Skip to content
2000
image of Adiponectin Ameliorates Intrauterine Adhesion-Related Endometrial Inflammation and Fibrotic Changes by Downregulating the NLRP3/IL-1β/TGF-β1 Axis

Abstract

Introduction

Intrauterine Adhesions (IUA), a common gynecological condition often caused by infection or endometrial injury, significantly impact women's reproductive and mental health. Its unclear pathogenesis hinders the development of effective treatments. Adiponectin, a bioactive protein with anti-inflammatory and anti-fibrotic properties, may offer therapeutic potential. This study investigates adiponectin's effects and mechanisms in IUA to inform new clinical strategies..

Methods

Endometrial tissues from IUA patients and controls were analyzed immunohistochemistry to assess NLRP3, IL-1β, TGF-β1, and adiponectin expression. A human IUA cell model was established by stimulating human endometrial stromal cells (HESCs) with TGF-β1 (10 ng/ml, 48 hours). Interventions using the NLRP3 inhibitor MCC950, activator nigericin sodium salt, and adiponectin were applied. Protein and mRNA expression levels of NLRP3, IL-1β, TGF-β1, α-SMA, and COL1A1 were evaluated Western blot and RT-qPCR. , IUA model rats were treated with adiponectin, and uterine morphology, gland count, collagen deposition, and inflammatory/fibrotic markers were analyzed.

Results

NLRP3, IL-1β, and TGF-β1 expression were significantly upregulated in IUA patient tissues, while adiponectin was downregulated (<0.05). In the TGF-β1-induced IUA cell model, NLRP3 inhibition with MCC950 reduced IL-1β and TGF-β1 levels, whereas NLRP3 activation with nigericin increased them. Adiponectin intervention significantly decreased NLRP3, IL-1β, TGF-β1, α-SMA, and COL1A1 expression (<0.05). In IUA rats, adiponectin improved uterine morphology, increased endometrial glands, reduced collagen fiber deposition, and downregulated NLRP3, IL-1β, and TGF-β1 expression (<0.05).

Discussion

Adiponectin alleviates endometrial inflammation and fibrosis in IUA, potentially by modulating the NLRP3/IL-1β/TGF-β1 signaling pathway. These findings highlight adiponectin’s role in mitigating IUA progression and provide a theoretical basis for its clinical applications.

Conclusion

Adiponectin reduces inflammation and fibrosis in IUA by suppressing the NLRP3/IL-1β/TGF-β1 axis, offering new insights for IUA treatment strategies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240435678251124061235
2025-11-24
2026-01-30
Loading full text...

Full text loading...

