Skip to content
2000
image of Causal Relationship Between Plasma Protein-to-Protein Ratios and Rheumatoid Arthritis: A Proteome-wide Mendelian Randomization Study

Abstract

Introduction

The causal relevance of circulating plasma protein-to-protein ratios (PPRs) in Rheumatoid Arthritis (RA) remains unclear. We employed Mendelian Randomization (MR) to investigate this relationship.

Methods

This study utilized summary data of ratio quantitative trait loci (rQTLs) for 2,821 circulating PPRs from the GWAS Catalog and two RA-related GWAS datasets (FinnGen and GWAS Catalog). Causal estimates were obtained using various Mendelian randomization (MR) methods, including IVW and MR-Egger regression. Significant PPRs were further analyzed via protein–protein interaction (PPI), functional enrichment, and druggability assessments. Key genes were validated using qPCR.

Results

Fifteen candidate PPRs with consistent directional effects, and nine core PPRs, achieved statistical significance in both datasets. Protein–protein interaction (PPI) network analysis revealed involvement of these proteins in various biological processes. Gene Ontology (GO) analysis indicated roles in immune response and protein binding, while KEGG pathway analysis showed enrichment in Toll-like receptor signaling pathways. Friends analysis identified UBAC1 as a key gene, and seven PPR-associated proteins were found to be druggable. qPCR validation confirmed differential expression of UBAC1, CD40, ITGB5, and GLOD4.

Discussion

Our findings establish a robust genetic causal link between specific PPRs and RA, moving beyond association to suggest potential etiology. Integrated analyses prioritize UBAC1, CD40, ITGB5, and GLOD4 as key contributors to RA pathogenesis, with functional enrichment indicating their involvement in immune and inflammatory pathways. The druggability of several implicated proteins underscores the translational potential of these results.

Conclusions

This study used MR to establish a causal relationship between plasma PPRs and RA risk. UBAC1, CD40, ITGB5, and GLOD4 may play key roles in the pathogenesis of RA.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240448559251025102228
2025-11-14
2025-12-13
Loading full text...

Full text loading...

