Current Molecular Medicine - Volume 2, Issue 3, 2002
Volume 2, Issue 3, 2002
-
-
The Enigma of Dendritic Cell-Immunodeficiency Virus Interplay
More LessA dendritic cell (DC) encountering an immunodeficiency virus should pose a threat to the virus, by efficiently processing and presenting viral antigenic determinants to activate specific anti-viral T and B cell immunity. While this may occur in vivo, it is apparent that DC-entrapped viruses can freely spread between cells, move to distal tissues, and proliferate rapidly particularly upon meeting CD4 + T cells. In fact, the latter is further augmented when the T cells are activated. Thus, it seems that immunodeficiency viruses exploit the unique ability of DCs to survey the periphery and capture incoming pathogens, traffic around the body often targeting the lymphoid tissues, and efficiently communicate with naïve and memory T cells. Combined with the fact that DCs are likely the first leukocytes interacting with virions crossing the mucosae, these features provide the basis on which the virus maximizes its chance to establish infection even in the face of immune activation. How this is actually achieved by the virus is still an enigma. Herein, we intend to summarize what is known about how distinct DC subsets and immunodeficiency viruses interact, what cellular and viral factors influence these events, and how this drives virus replication versus stimulation of protective immunity. Clarifying these issues is necessary to define the exact role of DCs in the transmission and dissemination of HIV infection, to facilitate the development of methods to improve the immune-activating capacity of DCs as well as the design of strategies to prevent DC-driven infection.
-
-
-
Manipulation of CD45 Antigen in Transplantation Tolerance
Authors: S. Ko, M.D. Jaeger, M.H. Dahlke, Y. Nakajima and H.J. SchlittCD45 is known to have tyrosine phosphatase activity for signal transduction of T cells. Immunomodulation of CD45 has been tried to prevent T cell-mediated graft rejection in organ transplantation. In vitro study showed that blockade of CD45RB, an alternative splicing isoform of CD45, inhibited proliferative response of T cells after allogeneic stimulation. Treatment with a monoclonal antibody (mAb) against CD45RB induced long-term allograft acceptance in some mouse organ transplantation models. In a rat heart allograft model, a single injection of anti-rat CD45 (RT7) mAb which bound to allomorphic region of RT7 also induced allograft acceptance.CD45/RT7 is also a useful tool of targeting hematopoietic cells, because of the selective expression on all hematopoietic cells. There are two allomorphic forms of CD45 (RT7 a and RT7 b ) in the rat. Using RT7 system, a rat heart allograft model from RT7 a donors to RT7 b recipients was designed to test functional relevance of graft-associated hematopoietic cells (microchimerism) to allograft acceptance. Then donor-derived hematopoietic cells were selectively depleted using anti-RT7 a mAb in vivo. Depletion on day 0 prevented allograft acceptance and was associated with severe acute or chronic graft rejection, while depletion on day 18 after transplantation showed no effect. This experimental study showed a crucial role of microchimerism in induction phase of allograft acceptance.In conclusion, the CD45/RT7 system is not only a target molecule for tolerance induction, but also an useful tool for experimental models in transplantation immunology. In this review, we introduce basic properties of CD45 and recent results with manipulation of CD45.
-
-
-
Regulation of T cell Apoptosis during the Immune Response
Authors: S. Baumann, A. Krueger, S. Kirchhoff and P.H. KrammerApoptosis of T-lymphocytes is a fundamental process regulating antigen receptor repertoire selection during T cell maturation and homeostasis of the immune system. It also plays a key role in elimination of autoreactive lymphocytes. Resting mature T cells are activated by antigen to elicit an appropriate immune response. In contrast, preactivated T cells undergo activation-induced cell death (AICD) in response to TCR triggering alone. Thus, death by apoptosis is essential for function, growth and differentiation of T-lymphocytes. This review focuses on apoptosis mechanisms involved in T cell development and during the course of an immune response.
