Skip to content
2000
Volume 13, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Neurodegenerative diseases are a heterogeneous group of sporadic or familial disorders of the nervous system that mostly lead to a progressive loss of neural cells. A major challenge in studying the molecular pathomechanisms underlying these disorders is the limited experimental access to disease-affected human nervous system tissue. In addition, considering that the molecular disease initiation occurs years or decades before the symptomatic onset of a medical condition, these tissues mostly reflect only the final phase of the disease. To overcome these limitations, various model systems have been established based on gainand loss-of-function studies in transformed cell lines or transgenic animal models. Although these approaches provide valuable insights into disease mechanisms and development they often lack physiological protein expression levels and a humanized context of molecular interaction partners. The generation of human induced pluripotent stem (hiPS) cells from somatic cells provides access to virtually unlimited numbers of patient-specific cells for modeling neurological disorders in vitro. In this review, we focus on the current progress made in hiPS cell-based modeling of neurodegenerative diseases and discuss recent advances in the quality assessment of hiPS cell lines.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524011313050014
2013-06-01
2025-10-04
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/1566524011313050014
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test