References

  1. Maddahi M. Nattagh-Eshtivani E. Jokar M. The effect of propolis supplementation on cardiovascular risk factors in women with rheumatoid arthritis: A double‐blind, placebo, controlled randomized clinical trial. Phytother. Res. 2023 37 12 5424 5434 10.1002/ptr.7996 37644763
    [Google Scholar]
  2. Brown P. Pratt A.G. Hyrich K.L. Therapeutic advances in rheumatoid arthritis. BMJ 2024 384 070856 10.1136/bmj‑2022‑070856 38233032
    [Google Scholar]
  3. Mueller A.L. Payandeh Z. Mohammadkhani N. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies. Cells 2021 10 11 3017 10.3390/cells10113017 34831240
    [Google Scholar]
  4. Wang J. Vordenbäumen S. Schneider M. Brinks R. Population-based epidemiological projections of rheumatoid arthritis in Germany until 2040. Scand. J. Rheumatol. 2024 53 3 161 172 10.1080/03009742.2024.2312693 38358097
    [Google Scholar]
  5. Suhre K. Genetic associations with ratios between protein levels detect new pQTLs and reveal protein-protein interactions. Cell Genomics 2024 4 3 100506 10.1016/j.xgen.2024.100506 38412862
    [Google Scholar]
  6. Manfredi M. Van Hoovels L. Benucci M. Circulating calprotectin (cCLP) in autoimmune diseases. Autoimmun. Rev. 2023 22 5 103295 10.1016/j.autrev.2023.103295 36781037
    [Google Scholar]
  7. Yi Y. Lei L. Sun Y. Biomarkers for early diagnosis of rheumatoid arthritis. Clin. Chim. Acta 2025 574 120288 10.1016/j.cca.2025.120288 40220982
    [Google Scholar]
  8. Abdullateef A.H. Al-Ghazaly Z.M. Baiee N.H. Al-Jabory M.A. Serum C-reactive protein/albumin ratio and its correlation with disease activity in rheumatoid arthritis patients. Medical Journal of Babylon 2024 21 3 704 708 10.4103/MJBL.MJBL_1523_23
    [Google Scholar]
  9. Birney E. Mendelian randomization. Cold Spring Harb. Perspect. Med. 2021 12 4 a041302 10.1101/cshperspect.a041302 34872952
    [Google Scholar]
  10. Maisha J.A. El-Gabalawy H.S. O’Neil L.J. Modifiable risk factors linked to the development of rheumatoid arthritis: Evidence, immunological mechanisms and prevention. Front. Immunol. 2023 14 1221125 10.3389/fimmu.2023.1221125 37767100
    [Google Scholar]
  11. Sollis E. Mosaku A. Abid A. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023 51 D1 D977 D985 10.1093/nar/gkac1010 36350656
    [Google Scholar]
  12. Mostafavi S. Ray D. Warde-Farley D. Grouios C. Morris Q. GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008 9 Suppl. 1 S4 10.1186/gb‑2008‑9‑s1‑s4
    [Google Scholar]
  13. Finan C. Gaulton A. Kruger F.A. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 2017 9 383 eaag1166 10.1126/scitranslmed.aag1166 28356508
    [Google Scholar]
  14. Zou M. Jiang D. Wu T. Post-GWAS functional studies reveal an RA-associated CD40 -induced NF-kB signal transduction and transcriptional regulation network targeted by class II HDAC inhibitors. Hum. Mol. Genet. 2021 30 9 823 835 10.1093/hmg/ddab032 33517445
    [Google Scholar]
  15. Karnell J.L. Rieder S.A. Ettinger R. Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv. Drug Deliv. Rev. 2019 141 92 103 10.1016/j.addr.2018.12.005 30552917
    [Google Scholar]
  16. Román-Fernández I.V. García-Chagollán M. Cerpa-Cruz S. Assessment of CD40 and CD40L expression in rheumatoid arthritis patients, association with clinical features and DAS28. Clin. Exp. Med. 2019 19 4 427 437 10.1007/s10238‑019‑00568‑5 31313080
    [Google Scholar]
  17. Chen W. Yang H. Huang L. ROS-mediated ITGB5 promotes tongue squamous cell carcinoma metastasis through epithelial mesenchymal transition and cell adhesion signal pathway. J. Cancer Res. Clin. Oncol. 2024 150 8 398 10.1007/s00432‑024‑05922‑z 39180583
    [Google Scholar]
  18. Leng D. Chimedtseren C. Wang T. Proteomics analysis of body fluid exosomes of rheumatoid arthritis patients underwent oxhorn cupping therapy. PLoS One 2024 19 12 0311526 10.1371/journal.pone.0311526 39666600
    [Google Scholar]
  19. Shelef M.A. Bennin D.A. Yasmin N. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Res. Ther. 2014 16 5 464 10.1186/s13075‑014‑0464‑6
    [Google Scholar]
  20. Wang X. Shen C. Wang T. Shikonin suppresses rheumatoid arthritis by inducing apoptosis and autophagy via modulation of the AMPK/mTOR/ULK-1 signaling pathway. Phytomedicine 2024 128 155512 10.1016/j.phymed.2024.155512 38460357
    [Google Scholar]
  21. Sun X. Chen X. Ni Y. Latexin (LXN) enhances tumor immune surveillance in mice by inhibiting Treg cells through the macrophage exosome pathway. Int. J. Biol. Macromol. 2025 289 138822 10.1016/j.ijbiomac.2024.138822 39694381
    [Google Scholar]
  22. Martínez-Calleja A. Cruz R. Miranda-Sánchez M. Fragoso-Soriano R. Vega-López M.A. Kouri J.B. Latexin expression correlated with mineralization of articular cartilage during progression of post-traumatic osteoarthritis in a rat model. Histol. Histopathol. 2020 35 3 269 278 10.14670/hh‑18‑151 31313823