References

  1. Song Y.T. Liu P.C. Tan J. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Res. Ther. 2021 12 1 556 10.1186/s13287‑021‑02620‑2 34717746
    [Google Scholar]
  2. Gaya S.A. Adamu I.S. Yakasai I.A. Abubakar S. Review of intrauterine adhesiolysis at the Aminu Kano Teaching Hospital, Kano, Nigeria. Ann. Afr. Med. 2012 11 2 65 69 10.4103/1596‑3519.93526 22406663
    [Google Scholar]
  3. Yu D. Wong Y.M. Cheong Y. Xia E. Li T.C. Asherman syndrome—one century later. Fertil. Steril. 2008 89 4 759 779 10.1016/j.fertnstert.2008.02.096 18406834
    [Google Scholar]
  4. Li X. Lv H.F. Zhao R. Ying M. Samuriwo A.T. Zhao Y.Z. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater. Today Bio 2021 11 100101 10.1016/j.mtbio.2021.100101 34036261
    [Google Scholar]
  5. Ma J. Zhan H. Li W. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomater. Res. 2021 25 1 40 10.1186/s40824‑021‑00242‑6 34819167
    [Google Scholar]
  6. Han Q. Du Y. Advances in the application of biomimetic endometrium interfaces for uterine bioengineering in female infertility. Front. Bioeng. Biotechnol. 2020 8 153 10.3389/fbioe.2020.00153 32181248
    [Google Scholar]
  7. Prianishnikov V.A. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception 1978 18 3 213 223 10.1016/S0010‑7824(78)80015‑8 569035
    [Google Scholar]
  8. Wallach E. Toaff R. Ballas S. Traumatic hypomenorrhea-amenorrhea (Asherman’s syndrome). Fertil. Steril. 1978 30 4 379 387 10.1016/S0015‑0282(16)43568‑5 568569
    [Google Scholar]
  9. Gargett C.E. Ye L. Endometrial reconstruction from stem cells. Fertil. Steril. 2012 98 1 11 20 10.1016/j.fertnstert.2012.05.004 22657248
    [Google Scholar]
  10. Wallach E.E. Schenker J.G. Margalioth E.J. Intrauterine adhesions: An updated appraisal. Fertil. Steril. 1982 37 5 593 610 10.1016/S0015‑0282(16)46268‑0 6281085
    [Google Scholar]
  11. Chen Y. Liu L. Luo Y. Chen M. Huan Y. Fang R. Prevalence and impact of chronic endometritis in patients with intrauterine adhesions: A prospective cohort study. J. Minim. Invasive Gynecol. 2017 24 1 74 79 10.1016/j.jmig.2016.09.022 27773811
    [Google Scholar]
  12. Abudukeyoumu A. Li M.Q. Xie F. Transforming growth factor‐β1 in intrauterine adhesion. Am. J. Reprod. Immunol. 2020 84 2 13262 10.1111/aji.13262 32379911
    [Google Scholar]
  13. Huang R. Fu P. Ma L. Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct. Target. Ther. 2023 8 1 129 10.1038/s41392‑023‑01379‑7 36932062
    [Google Scholar]
  14. de Carvalho Ribeiro M. Szabo G. Role of the inflammasome in liver disease. Annu. Rev. Pathol. 2022 17 1 345 365 10.1146/annurev‑pathmechdis‑032521‑102529 34752711
    [Google Scholar]
  15. Bao M. Feng Q. Zou L. Huang J. Zhu C. Xia W. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway. Reproduction 2023 165 2 171 182 10.1530/REP‑22‑0294 36342661
    [Google Scholar]
  16. Hu S. Li Y. Meng W.J. Tan S.Q. [Effects of Fukang oral liquid on the prevention of intrauterine adhesion and expressions of TGF-beta1, PAI-1 and MMP-9 in endometrium of rats Sichuan Da Xue Xue Bao Yi Xue Ban 2013 44 4 540 544 24059104
    [Google Scholar]
  17. Hua Q. Zhang Y. Li H. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium. Stem Cell Res. Ther. 2022 13 1 301 10.1186/s13287‑022‑02990‑1 35841027
    [Google Scholar]
  18. Guo Q. Jin Y. Chen X. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  19. Zdrojkowski Ł. Jasiński T. Ferreira-Dias G. Pawliński B. Domino M. The role of NF-κB in endometrial diseases in humans and animals: A review. Int. J. Mol. Sci. 2023 24 3 2901 10.3390/ijms24032901 36769226
    [Google Scholar]
  20. Li J. Du S. Sheng X. MicroRNA-29b Inhibits Endometrial Fibrosis by Regulating the Sp1-TGF-β1/Smad-CTGF Axis in a Rat Model. Reprod. Sci. 2016 23 3 386 394 10.1177/1933719115602768 26392347
    [Google Scholar]
