Current Molecular Medicine - Volume 23, Issue 2, 2023
Volume 23, Issue 2, 2023
-
-
Diabetic Neuropathy: Review on Molecular Mechanisms
Authors: Mrinal M. Sanaye and Samruddhi A. KavishwarDiabetic mellitus is a worldwide endocrine and metabolic disorder with insulin insensitivity or deficiency or both whose prevalence could rise up to 592 million by 2035. Consistent hyperglycemia leads to one of the most common comorbidities like Diabetic Peripheral Neuropathy (DPN). DPN is underlined with unpleasant sensory experience, such as tingling and burning sensation, hyperalgesia, numbness, etc. Globally, 50-60% of the diabetic population is suffering from such symptoms as microvascular complications. Consistent hyperglycemia during DM causes activation/inhibition of various pathways playing important role in the homeostasis of neurons and other cells. Disruption of these pathways results into apoptosis and mitochondrial dysfunctions, causing neuropathy. Among these, pathways like Polyol and PARP are some of the most intensively studied ones whereas those like Wnt pathway, Mitogen activated protein kinase (MAPK), mTOR pathway are comparatively newly discovered. Understanding of these pathways and their role in pathophysiology of DN underlines a few molecules of immense therapeutic value. The inhibitors or activators of these molecules can be of therapeutic importance in the management of DPN. This review, hence, focuses on these underlying molecular mechanisms intending to provide therapeutically effective molecular targets for the treatment of DPN.
-
-
-
Starring Role of Biomarkers and Anticancer Agents as a Major Driver in Precision Medicine of Cancer Therapy
Authors: Suman K. Ray and Sukhes MukherjeePrecision medicine is the most modern contemporary medicine approach today, based on great amount of data on people's health, individual characteristics, and life circumstances, and employs the most effective ways to prevent and cure diseases. Precision medicine in cancer is the most precise and viable treatment for every cancer patient based on the disease's genetic profile. Precision medicine changes the standard one size fits all medication model, which focuses on average responses to care. Consolidating modern methodologies for streamlining and checking anticancer drugs can have long-term effects on understanding the results. Precision medicine can help explicit anticancer treatments using various drugs and even in discovery, thus becoming the paradigm of future cancer medicine. Cancer biomarkers are significant in precision medicine, and findings of different biomarkers make this field more promising and challenging. Naturally, genetic instability and the collection of extra changes in malignant growth cells are ways cancer cells adapt and survive in a hostile environment, for example, one made by these treatment modalities. Precision medicine centers on recognizing the best treatment for individual patients, dependent on their malignant growth and genetic characterization. This new era of genomics progressively referred to as precision medicine, has ignited a new episode in the relationship between genomics and anticancer drug development.
-
-
-
Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery
Authors: Arbind Kumar, Aashish Sharma, Narendra V. Tirpude, Sharad Thakur and Sanjay KumarA highly infectious and life-threatening virus was first reported in Wuhan, China, in late 2019, and it rapidly spread all over the world. This novel virus belongs to the coronavirus family and is associated with severe acute respiratory syndrome (SARS), causing respiratory disease known as COVID-19. In March 2020, WHO has declared the COVID-19 outbreak a global pandemic. Its morbidity and mortality rates are swiftly rising day by day, with the situation becoming more severe and fatal for the comorbid population. Many COVID-19 patients are asymptomatic, but they silently spread the infection. There is a need for proper screening of infected patients to prevent the epidemic transmission of disease and for early curative interventions to reduce the risk of developing severe complications from COVID-19. To date, the diagnostic assays are of two categories, molecular detection of viral genetic material by real-time RTpolymerase chain reaction and serological test, which relies on detecting antiviral antibodies. Unfortunately, there are no effective prophylactics and therapeutics available against COVID-19. However, a few drugs have shown promising antiviral activity against it, and these presently are being referred for clinical trials, albeit FDA has issued an Emergency Use Authorization (EUA) for the emergency use of a few drugs for SARSCoV- 2 infection. This review provides an insight into current progress, challenges and future prospects of laboratory detection methods of COVID-19, and highlights the clinical stage of the major evidence-based drugs/vaccines recommended against the novel SARS-CoV-2 pandemic virus.
-
-
-
Cell-adhesion Molecules as Key Mechanisms of Tumor Invasion: The Case of Breast Cancer
Authors: Carla Luís, Raquel Soares, Rúben Fernandes and Mónica BotelhoCancer is a major health problem worldwide and the second leading cause of death following cardiovascular diseases. Breast cancer is the leading cause of mortality and morbidity among women and one of the most common malignant neoplasms prompt to metastatic disease. In the present review, the mechanisms of the major cell adhesion molecules involved in tumor invasion are discussed, focusing on the case of breast cancer. A non-systematic updated revision of the literature was performed in order to assemble information regarding the expression of the adhesion cell molecules associated with metastasis.
