Current Molecular Medicine - Volume 4, Issue 6, 2004
Volume 4, Issue 6, 2004
-
-
The Determinants of Chagas Disease: Connecting Parasite and Host Genetics
Authors: David A. Campbell, Scott J. Westenberger and Nancy R. SturmAs a consequence of infection by Trypanosoma cruzi, 30% of victims may develop chronic Chagas disease, which presents a spectrum of pathology including cardiomyopathy, megacolon and megaesophagus. The outcome of infection in a particular individual is the result of a set of complex interactions among the host genetic background, environmental and social factors, and the genetic composition of the parasite, all of which can be complicated by mixed infections and re-infections. Initially we consider what is known about the genetic structure and biological properties of the protozoan. Currently, six distinct subgroups have been characterized by different combinations of four distinct genotypic classes. The recent demonstration of genetic exchange via non-meiotic cell fusion illustrates a mechanism by which maintained heterogeneous polyploidy may have been generated in these parasites. Subsequently, we consider factors in humans and in experimental mouse-infection and tissue culture models that have contributed to our understanding of the host's susceptibility or resistance to disease. Identification of the direct players in host-pathogen interactions at the establishment and chronic phases of the disease is perhaps the best hope of a clinical handle for treatment. At some point in the future, these disparate areas of study will have to come together. It is to be hoped that this scientific fusion will result in better prognosis and treatment of Chagas disease.
-
-
-
The Molecular Control of Antigenic Variation in Trypanosoma brucei
By David HornThe African trypanosome, Trypanosoma brucei, is a protozoan that causes sleeping sickness in humans and N'gana in livestock. These flagellated parasites are directly exposed to immune defences as they circulate in the mammalian host bloodstream but they maintain persistent infections by undergoing antigenic variation. Central to this process is mono-allelic transcription and switching of the expressed variant-surface glycoprotein (VSG) gene which encodes the vast majority of their dense surface coat. The active telomeric VSG is transcribed by RNA polymerase I in an ‘expression site body’ (ESB) while transcription attenuation occurs at ‘inactive’ telomeres. Here, I review what is known about the molecular mechanisms involved in achieving antigenic variation and outline how we intend to exploit genome sequence and new tools, particularly RNA interference, to identify and characterise factors required for VSG regulation.
-
-
-
Genetic Regulation of Protein Synthesis in Trypanosomes
Authors: Anish Das and Vivian BellofattoIt is becoming increasingly clear that parasitic protozoa remain a scourge to humans in the 21st century. The trypanosomes are a diverse group of insect-transmitted parasites that wiggle their way through multiple life cycle stages as they destroy human lives. Exquisitely detailed studies of these organisms reveal basic differences in gene expression that separate these single celled eukaryotes from multicellular eukaryotic organisms and have suggested numerous potential drug targets.
-
-
-
cAMP Signalling in the Kinetoplastid Protozoa
Authors: T. Seebeck, R. Schaub and A. JohnerSeveral species of kinetoplastid protozoa cause major human infectious diseases. Trypanosoma cruzi is responsible for the fatal Chagas disease in large parts of South America, the various species of Leishmania cause a number of different human diseases with millions of patients world-wide, and the African trypanosome Trypanosoma brucei is the agent of human sleeping sickness, a disastrously re-emerging epidemic of fatal infections in Sub-Saharan Africa. Chemotherapy of all of these infections is in a very unsatisfactory state. cAMP signalling pathways in humans have provided interesting drug targets for a number of clinical conditions, from asthma to impotency. Similarly, cAMP signalling in kinetoplastids might offer useful targets for the development of novel antiparasitic drugs, which makes their exploration an urgent need. Current knowledge suggests that cAMP signalling proceeds along very similar pathways in all kinetoplastid pathogens (T. cruzi, the Leishmanias and T. brucei). Their adenylyl cyclases are structurally very different from the human enzymes and appear to function as enzyme-linked cell surface receptors. They might represent the major sensory apparatus of the kinetoplastids, guiding much of their environmental sensing and host / parasite interaction. The cAMP-specific phosphodiesterases of the kinetoplastids are rather similar to those of human cells and might function in similar ways. Essentially nothing is known on downstream effectors of cAMP in the kinetoplastids. Homologues of protein kinase A and its regulatory subunits have been identified, but their biochemical properties seem to be disctinct from that of mammalian protein kinase A.
