Skip to content
2000
Volume 12, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

The airway and alveolar surface is exposed daily to 8,000 L of air containing oxygen, particles, bacteria, allergens and pollutants, all of which have the potential to induce oxidative stress within cells. If one is also a cigarette smoker, then the exposure to reactive oxidants increases exponentially. More than any other tissue, the lung is at risk of undergoing oxidative changes in protein expression, structure and function. The oxidant burden of chronic cigarette smoke exposure can overwhelm the lung cells’ capacity to maintain proteostasis, a process of regulated protein synthesis, folding and turnover. Somewhat surprisingly, most chronic cigarette smokers do not develop chronic obstructive pulmonary disease (COPD), likely because cells initiate a highly effective unfolded protein response (UPR) in the presence of oxidant-derived endoplasmic reticulum (ER) stress that allows cells to survive. The UPR initiates several signaling pathways that decrease protein translation, limit cell cycle progression, increase protein degradation and chaperone-mediated protein folding, and activate the transcription factor Nrf2 that induces antioxidant gene expression. Each of these actions decreases ER stress in a process of “healthy proteostasis”. If these responses are insufficient, apoptosis ensues. In this article, we review the mechanisms of healthy and dysfunctional proteostasis related to cigarette smoke exposure and COPD.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/156652412801318746
2012-08-01
2025-10-31
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/156652412801318746
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test