Skip to content
2000
image of SIRT6 Relieves Acute Lung Injury by Enhancing PGC-1α Expression and Improving Mitochondrial Function

Abstract

Introduction

Sepsis-induced acute lung injury (ALI) is closely related to the dysfunction of mitochondria. Sirtuin 6 (SIRT6), as a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacylase, is involved in several cellular processes. However, research has shown that the interaction of SIRT6 and mitochondrial function plays a role in acute lung injury. The objective of this research study was to explore the effect of SIRT6 on mitochondrial function during septic lung injury.

Methods

Lipopolysaccharide (LPS) was used to establish ALI models in C57BL/6J, SIRT6fl/fl/CAG-CreERT2 mice and in MLE12 cells. Hematoxylin and eosin staining, cell counting kit-8 (CCK-8), and enzyme-linked immunosorbent assay (ELISA) were used to evaluate lung injury, cell viability, and inflammation. Western blot (WB) was used to measure the protein expression of SIRT6 and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). The function and integrity of mitochondria were detected by transmission electron microscopy (TEM), etc.

Results and Discussion

In this study, LPS stimulation reduced the protein expression levels of SIRT6 and PGC-1α. Furthermore, it inhibited mitochondrial DNA (mtDNA), mitochondrial membrane potential, and mitochondrial oxygen consumption rate, while promoting mitochondrial swelling in a model of acute lung injury. Adenovirus-mediated SIRT6 overexpression alleviated acute lung injury, simultaneously enhancing the protein levels of PGC-1α, mtDNA content, mitochondrial membrane potential, and mitochondrial oxygen consumption rate, and inhibiting mitochondrial swelling Conversely, the deletion or knockout of SIRT6 diminished PGC-1α protein expression levels, enhanced mitochondrial dysfunction, and further aggravated acute lung injury.

Conclusion

SIRT6 protected against LPS-induced acute lung injury by promoting PGC-1α expression and improving mitochondrial function both and .

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240423301250929091606
2025-10-08
2025-12-18
Loading full text...

Full text loading...