  21. Li J. Huang B. Dong L. Zhong Y. Huang ZWJ MSCs intervention may relieve intrauterine adhesions in female rats via TGF β1 mediated Rho/ROCK signaling inhibition. Mol. Med. Rep. 2020 23 1 1 10.3892/mmr.2020.11646 33179074
    [Google Scholar]
  22. Simin Y. Zhenhua Z. Limin W. Targeting endometrial inflammation in intrauterine adhesion ameliorates endometrial fibrosis by priming MSCs to secrete C1INH. iScience 2023 26 7 107201 10.1016/j.isci.2023.107201 37456855
    [Google Scholar]
  23. Coll R.C. Schroder K. Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol. Sci. 2022 43 8 653 668 10.1016/j.tips.2022.04.003 35513901
    [Google Scholar]
  24. Rossin D. Vanni R. Lo Iacono M. Cristallini C. Giachino C. Rastaldo R. APJ as promising therapeutic target of peptide analogues in myocardial infarction- and hypertension-induced heart failure. Pharmaceutics 2023 15 5 1408 10.3390/pharmaceutics15051408 37242650
    [Google Scholar]
  25. Mansouri-Kivaj N. Nazari A. Esfandiari F. Homogenous subpopulation of human mesenchymal stem cells and their extracellular vesicles restore function of endometrium in an experimental rat model of Asherman syndrome. Stem Cell Res. Ther. 2023 14 1 61 10.1186/s13287‑023‑03279‑7 37013655
    [Google Scholar]
  26. Ge C. Zhao Y. Liang Y. He Y. Silencing of TLR4 inhibits atrial fibrosis and susceptibility to atrial fibrillation via downregulation of NLRP3-TGF-β in spontaneously hypertensive rats. Dis. Markers 2022 2022 1 16 10.1155/2022/2466150 35860690
    [Google Scholar]
  27. Abd Elrazik N.A. Helmy S.A. Betanin protects against bleomycin-induced pulmonary fibrosis by regulating the NLRP3/IL-1β/TGF-β1 pathway-mediated epithelial-to-mesenchymal transition. Food Funct. 2024 15 1 284 294 10.1039/D3FO03464J 38083874
    [Google Scholar]
  28. Liu Y. Zhang S. Xue Z. Bone mesenchymal stem cells-derived miR-223-3p-containing exosomes ameliorate lipopolysaccharide-induced acute uterine injury via interacting with endothelial progenitor cells. Bioengineered 2021 12 2 10654 10665 10.1080/21655979.2021.2001185 34738867
    [Google Scholar]
  29. Xu X. Huang X. Zhang L. Huang X. Qin Z. Hua F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol. 2021 22 1 218 10.1186/s12882‑021‑02391‑1 34107901
    [Google Scholar]
  30. Liu H. Wu X. Luo J. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp. Neurol. 2020 329 113302 10.1016/j.expneurol.2020.113302 32275928
    [Google Scholar]
  31. Mulay S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 2019 96 1 58 66 10.1016/j.kint.2019.01.014 30922667
    [Google Scholar]
  32. Arabi T. Shafqat A. Sabbah B.N. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front. Endocrinol. 2023 13 1095211 10.3389/fendo.2022.1095211 36726470
    [Google Scholar]
  33. Chen L. Guo L. Chen F. Transplantation of menstrual blood-derived mesenchymal stem cells (MbMSCs) promotes the regeneration of mechanical injuried endometrium. Am. J. Transl. Res. 2020 12 9 4941 4954 [PMID: 33042399
    [Google Scholar]
  34. Dreisler E. Kjer J.J. Asherman’s syndrome: Current perspectives on diagnosis and management. Int. J. Womens Health 2019 11 191 198 10.2147/IJWH.S165474 30936754
    [Google Scholar]
  35. Coll R.C. Hill J.R. Day C.J. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol. 2019 15 6 556 559 10.1038/s41589‑019‑0277‑7 31086327
    [Google Scholar]
  36. Li S. Withaar C. Rodrigues P.G. The NLRP3-inflammasome inhibitor MCC950 improves cardiac function in a HFpEF mouse model. Biomed. Pharmacother. 2024 181 117711 10.1016/j.biopha.2024.117711 39616735
    [Google Scholar]
  37. Li H. Guan Y. Liang B. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur. J. Pharmacol. 2022 928 175091 10.1016/j.ejphar.2022.175091 35714692
    [Google Scholar]
  38. Perera A.P. Fernando R. Shinde T. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci. Rep. 2018 8 1 8618 10.1038/s41598‑018‑26775‑w 29872077
    [Google Scholar]
  39. Sharif H. Wang L. Wang W.L. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 2019 570 7761 338 343 10.1038/s41586‑019‑1295‑z 31189953
