Skip to content
2000
Volume 13, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Spinal muscular atrophy (SMA) is caused by mutations that reduce the level of the survival motor neuron protein (SMN) resulting in death of alpha-motor neurons, yet it is unclear why these cells are preferentially affected by a reduction in this ubiquitously-expressed protein. In mouse models of SMA, one of the earliest events detected is defects at the neuromuscular junction (NMJ). Although NMJs are established at a normal frequency, there are structural as well as functional perturbations and a lack of maturation of the primitive synapse. These early defects are followed by loss of the NMJ, denervation of the muscle and onset of muscle atrophy. In this review, we discuss our current understanding of the contribution of NMJ dysfunction in SMA disease pathogenesis, and also provide an overview of therapies currently under preclinical and clinical development for treatment of SMA.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/15665240113139990044
2013-08-01
2025-12-14
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/15665240113139990044
Loading

  • Article Type:
    Research Article
Keyword(s): Genetic disease; neuromuscular junction; pathogenesis; spinal muscular atrophy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test