References

  1. Sevransky J.E. Levy M.M. Marini J.J. Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: An evidence-based review. Crit. Care Med. 2004 32 11 S548 S553 10.1097/01.CCM.0000145947.19077.25 15542963
    [Google Scholar]
  2. Ma J. Xu L.Y. Sun Q.H. Wan X.Y. BingLi. Inhibition of miR-1298-5p attenuates sepsis lung injury by targeting SOCS6. Mol. Cell. Biochem. 2021 476 10 3745 3756 10.1007/s11010‑021‑04170‑w 34100174
    [Google Scholar]
  3. Wang Z. Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury. Front. Immunol. 2023 14 1209438 10.3389/fimmu.2023.1209438 37691951
    [Google Scholar]
  4. Yang X. Jing T. Li Y. Hydroxytyrosol attenuates LPS-induced acute lung injury in mice by regulating autophagy and sirtuin expression. Curr. Mol. Med. 2017 17 2 149 159 10.2174/1566524017666170421151940 28429673
    [Google Scholar]
  5. Villar J. Blanco J. Añón J.M. The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 2011 37 12 1932 1941 10.1007/s00134‑011‑2380‑4 21997128
    [Google Scholar]
  6. Li N. Liu B. Xiong R. Li G. Wang B. Geng Q. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biol. 2023 63 102746 10.1016/j.redox.2023.102746 37244125
    [Google Scholar]
  7. Yildirim R.M. Seli E. Mitochondria as therapeutic targets in assisted reproduction. Hum. Reprod. 2024 39 10 2147 2159 10.1093/humrep/deae170 39066614
    [Google Scholar]
  8. Chen L. Tian Q. Shi Z. Qiu Y. Lu Q. Liu C. Melatonin alleviates cardiac function in sepsis-caused myocarditis via maintenance of mitochondrial function. Front. Nutr. 2021 8 754235 10.3389/fnut.2021.754235 34708067
    [Google Scholar]
  9. Chakrabarty R.P. Chandel N.S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 2021 28 3 394 408 10.1016/j.stem.2021.02.011 33667360
    [Google Scholar]
  10. Shi J. Yu J. Zhang Y. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab. Invest. 2019 99 12 1795 1809 10.1038/s41374‑019‑0286‑x 31570770
    [Google Scholar]
  11. Shi J. Yu T. Song K. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol. 2021 41 101954 10.1016/j.redox.2021.101954 33774474
    [Google Scholar]
  12. Song K. Shi J. Zhan L. Dexmedetomidine modulates mitochondrial dynamics to protect against endotoxin-induced lung injury via the protein kinase C-ɑ/haem oxygenase-1 signalling pathway. Biomarkers 2022 27 2 159 168 10.1080/1354750X.2021.2023219 34951550
    [Google Scholar]
  13. Shi J. Du S.H. Yu J.B. Hydromorphone protects against CO 2 pneumoperitoneum‐induced lung injury via heme oxygenase‐1‐regulated mitochondrial dynamics. Oxid. Med. Cell. Longev. 2021 2021 1 9034376 10.1155/2021/9034376 33927798
    [Google Scholar]
  14. Shi J. Yu J. Zhang Y. Phosphatidylinositol 3 kinase mediated HO 1/CO represses Fis1 levels and alleviates lipopolysaccharide induced oxidative injury in alveolar macrophages. Exp. Ther. Med. 2018 16 3 2735 2742 10.3892/etm.2018.6448 30210614
    [Google Scholar]
  15. Li X. Zhang Y. Yu J. Activation of protein kinase C α/heme oxygenase 1 signaling pathway improves mitochondrial dynamics in lipopolysaccharide activated NR8383 cells. Exp. Ther. Med. 2018 16 2 1529 1537 10.3892/etm.2018.6290 30112072
    [Google Scholar]
  16. Dong S. Zhang Y. Yu J. Carbon monoxide attenuates lipopolysaccharide-induced lung injury by mitofusin proteins via p38 MAPK pathway. J. Surg. Res. 2018 228 201 210 10.1016/j.jss.2018.03.042 29907213
    [Google Scholar]
  17. Yu J. Wang Y. Li Z. Effect of heme oxygenase-1 on mitofusin-1 protein in LPS-induced ALI/ARDS in rats. Sci. Rep. 2016 6 1 36530 10.1038/srep36530 27830717
    [Google Scholar]
  18. Shi J. Yu J. Liu W. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells. Exp. Cell Res. 2016 349 1 162 167 10.1016/j.yexcr.2016.10.009 27751838
    [Google Scholar]
  19. Yu J. Shi J. Wang D. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 2016 125 6 1190 1201 10.1097/ALN.0000000000001333 27575447
    [Google Scholar]
  20. Haigis M.C. Guarente L.P. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006 20 21 2913 2921 10.1101/gad.1467506 17079682
    [Google Scholar]
  21. Ji Z. Liu G.H. Qu J. Mitochondrial sirtuins, metabolism, and aging. J. Genet. Genomics 2022 49 4 287 298 10.1016/j.jgg.2021.11.005 34856390
    [Google Scholar]
  22. Fan Y. Yang Q. Yang Y. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int. J. Biol. Sci. 2019 15 3 701 713 10.7150/ijbs.29323 30745856
    [Google Scholar]
  23. Kanfi Y. Naiman S. Amir G. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012 483 7388 218 221 10.1038/nature10815 22367546
    [Google Scholar]
  24. Kanfi Y. Peshti V. Gil R. SIRT6 protects against pathological damage caused by diet‐induced obesity. Aging Cell 2010 9 2 162 173 10.1111/j.1474‑9726.2009.00544.x 20047575