-
-
-
SHMT2 is Associated with Tumor Purity, CD8+ T Immune Cells Infiltration, and a Novel Therapeutic Target in Four Different Human Cancers
Aims: This study was launched to identify the SHMT2 associated Human Cancer subtypes. Background: Cancer is the 2nd leading cause of death worldwide. Previous reports revealed the limited involvement of SHMT2 in human cancer. In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Objective: We aim to comprehensively analyze the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Earlier, limited knowledge exists in the medical literature regarding the involvement of Serine Hydroxymethyltransferase 2 (SHMT2) in human cancer. Methods: In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Pan-cancer transcriptional expression profiling of SHMT2 was done using UALCAN while further validation was performed using GENT2. For translational profiling of SHMT2, we utilized Human Protein Atlas (HPA) platform. Promoter methylation, genetic alteration, and copy number variations (CNVs) profiles were analyzed through MEXPRESS and cBioPortal. Survival analysis was carried out through Kaplan–Meier (KM) plotter platform. Pathway enrichment analysis of SHMT2 was performed using DAVID, while the gene-drug network was drawn through CTD and Cytoscape. Furthermore, in the tumor microenvironment, a correlation between tumor purity, CD8+ T immune cells infiltration, and SHMT2 expression was accessed using TIMER. Results: SHMT2 was found overexpressed in 24 different subtypes of human cancers and its overexpression was significantly associated with the reduced Overall survival (OS) and Relapse-free survival durations of Breast cancer (BRCA), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), and Lung adenocarcinoma (LUAD) patients. This implies that SHMT2 plays a significant role in the development and progression of these cancers. We further noticed that SHMT2 was also up-regulated in BRCA, KIRP, LIHC, and LUAD patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of SHMT2 enriched genes in five diverse pathways. Furthermore, we also explored some interesting correlations between SHMT2 expression and promoter methylation, genetic alterations, CNVs, tumor purity, and CD8+ T immune cell infiltrates. Conclusion: Our results suggested that overexpressed SHMT2 is correlated with the reduced OS and RFS of the BRCA, KIRP, LIHC, and LUAD patients and can be a potential diagnostic and prognostic biomarker for these cancers.
-
-
-
miR-141-3p Promotes the Cisplatin Sensitivity of Osteosarcoma Cell through Targeting the Glutaminase [GLS]-Mediated Glutamine Metabolism
Authors: Xueli Zhou, Panpan Wei, Xinju Wang, Jianguo Zhang and Yulin ShiAims: This study aimed to evaluate the roles and molecular targets of miRNA-141-3p in the cisplatin sensitivity of osteosarcoma.
Background: Osteosarcoma is one of the most common-type bone tumors, occurring mainly in children and adolescents. Cancer cells display dysregulated cellular metabolism, such as the abnormally elevated glutamine metabolism.
Objective: Non-coding RNA miRNA-141-3p has been reported to act as a tumor suppressor in osteosarcoma. Currently, the precise molecular mechanisms for the miR- 141-3p-mediated chemosensitivity through regulating glutamine metabolism remain unclear.
Methods: We collected thirty paired OS tumors and their adjacent normal tissues. The osteosarcoma cell lines [Saos-2] and normal osteoblast cells, hFOB1.19, were used for in vitro experiments. RT-qPCR and Western blot were applied for gene expression detections. Targets of miR-141-3p were predicted from starBase. The MTT and flow cytometric assays were performed to determine cell growth and apoptosis rates. The cellular glutamine metabolism was monitored by glutamine uptake assay and the glutaminase [GLS] activity assay.
Results: We reported that miR-141-3p were significantly downregulated in osteosarcoma tissues and cells. Overexpression of miR-141-3p suppressed OS cell growth and sensitized OS cells to cisplatin. In addition, glutamine metabolism was significantly increased in osteosarcoma. We characterized that GLS played oncogenic roles in osteosarcoma and validated GLS was a direct target of miR-141-3p in OS cells. Rescue experiments consistently demonstrated that miR-141-3p-promoted cisplatin sensitivity was achieved by targeting GLS directly.
Conclusion: Overall, our findings revealed new molecular mechanisms of the miR-141- 3p-modulated cisplatin sensitization through targeting the GLS-glutamine metabolism pathway. This study will contribute to developing new therapeutic approaches for the treatments of chemoresistant osteosarcoma.
-
-
-
Association of Circulating Levels of Hypoxia-Inducible Factor-1α and miR-210 with Photosensitivity in Systemic Lupus Erythematosus Patients
Background: miR-210, a key hypoxamiR, regulates hypoxia and inflammation-linked hypoxia. Systemic lupus erythematosus (SLE), a chronic autoimmune disease, is responsible for many pathological disorders, including photosensitivity. Objective: This study aimed to find the correlation between circulating miR-210/HIF-1α levels and photosensitivity in SLE patients and other SLE-associated pathological complications in a single-center case-control study. Methods: The study population comprised 104 SLE Egyptian patients with photosensitivity, 32 SLE patients without photosensitivity, and 32 healthy subjects. SLE activity was assessed for all patients using the SLE Disease Activity Index (SLEDAI). Clinical complications/manifestations and hematological/serological analyses were recorded. HIF-α concentration was investigated by ELISA, and miR-210 expression was analyzed by qRT-PCR. Results: The results revealed that circulating miR-210 was significantly increased in the SLE/photosensitivity group versus the SLE and control groups. The additional occurrence of malar rash, oral ulcers, renal disorders, or hypertension resulted in a higher expression of miR-210. SLEDAI activity status showed no effect on miR-210. Erythrocyte sedimentation rate, white blood cells, hemoglobin, platelets, patient age, and disease duration were positively correlated with circulatory miR-210. HIF-α concentration was significantly induced in the SLE/photosensitivity group versus the SLE and control groups. In SLE/photosensitivity, the presence of renal disorders and hypertension resulted in the highest HIF-α concentrations. A strong positive correlation was recorded between HIF-α concentration and circulatory miR-210 in SLE/photosensitivity patients (r = 0.886). Conclusion: The dysregulation of circulating miR-210/HIF-1α levels in SLE/ photosensitivity patients is controlled by the presence of additional pathological complications, and results suggest that the hypoxia pathway might interact positively with the pathogenesis and disease progression of SLE.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