    [Google Scholar]
  40. He W. Wan H. Hu L. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015 25 12 1285 1298 10.1038/cr.2015.139 26611636
    [Google Scholar]
  41. Li J. Xu P. Hong Y. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J. Neuroinflammation 2023 20 1 148 10.1186/s12974‑023‑02819‑5 37353794
    [Google Scholar]
  42. Yan S. Ding J. Wang Z. CTRP6 alleviates endometrial fibrosis by regulating Smad3 pathway in intrauterine adhesion. Biol. Reprod. 2024 111 2 322 331 10.1093/biolre/ioae016 38984926
    [Google Scholar]
  43. Xiong Z. Ma Y. He J. Apoptotic bodies of bone marrow mesenchymal stem cells inhibit endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway. Heliyon 2023 9 11 20716 10.1016/j.heliyon.2023.e20716 37885720
    [Google Scholar]
  44. Ai Y. Chen M. Liu J. Ren L. Yan X. Feng Y. lncRNA TUG1 promotes endometrial fibrosis and inflammation by sponging miR-590-5p to regulate Fasl in intrauterine adhesions. Int. Immunopharmacol. 2020 86 106703 10.1016/j.intimp.2020.106703 32599321
    [Google Scholar]
  45. Evans J. Kaitu’u-Lino T. Salamonsen L.A. Extracellular matrix dynamics in scar-free endometrial repair: Perspectives from mouse in vivo and human in vitro studies. Biol. Reprod. 2011 85 3 511 523 10.1095/biolreprod.111.090993 21613633
    [Google Scholar]
  46. Hu X. Wu H. Yong X. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm 2023 4 6 425 10.1002/mco2.425 38045828
    [Google Scholar]
  47. Wang J. Zhan H. Wang Y. Zhao L. Huang Y. Wu R. Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion. Stem Cell Res. Ther. 2024 15 1 379 10.1186/s13287‑024‑03989‑6 39456113
    [Google Scholar]
  48. Henriet P. Gaide Chevronnay H.P. Marbaix E. The endocrine and paracrine control of menstruation. Mol. Cell. Endocrinol. 2012 358 2 197 207 10.1016/j.mce.2011.07.042 21820486
    [Google Scholar]
  49. Guo Z. Wang Y. Wen X. Xu X. Yan L. β-Klotho promotes the development of intrauterine adhesions via the pi3k/akt signaling pathway. Int. J. Mol. Sci. 2022 23 19 11294 10.3390/ijms231911294 36232594
    [Google Scholar]
  50. Li W. Gu P. Gao B. Characteristics and transcriptomic analysis of scar tissues on the inner uterine cavity wall in patients with intrauterine adhesions. Front. Physiol. 2022 13 990009 10.3389/fphys.2022.990009 36620214
    [Google Scholar]
  51. Wang F. Liu Y. Yang W. Yuan J. Mo Z. Adiponectin inhibits NLRP3 inflammasome by modulating the AMPK-ROS pathway. Int. J. Clin. Exp. Pathol. 2018 11 7 3338 3347 [PMID: 31949710
    [Google Scholar]
  52. Wang X. Yang J. Wu L. Adiponectin inhibits the activation of lung fibroblasts and pulmonary fibrosis by regulating the nuclear factor kappa B (NF-κB) pathway. Bioengineered 2022 13 4 10098 10110 10.1080/21655979.2022.2063652 35435119
    [Google Scholar]
  53. Wang X. Yan X. Huang F. Wu L. Adiponectin inhibits TGF-β1-induced skin fibroblast proliferation and phenotype transformation via the p38 MAPK signaling pathway. Open Life Sci. 2023 18 1 20220679 10.1515/biol‑2022‑0679 37589003
    [Google Scholar]
  54. Leask A. Abraham D.J. TGF‐β signaling and the fibrotic response. FASEB J. 2004 18 7 816 827 10.1096/fj.03‑1273rev 15117886
    [Google Scholar]
  55. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008 214 2 199 210 10.1002/path.2277 18161745
    [Google Scholar]
  56. Chen C. Chen J. Wang Y. Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling. Phytomedicine 2023 110 154626 10.1016/j.phymed.2022.154626 36603342
    [Google Scholar]
  57. Liu R.M. Desai L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015 6 565 577 10.1016/j.redox.2015.09.009 26496488
    [Google Scholar]
  58. Lodyga M. Hinz B. TGF-β1 – A truly transforming growth factor in fibrosis and immunity. Semin. Cell Dev. Biol. 2020 101 123 139 10.1016/j.semcdb.2019.12.010 31879265
    [Google Scholar]