    [Google Scholar]
  25. Zhong L. D’Urso A. Toiber D. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010 140 2 280 293 10.1016/j.cell.2009.12.041 20141841
    [Google Scholar]
  26. Wang Q.L. Yang L. Liu Z.L. Sirtuin 6 regulates macrophage polarization to alleviate sepsis-induced acute respiratory distress syndrome via dual mechanisms dependent on and independent of autophagy. Cytotherapy 2022 24 2 149 160 10.1016/j.jcyt.2021.09.001 34920961
    [Google Scholar]
  27. Liu H. Wang S. Gong L. SIRT6 ameliorates LPS-induced apoptosis and tight junction injury in ARDS through the ERK1/2 pathway and autophagy. Int. J. Med. Sci. 2023 20 5 581 594 10.7150/ijms.80920 37082736
    [Google Scholar]
  28. Qin Y. Cao L. Hu L. Sirtuin 6 mitigated LPS‐induced human umbilical vein endothelial cells inflammatory responses through modulating nuclear factor erythroid 2‐related factor 2. J. Cell. Biochem. 2019 120 7 11305 11317 10.1002/jcb.28407 30784091
    [Google Scholar]
  29. Peng K. Zeng C. Gao Y. Overexpressed SIRT6 ameliorates doxorubicin-induced cardiotoxicity and potentiates the therapeutic efficacy through metabolic remodeling. Acta Pharm. Sin. B 2023 13 6 2680 2700 10.1016/j.apsb.2023.03.019 37425037
    [Google Scholar]
  30. Smirnov D. Eremenko E. Stein D. SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death Dis. 2023 14 1 35 10.1038/s41419‑022‑05542‑w 36653345
    [Google Scholar]
  31. Gao J. He Y. Shi F. Activation of Sirt6 by icariside II alleviates depressive behaviors in mice with poststroke depression by modulating microbiota gut brain axis. J. Adv. Res. 2025 10.1016/j.jare.2025.03.002
    [Google Scholar]
  32. Wu T. Qu Y. Xu S. Wang Y. Liu X. Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J. 2023 37 8 23099 10.1096/fj.202301012R 37462453
    [Google Scholar]
  33. Song L. Chen X. Mi L. Icariin‐induced inhibition of SIRT6/NF‐κB triggers redox mediated apoptosis and enhances anti‐tumor immunity in triple‐negative breast cancer. Cancer Sci. 2020 111 11 4242 4256 10.1111/cas.14648 32926492
    [Google Scholar]
  34. Li X. Yu J. Gong L. Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway. Free Radic. Biol. Med. 2021 165 243 253 10.1016/j.freeradbiomed.2021.01.028 33493554
    [Google Scholar]
  35. Eckle T. Brodsky K. Bonney M. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol. 2013 11 9 1001665 10.1371/journal.pbio.1001665 24086109
    [Google Scholar]
  36. Zia A. Farkhondeh T. Pourbagher-Shahri A.M. Samarghandian S. The roles of mitochondrial dysfunction and reactive oxygen species in aging and senescence. Curr. Mol. Med. 2022 22 1 37 49 10.2174/1566524021666210218112616 33602082
    [Google Scholar]
  37. Wang J. Ding S. Liu X. Yu T. Wu Z. Li Y. Hypoxia affects mitochondrial stress and facilitates tumor metastasis of colorectal cancer through slug sumoylation. Curr. Mol. Med. 2025 25 1 27 36 10.2174/0115665240271525231112121008 38013443
    [Google Scholar]
  38. Zhu Y Zhao W Li W Squalene epoxidase promotes paraquat-induced pulmonary toxicity through endoplasmic reticulum-mediated ferroptosis. J Adv Res 2025 S2090-1232(25)00385-6
    [Google Scholar]
  39. Wai T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol. Metab. 2024 35 10 854 871 10.1016/j.tem.2024.05.005 38866638
    [Google Scholar]
  40. Bozi L.H.M. Campos J.C. Zambelli V.O. Ferreira N.D. Ferreira J.C.B. Mitochondrially-targeted treatment strategies. Mol. Aspects Med. 2020 71 100836 10.1016/j.mam.2019.100836 31866004
    [Google Scholar]
  41. Du J. Wang T. Xiao C. Dong Y. Zhou S. Zhu Y. Pharmacological activation of ampk prevents drp1-mediated mitochondrial fission and alleviates hepatic steatosis in vitro. Curr. Mol. Med. 2024 24 12 1506 1517 10.2174/0115665240275594231229121030 38310549
    [Google Scholar]
  42. Xia L. Zhang C. Lv N. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics 2022 12 6 2928 2947 10.7150/thno.69533 35401830
    [Google Scholar]
  43. Aidebaike D. Gong H. Xia Y. Tanshinone IIA attenuates sepsis-induced lung injury by reducing VEGFR2/PI3K/AKT-driven mitochondrial disruption dependent apoptosis. Phytomedicine 2025 145 156957 10.1016/j.phymed.2025.156957 40544732
    [Google Scholar]
  44. Dong A. Yu Y. Wang Y. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics. Int. Immunopharmacol. 2018 65 366 372 10.1016/j.intimp.2018.10.012 30380511
    [Google Scholar]
  45. Shi J. Piao M. Liu C. Electroacupuncture pretreatment maintains mitochondrial quality control via HO-1/MIC60 signaling pathway to alleviate endotoxin-induced acute lung injury. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 8 167480 10.1016/j.bbadis.2024.167480 39209235
    [Google Scholar]
