos exposure in rats.PLoS One201497e10221710.1371/journal.pone.010221725019507
    [Google Scholar]
  125. BretonJ. DanielC. DewulfJ. PothionS. FrouxN. SautyM. ThomasP. PotB. FolignéB. Gut microbiota limits heavy metals burden caused by chronic oral exposure.Toxicol. Lett.2013222213213810.1016/j.toxlet.2013.07.02123916686
    [Google Scholar]
  126. ZhaiQ. TianF. ZhaoJ. ZhangH. NarbadA. ChenW. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier.Appl. Environ. Microbiol.201682144429444010.1128/AEM.00695‑1627208136
    [Google Scholar]
  127. da SilvaE.O. BracarenseA.P.F.L. OswaldI.P. Mycotoxins and oxidative stress: Where are we?World Mycotoxin J.201811111313410.3920/WMJ2017.2267
    [Google Scholar]
  128. NardoneG. CompareD. LiguoriE. Di MauroV. RoccoA. BaroneM. NapoliA. LapiD. IoveneM.R. ColantuoniA. Protective effects of Lactobacillus paracasei F19 in a rat model of oxidative and metabolic hepatic injury.Am. J. Physiol. Gastrointest. Liver Physiol.20102993G669G67610.1152/ajpgi.00188.201020576921
    [Google Scholar]
  129. OjekunleO. BanwoK. SanniA.I. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities.Lett. Appl. Microbiol.201764537938510.1111/lam.1273128276067
    [Google Scholar]
  130. FengT. WangJ. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review.Gut Microbes2020121180194410.1080/19490976.2020.180194432795116
    [Google Scholar]
  131. BouhafsL. MoudilouE.N. ExbrayatJ.M. LahouelM. IdouiT. Protective effects of probiotic Lactobacillus plantarum BJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats.Ren. Fail.20153781370137810.3109/0886022X.2015.107354326287934
    [Google Scholar]
  132. Aguilar-ToaláJ.E. Astiazarán-GarcíaH. Estrada-MontoyaM.C. GarciaH.S. Vallejo-CordobaB. González-CórdovaA.F. Hernández-MendozaA. Modulatory effect of the intracellular content of Lactobacillus casei CRL 431 against the aflatoxin B 1-induced oxidative stress in rats.Probiotics Antimicrob. Proteins201911247047710.1007/s12602‑018‑9433‑829862461
    [Google Scholar]
  133. MohapatraS. ChakrabortyT. PrustyA.K. KumarK. Pani PrasadK. MohantaK.N. Fenvalerate induced stress mitigation by dietary supplementation of multispecies probiotic mixture in a tropical freshwater fish, Labeo rohita (Hamilton).Pestic. Biochem. Physiol.20121041283710.1016/j.pestbp.2012.06.00624238287
    [Google Scholar]
  134. IsolauriE. ShermanP.M. WalkerW.A. Intestinal microbiome: Functional Aspects in Health and Disease88th Nestlé Nutrition Institute WorkshopKarger Medical and Scientific Publishers.201610.1159/isbn.978‑3‑318‑06031‑7
    [Google Scholar]
  135. FengP. YeZ. KakadeA. VirkA.K. LiX. LiuP. A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota.Nutrients20181112210.3390/nu1101002230577661
    [Google Scholar]
  136. AggarwalS. SabharwalV. KaushikP. JoshiA. AayushiA. SuriM. Postbiotics: From emerging concept to application.Front. Sustain. Food Syst.2022688764210.3389/fsufs.2022.887642
    [Google Scholar]
  137. KhaniN. Postbiotics: As a promising tools in the treatment of celiac disease.Probiotics and Antimicrobial Proteins.20241-10
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013325225241211033631
Loading
/content/journals/cnf/10.2174/0115734013325225241211033631
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): endobiotics; food safety; mycotoxins; postbiotic; probiotic; Xenobiotic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test