  59. Meng X. Nikolic-Paterson D.J. Lan H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016 12 6 325 338 10.1038/nrneph.2016.48 27108839
    [Google Scholar]
  60. Wu D. Guo J. Qi B. Xiao H. TGF-β1 induced proliferation, migration, and ECM accumulation through the SNHG11/miR-34b/LIF pathway in human pancreatic stellate cells. Endocr. J. 2021 68 11 1347 1357 10.1507/endocrj.EJ21‑0176 34261825
    [Google Scholar]
  61. Upagupta C. Shimbori C. Alsilmi R. Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur. Respir. Rev. 2018 27 148 180033 10.1183/16000617.0033‑2018 29950306
    [Google Scholar]
  62. Yang J. Li J. Wang J. Oroxylin A relieves intrauterine adhesion in mice through inhibiting macrophage pyroptosis via SIRT3-SOD2-ROS pathway. Int. Immunopharmacol. 2023 118 110023 10.1016/j.intimp.2023.110023 36934562
    [Google Scholar]
  63. Pétrilli V. Dostert C. Muruve D.A. Tschopp J. The inflammasome: A danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 2007 19 6 615 622 10.1016/j.coi.2007.09.002 17977705
    [Google Scholar]
  64. Fernandes-Alnemri T. Wu J. Yu J-W. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007 14 9 1590 1604 10.1038/sj.cdd.4402194 17599095
    [Google Scholar]
  65. Luo D.D. Fielding C. Phillips A. Fraser D. Interleukin-1 beta regulates proximal tubular cell transforming growth factor beta-1 signalling. Nephrol. Dial. Transplant. 2009 24 9 2655 2665 10.1093/ndt/gfp208 19420104
    [Google Scholar]
  66. Dinarello C.A. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am. J. Clin. Nutr. 2006 83 2 447S 455S 10.1093/ajcn/83.2.447S 16470011
    [Google Scholar]
  67. Shan T. Li Z. Li J. Study on the molecular mechanism of angiotensin promoting the process of intrauterine adhesions by regulating the NLRP3 inflammasome pathway. Ann. Clin. Lab. Sci. 2025 55 3 365 372 [PMID: 40750246
    [Google Scholar]
  68. Cui C.T. Xia L.J. Li J.W. Cheng J. Xia Y.B. The regulatory effect of electroacupuncture on endometrial M1-type macrophages in rats with intrauterine adhesions. Zhen Ci Yan Jiu 2024 49 5 487 498 10.13702/j.1000‑0607.20230874 38764120
    [Google Scholar]
  69. Pan Y. Xi J. Liu J.Y. Shen J. Cheng J. Xia Y.B. Observation on the effect of electroacupuncture on the regeneration of endometrium in rats with intrauterine adhesion. Zhen Ci Yan Jiu 2023 48 6 550 556 10.13702/j.1000‑0607.20220148 37385785
    [Google Scholar]
  70. Yin W. Wang J.H. Liang Y.M. Liu K.H. Chen Y. Chen Y. Neferine targeted the NLRC5/NLRP3 pathway to inhibit M1-type polarization and pyroptosis of macrophages to improve hyperuricemic nephropathy. Curr. Mol. Med. 2025 25 1 90 111 10.2174/0115665240272051240122074511 38549521
    [Google Scholar]
  71. Meng Y. Pan M. Zheng B. Autophagy attenuates angiotensin ii-induced pulmonary fibrosis by inhibiting redox imbalance-mediated NOD-like receptor family pyrin domain containing 3 inflammasome activation. Antioxid. Redox Signal. 2019 30 4 520 541 10.1089/ars.2017.7261 29486589
    [Google Scholar]
  72. Song Z.S. Shao H. Chen Y.Q. Zhang R. Expression and significance of NLRP3/IL-1β/TGF-β(1) signal axis in rat model of silicosis pulmonary fibrosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2018 36 11 819 823 10.3760/cma.j.issn.1001‑9391.2018.11.005 30646643
    [Google Scholar]
  73. Li Y. Li H. Liu S. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation. Mol. Immunol. 2018 99 134 144 10.1016/j.molimm.2018.05.003 29783158
    [Google Scholar]
  74. Pinar A.A. Samuel C.S. Immune mechanisms and related targets for the treatment of fibrosis in various organs. Curr. Mol. Med. 2022 22 3 240 249 10.2174/1566524022666220114122839 35034593
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240435678251124061235
Loading
/content/journals/cmm/10.2174/0115665240435678251124061235
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: TGF-β1 ; Adiponectin ; IL-1β ; NLRP3 ; Intrauterine Adhesions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test