Skip to content
2000
Volume 8, Issue 2
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Macroautophagy (commonly referred to as autophagy) is the process by which intact organelles and/or large portions of the cytoplasm are engulfed within double-membraned autophagic vacuoles for degradation. Whereas basal levels of autophagy ensure the physiological turnover of old and damaged organelles, the massive accumulation of autophagic vacuoles may represent either an alternative pathway of cell death or an ultimate attempt for cells to survive by adapting to stress. The activation of the autophagic pathway beyond a certain threshold may promote cell death directly, by causing the collapse of cellular functions as a result of cellular atrophy (autophagic, or type II, cell death). Alternatively, autophagy can lead to the execution of apoptotic (type I) or necrotic (type III) cell death programs, presumably via common regulators such as proteins from the Bcl-2 family. On the other hand, limited self-eating can provide cells with metabolic substrates to meet their energetic demands under stressful conditions, such as nutrient deprivation, or favor the selective elimination of damaged (and potentially dangerous) organelles. In these instances, autophagy operates as a pro-survival mechanism. The coordinate regulation of these opposite effects of autophagy relies upon a complex network of signal transducers, most of which also participate in non-autophagic signaling cascades. Thus, autophagy occupies a crucial position within the cell's metabolism, and its modulation may represent an alternative therapeutic strategy in several pathological settings including cancer and neurodegeneration. Here, we present a general outline of autophagy followed by a detailed analysis of organelle-specific autophagic pathways and of their intimate connections with cell death.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/156652408783769616
2008-03-01
2025-09-06
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/156652408783769616
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test