-
-
-
New Insights into the Developmental Biology and Transmission Mechanisms of Leishmania
Authors: P. A. Bates and M. E. RogersLeishmania alternates between two main morphological forms in its life cycle: intracellular amastigotes in the mammalian host and motile promastigotes in the sandfly vector. Several different forms of promastigote can be recognised in sandfly infections. The first promastigote forms, which are found in the sandfly in the bloodmeal phase, are multiplicative procyclic promastigotes. These differentiate into nectomonad promastigotes, which are a non-dividing migratory stage moving from the posterior to the anterior midgut. When nectomonad promastigotes arrive at the anterior midgut they differentiate into leptomonad forms, a newly named life cycle stage, which resume replication. Leptomonad promastigotes, which are found in the anterior midgut, are the developmental precursors of the metacyclic promastigotes, the mammal-infective stages. Leptomonad forms also produce promastigote secretory gel, a substance that plays a key role in transmission by forming a physical obstruction in the gut, forcing the sandfly to regurgitate metacyclic promastigotes during bloodfeeding.
-
-
-
The Application of Gene Expression Microarray Technology to Kinetoplastid Research
Protozoan parasites in the order Kinetoplastida cause severe disease primarily in tropical and subtropical areas. Vaccines to control these diseases have shown some promise, but none are in active clinical use. Drug treatments are available for all of the acute infections, but the emergence of resistance and an unresponsive chronic phase are current problems. Rapid advances in genomic technology open the possibility of discovering new genes that can contribute to vaccine initiatives or serve as targets for development of new drugs. The DNA microarray is a genomic technology, which is being applied to new gene discovery in kinetoplastid parasites. Both cDNA and genomic microarrays for Leishmania major have identified a number of new genes that are expressed in a stagespecific fashion and preliminary results from a L. donovani genomic microarray also demonstrated new gene discovery. A microarray of Trypanosoma brucei genomic fragments identified new genes whose expression differs between the insect borne stage and the human infectious stage of the parasite. The next few years, building on this foundational work, should witness the most exciting stage as microarrays are applied to questions such as the basis of drug resistance, post kala azar dermal leishmaniasis, the regulation of differentiation to infectious stages, linking coordinately regulated pathways of genes and development of genetically defined parasites that may have potential as live attenuated vaccines.
-
-
-
The Structure and Replication of Kinetoplast DNA
More LessKinetoplast DNA (kDNA), the mitochondrial DNA of flagellated protozoa of the order Kinetoplastida, is unique in its structure, function and mode of replication. It consists of few dozen maxicircles, encoding typical mitochondrial proteins and ribosomal RNA, and several thousands minicircles, encoding guide RNA molecules that function in the editing of maxicircles mRNA transcripts. kDNA minicircles and maxicircles in the parasitic species of the family Trypanosomatidae are topologically linked, forming a two dimensional fishnet-type DNA catenane. Studies of early branching free-living and parasitic species of the Bodonidae family revealed various other forms of this remarkable DNA structure and suggested the evolution of kDNA from unlinked DNA circles and covalently-linked concatamers into a giant topological catenane. The replication of kDNA occurs during nuclear S phase and includes the duplication of free detached minicircles and catenated maxicircle and the generation of two progeny kDNA networks that segregate upon cell division. Recent reports of sequence elements and specific proteins that regulate the periodic expression of replication proteins advanced our understanding of the mechanisms that regulate the temporal link between mitochondrial and nuclear DNA synthesis in trypanosomatids. Studies on kDNA replication enzymes and binding proteins revealed their remarkable organization in clusters at defined sites flanking the kDNA disk, in correlation with the progress in the cell cycle and the process of kDNA replication. In this review I describe the recent advances in the study of kDNA and discuss some of the major challenges in deciphering the structure, replication and segregation of this remarkable DNA structure.
-
-
-
Surface Determinants of Leishmania Parasites and their Role in Infectivity in the Mammalian Host
Authors: Thomas Naderer, James E. Vince and Malcolm J. McConvilleLeishmania are intracellular protozoan parasites that reside primarily in host mononuclear phagocytes. Infection of host macrophages is initiated by infective promastigote stages and perpetuated by an obligate intracellular amastigote stage. Studies undertaken over the last decade have shown that the composition of the complex surface glycocalyx of these stages (comprising lipophosphoglycan, GPI-anchored glycoproteins, proteophosphoglycans and free GPI glycolipids) changes dramatically as promastigotes differentiate into amastigotes. Marked stage-specific changes also occur in the expression of other plasma membrane components, including type-1, polytopic and peripheral membrane proteins, reflecting the distinct microbicidal responses and nutritional environments encountered by these stages. More recently, a number of Leishmania mutants lacking single or multiple surface components have been generated. While some of these mutants are less virulent than wild type parasites, many of these mutants exhibit only mild or no loss of virulence. These studies suggest that, 1) the major surface glycocalyx components of the promastigote stage (i.e. LPG, GPI-anchored proteins) only have a transient or minor role in macrophage invasion, 2) that there is considerable functional redundancy in the surface glycocalyx and / or loss of some components can be compensated for by the acquisition of equivalent host glycolipids, 3) the expression of specific nutrient transporters is essential for life in the macrophage and 4) the role(s) of some surface components differ markedly in different Leishmania species. These mutants will be useful for identifying other surface or intracellular components that are required for virulence in macrophages.