-
-
-
Cyclic ADP-ribose (cADPR) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP): Novel Regulators of Ca 2+-Signaling and Cell Function
By A.H. GuseCa 2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca 2+ concentration can be increased by different molecular mechanisms, such as Ca 2+ influx from the extracellular space or Ca 2+ release from intracellular Ca 2+ stores. Release from intracellular Ca 2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP 3 ), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review concentrates on (i) receptor-mediated formation of cADPR by ADP-ribosyl cyclases, (ii) intracellular and extracellular effects of cADPR in a variety of cell types, and (iii) cADPR in the nucleus. Though our understanding of the role of NAADP is still unclear in many aspects, important recent findings are reviewed, e.g. Ca 2+ release activity and binding studies in mammalian cell types.
-
-
-
Current Developments in Human Molecular Cytogenetic Techniques
Authors: T. Liehr and U. ClaussenIn the last decade a variety of fluorescence in situ hybridization (FISH) assays have been developed. In this paper we present an overview on the currently available methods in molecular cytogenetics, highlighting their advantages and limitations, as well as their applications. Even though one has to be impressed by the total number of new techniques introduced in molecular cytogenetics, one has to be aware of the fact that it is not the brilliance of a technique that is important but the scientific question that can be addressed by it. In this review special emphasis has given in describing possible strategies for the characterization of marker and derivative chromosomes in tumor- and clinical cytogenetics.
-
-
-
A New Insight into the Pathogenesis of Filarial Disease
By M.J. TaylorFilariasis is a major public health problem throughout many regions of the tropics. The disease is caused by several species of filarial nematode including Wuchereria bancrofti and Brugia malayi, the agents of lymphatic filariasis, and Onchocerca volvulus, the cause of riverblindness. Disease caused by these worms varies depending on the tissue location of the parasite, and is associated with episodes of acute and chronic inflammation. These pathologies, including elephantiasis and blindness, rank among the most disabling in the world. Studies aimed at characterizing the molecular nature of the inflammatory stimuli derived from filarial nematodes uncovered a long forgotten secret, their symbiont Wolbachia. LPS-like molecules from these intracellular bacteria are responsible for potent inflammatory responses from macrophages and in animal models of filarial disease. Wolbachia has also been associated with severe inflammatory reactions to filarial chemotherapy, being released into the blood following the death of the parasite. Recent studies in animal models even implicate Wolbachia in the onset of lymphodema and blindness. Taken together these studies suggest a major role for Wolbachia in the pathogenesis of filarial disease. It may be possible, through the use of antibiotic therapy, to clear worms of their bacteria, in the hope that this will prevent the onset and development of filarial pathology.
-
-
-
Function of Cytokines within the TGF-β Superfamily as Determined from Transgenic and Gene Knockout Studies in Mice
Authors: A.B. Kulkarni, T. Thyagarajan and J.J. LetterioSeveral major conceptual problems regarding specific in vivo functions of the TGF-β family members remain the key focus of many researchers studying the biology of these secreted signaling molecules. More than 45 members of this family of growth factors have been identified and partially characterized for their molecular roles in numerous processes such as cell proliferation and differentiation, embryonic development, carcinogenesis, immune dysfunction, inflammation and wound healing. The high degree of similarity that exists at the structural level among the isoforms of these growth factors is accompanied by a significant overlap in function, as defined by many in vitro model systems and in vivo systems involving administration of exogenous ligand or of ligand-specific blocking antibodies. The ability to discern the critical functions of these molecules based on patterns of expression has also often been quite difficult. The evolution of more sophisticated functional genomics approaches has been recently instrumental in generating unique perspectives into the mechanisms governing the activity of the members of the TGF -β family. The studies outlined in this review are significant in that they not only support working hypotheses regarding the activities of TGF-β generated through extensive in vitro studies but also raise new questions regarding the role of each isoform in numerous processes. With the rapid advances in these approaches to probe activity in a more cell and time-dependent fashion, we will gain valuable insights for designing approaches for targeting the complex cellular pathways mediating their responses and will also help us develop novel therapies to treat disease processes.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