    [Google Scholar]
  23. Mazzone P. Congestrì M. Scudiero I. UBAC1/KPC2 regulates TLR3 signaling in human keratinocytes through functional interaction with the CARD14/CARMA2sh-TANK complex. Int. J. Mol. Sci. 2020 21 24 9365 10.3390/ijms21249365 33316896
    [Google Scholar]
  24. Ilchovska D.D. Barrow D.M. An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions. Autoimmun. Rev. 2021 20 2 102741 10.1016/j.autrev.2020.102741 33340772
    [Google Scholar]
  25. Coyle C. Ma M. Abraham Y. NK cell subsets define sustained remission in rheumatoid arthritis. JCI Insight 2024 9 23 182390 10.1172/jci.insight.182390 39418106
    [Google Scholar]
  26. Molfetta R. Milito N.D. Zitti B. The Ubiquitin‐proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. Eur. J. Immunol. 2019 49 6 873 883 10.1002/eji.201847848 30888046
    [Google Scholar]
  27. Sun H. Xia Y. Wang L. Wang Y. Chang X. PSORS1C1 may be involved in rheumatoid arthritis. Immunol. Lett. 2013 153 1-2 9 14 10.1016/j.imlet.2013.06.001 23769905
    [Google Scholar]
  28. Lee P.H. Choi S.M. An M.H. Nectin4 is a potential therapeutic target for asthma. Front. Immunol. 2022 13 1049900 10.3389/fimmu.2022.1049900 36457999
    [Google Scholar]
  29. Omran E. Alzahrani A.R. Ezzat S.F. Deciphering the therapeutic potential of trimetazidine in rheumatoid arthritis via targeting mi-RNA128a, TLR4 signaling pathway, and adenosine-induced FADD-microvesicular shedding: In vivo and in silico study. Front. Pharmacol. 2024 15 1406939 10.3389/fphar.2024.1406939 38919260
    [Google Scholar]
  30. Maniglio M. Loisay L. Hügle T. Geurts JJAotRD. Associations between bone marrow adipocyte size, bone remodelling and body mass index in patients with base of the thumb osteoarthritis. Ann. Rheum. Dis. 2023 82 Suppl. 1 462 463 10.1136/annrheumdis‑2023‑eular.3720
    [Google Scholar]
  31. Li P. Chang M. Roles of PRR-mediated signaling pathways in the regulation of oxidative stress and inflammatory diseases. Int. J. Mol. Sci. 2021 22 14 7688 10.3390/ijms22147688 34299310
    [Google Scholar]
  32. Ciapaite J. van Roermund C.W.T. Bosma M. Maintenance of cellular vitamin B6 levels and mitochondrial oxidative function depend on pyridoxal 5′-phosphate homeostasis protein. J. Biol. Chem. 2023 299 9 105047 10.1016/j.jbc.2023.105047 37451483
    [Google Scholar]
  33. Liu Y. Wang X. You M. Zheng M. Yu M. Leng X. Association between vitamin B6 levels and rheumatoid arthritis: A two-sample Mendelian randomization study. Front. Nutr. 2024 11 1442214 10.3389/fnut.2024.1442214 39464681
    [Google Scholar]
  34. Chao A. Liao M.J. Chen S.H. JAK2-mediated phosphorylation of stress-induced phosphoprotein-1 (STIP1) in human cells. Int. J. Mol. Sci. 2022 23 5 2420 10.3390/ijms23052420 35269562
    [Google Scholar]
  35. Ichise Y. Saegusa J. Tanaka-Natsui S. Soluble CD14 induces pro-inflammatory cytokines in rheumatoid arthritis fibroblast-like synovial cells via toll-like receptor 4. Cells 2020 9 7 1689 10.3390/cells9071689 32674360
    [Google Scholar]
  36. Chapa-Villarreal F.A. Stephens M. Pavlicin R. Beussman M. Peppas N.A. Therapeutic delivery systems for rheumatoid arthritis based on hydrogel carriers. Adv. Drug Deliv. Rev. 2024 208 115300 10.1016/j.addr.2024.115300 38548104
    [Google Scholar]
  37. Masoumi M. Bashiri H. Khorramdelazad H. Destructive roles of fibroblast-like synoviocytes in chronic inflammation and joint damage in rheumatoid arthritis. Inflammation 2021 44 2 466 479 10.1007/s10753‑020‑01371‑1 33113036
    [Google Scholar]
  38. Fisher B.A. Mariette X. Papas A. Safety and efficacy of subcutaneous iscalimab (CFZ533) in two distinct populations of patients with Sjögren’s disease (TWINSS): Week 24 results of a randomised, double-blind, placebo-controlled, phase 2b dose-ranging study. Lancet 2024 404 10452 540 553 10.1016/S0140‑6736(24)01211‑X 39096929
    [Google Scholar]
  39. Eskens F.A. Dumez H. Hoekstra R. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. European. J. Cancer 2003 39 7 917 926 10.1016/s0959‑8049(03)00057‑1
    [Google Scholar]
  40. Chen J. Lin A. Luo P. Advancing pharmaceutical research: A comprehensive review of cutting-edge tools and technologies. Curr. Pharm. Anal. 2024 21 1 1 19 10.1016/j.cpan.2024.11.001
    [Google Scholar]
  41. Wang Z. Zhao Y. Zhang L. Emerging trends and hot topics in the application of multi-omics in drug discovery: A bibliometric and visualized study. Curr. Pharm. Anal. 2024 21 1 20 32 10.1016/j.cpan.2024.12.001
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240448559251025102228
Loading
/content/journals/cmm/10.2174/0115665240448559251025102228
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test