-
-
-
Leishmaniasis: Current Status of Vaccine Development
Authors: Bindu Sukumaran and Rentala MadhubalaLeishmaniasis, a spectrum of diseases caused by various forms of Leishmania has become a major health problem all over the world. Vaccination against leishmaniasis has passed through many developmental stages beginning with the ancient practice of ‘leishmanization’. Due to various problems and difficulties associated with traditional vaccines, the interest has been shifted to novel approaches of vaccination like DNA vaccination, vaccination with live vectors encoding leishmanial antigens and finally to designer vaccines. In an effort towards developing an anti-leishmanial vaccine, our laboratory has been working on various genes present in an amplified locus of Leishmania known as the ’LD1 locus‘. Two genes, ORFF and BT1 (previously ORFG), are part of the multigenic LD1 locus on chromosome 35. BT1 encodes a biopterin transporter, while the function of ORFF gene product is unknown. Immunization of mice with recombinant ORFF (rORFF) and BT1 proteins, individually, or in combination, conferred partial protection against challenge with Leishmania donovani. We also tested the protective efficacy of ORFF DNA vaccine in BALB / c mice model and found that the level of protection was significantly higher than that of ORFF protein. Protection conferred by ORFF DNA vaccine correlated with significant levels of in vitro splenocyte proliferation and low levels of antigenspecific antibodies. There was a preferential production of IFN-γ compared to IL-4, which indicated the induction of a protective Th1 response, by the DNA vaccine. Thus, DNA immunization may offer an attractive alternative strategy against leishmaniasis. We present here the current status of vaccine development against leishmaniasis.
-
-
-
Macrophage Specific Drug Delivery in Experimental Leishmaniasis
Authors: Mukul K. Basu and Sanchaita LalaMacrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric nanoparticles have turned out to be the best and thus may be projected for effective use in the clinics.
-
-
-
Role of Chemokines in Leishmania Infection
Authors: Kaushik Roychoudhury and Syamal RoyChemokines are a growing group of chemoattractant cytokines that play important roles in physiological as well as pathological processes. Their roles in various aspects of pathogenesis and inflammation have come to light in the past decade or so. It is becoming increasingly clear that chemokines play a major, perhaps decisive role in Leishmania infections. In this review, we recapitulate important works linking the chemokine system with relation to visceral and cutaneous leishmaniasis over the past decade and attempt to put it all together to propose a single yet unfinished model to account for all the findings.
-
-
-
Progress in Vaccine Research and Possible Effector Mechanisms in Visceral Leishmaniasis
Authors: Rajesh Ravindran and Nahid AliVisceral leishmaniasis represents a serious public health concern in endemic regions and is rapidly emerging as an opportunistic infection in HIV patients. The disease is difficult to diagnose and prevent, and available treatment is associated with toxicity and drug resistance. Even though significant headway has been made in the development of vaccines against cutaneous leishmaniasis, visceral leishmaniasis has received limited attention. The fact that a large proportion of the people living in endemic areas have self-resolving subclinical infection and individuals once recovered are immune to reinfection provides a rationale for designing immunoprophylactic strategies against visceral leishmaniasis. The primary aim of this paper is to review advances in vaccination strategies against visceral leishmaniasis, suggesting possible effector mechanism leading to resistance. It also covers the role of immunostimulators and gives an account of the adjuvants used against visceral leishmaniasis. Vaccine strategies in different established experimental models have also been dealt with which can provide potential leads for their application in humans. In light of the available observations made during the course of studies performed on experimental models of visceral leishmaniasis there is increasing evidence that a successful approach towards a vaccine involves the requirement of Th1 subset of CD4+ cells along with Th2, CD8+, and B cells. In this review we present the possible mechanism of interaction of these cells and their effector molecules in providing resistance against visceral leishmaniasis for the future design of effective vaccine against this disease.
-
-
-
DNA Topoisomerases in Life and Death: Implications in Kinetoplastid Protozoa
Authors: Arnab R. Chowdhury and Hemanta K. MajumderCurrent biomedical research has its focus on the search for newer intervention strategies to control public health impact of parasitic diseases. The dramatic advances of molecular and cellular biology in recent times have provided opportunities for discovering and evaluating molecular targets for drug designing, which now form a rational basis for the development of improved anti parasitic therapy. DNA topoisomerases, the “cellular magicians” involved in nearly all biological processes governing DNA, have emerged as one such biological target. Over the last two decades, interest in topoisomerases has expanded beyond the realm of the basic science laboratory into the clinical arena. This review aims at providing a comprehensive insight into the biology of DNA topoisomerases and also focus on its evolution as a drug target in the unicellular kinetoplastids.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