  46. Hershberger K.A. Martin A.S. Hirschey M.D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol. 2017 13 4 213 225 10.1038/nrneph.2017.5 28163307
    [Google Scholar]
  47. Morigi M. Perico L. Benigni A. Sirtuins in renal health and disease. J. Am. Soc. Nephrol. 2018 29 7 1799 1809 10.1681/ASN.2017111218 29712732
    [Google Scholar]
  48. You Y. Liang W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 7 166815 10.1016/j.bbadis.2023.166815 37499928
    [Google Scholar]
  49. Bi S. Jiang X. Ji Q. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev. Cell 2024 59 8 991 1009.e12 10.1016/j.devcel.2024.02.008 38484732
    [Google Scholar]
  50. Marzoog B.A. Autophagy as an anti-senescent in aging neurocytes. Curr. Mol. Med. 2024 24 2 182 190 10.2174/1566524023666230120102718 36683318
    [Google Scholar]
  51. Gertler A.A. Cohen H.Y. SIRT6, a protein with many faces. Biogerontology 2013 14 6 629 639 10.1007/s10522‑013‑9478‑8 24213807
    [Google Scholar]
  52. Guo Z. Li P. Ge J. Li H. SIRT6 in aging, metabolism, inflammation and cardiovascular diseases. Aging Dis. 2022 13 6 1787 1822 10.14336/AD.2022.0413 36465178
    [Google Scholar]
  53. Ji M. Jiang H. Li Z. Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nat. Commun. 2022 13 1 7658 10.1038/s41467‑022‑35424‑w 36496445
    [Google Scholar]
  54. Yu L.M. Dong X. Xue X.D. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia‐reperfusion injury by improving mitochondrial quality control: Role of SIRT6. J. Pineal Res. 2021 70 1 12698 10.1111/jpi.12698 33016468
    [Google Scholar]
  55. Kanwal A. Pillai V.B. Samant S. Gupta M. Gupta M.P. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other’s activity and protect the heart from developing obesity‐mediated diabetic cardiomyopathy. FASEB J. 2019 33 10 10872 10888 10.1096/fj.201900767R 31318577
    [Google Scholar]
  56. Yang X. Feng J. Liang W. Roles of SIRT6 in kidney disease: A novel therapeutic target. Cell. Mol. Life Sci. 2022 79 1 53 10.1007/s00018‑021‑04061‑9 34950960
    [Google Scholar]
  57. Gao F. Qian M. Liu G. Ao W. Dai D. Yin C. USP10 alleviates sepsis-induced acute kidney injury by regulating Sirt6-mediated Nrf2/ARE signaling pathway. J. Inflamm. 2021 18 1 25 10.1186/s12950‑021‑00291‑7 34412625
    [Google Scholar]
  58. Wang J. Luo J. Rotili D. SIRT6 protects against lipopolysaccharide-induced inflammation in human pulmonary lung microvascular endothelial cells. Inflammation 2024 47 1 323 332 10.1007/s10753‑023‑01911‑5 37819455
    [Google Scholar]
  59. Zhang Y. Wang L. Meng L. Cao G. Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle 2019 18 4 425 436 10.1080/15384101.2019.1568746 30700227
    [Google Scholar]
  60. Yuan X. Chen G. Guo D. Xu L. Gu Y. Polydatin alleviates septic myocardial injury by promoting sirt6-mediated autophagy. Inflammation 2020 43 3 785 795 10.1007/s10753‑019‑01153‑4 32394287
    [Google Scholar]
  61. Salazar G. Cullen A. Huang J. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 2020 16 6 1092 1110 10.1080/15548627.2019.1659612 31441382
    [Google Scholar]
  62. Ryu J.S. Kang H.Y. Lee J.K. Effect of treadmill exercise and trans-cinnamaldehyde against d-galactose- and aluminum chloride-induced cognitive dysfunction in mice. Brain Sci. 2020 10 11 793 10.3390/brainsci10110793 33138104
    [Google Scholar]
  63. Ling H. Li Q. Duan Z.P. Wang Y.J. Hu B.Q. Dai X.G. LncRNA GAS5 inhibits miR-579-3p to activate SIRT1/PGC-1α/Nrf2 signaling pathway to reduce cell pyroptosis in sepsis-associated renal injury. Am. J. Physiol. Cell Physiol. 2021 321 1 C117 C133 10.1152/ajpcell.00394.2020 34010066
    [Google Scholar]
  64. Cardanho-Ramos C. Morais V.A. Mitochondrial biogenesis in neurons: How and where. Int. J. Mol. Sci. 2021 22 23 13059 10.3390/ijms222313059 34884861
    [Google Scholar]
  65. Fontecha-Barriuso M. Martin-Sanchez D. Martinez-Moreno J. The Role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules 2020 10 2 347 10.3390/biom10020347 32102312
    [Google Scholar]
  66. Li J. Shi X. Chen Z. Aldehyde dehydrogenase 2 alleviates mitochondrial dysfunction by promoting PGC-1α-mediated biogenesis in acute kidney injury. Cell Death Dis. 2023 14 1 45 10.1038/s41419‑023‑05557‑x 36670098
    [Google Scholar]
  67. Aquilano K. Baldelli S. Pagliei B. Ciriolo M.R. Extranuclear localization of SIRT1 and PGC-1α: An insight into possible roles in diseases associated with mitochondrial dysfunction. Curr. Mol. Med. 2013 13 1 140 154 10.2174/156652413804486241 22834844
    [Google Scholar]
  68. Slavin M.B. Memme J.M. Oliveira A.N. Moradi N. Hood D.A. Regulatory networks coordinating mitochondrial quality control in skeletal muscle. Am. J. Physiol. Cell Physiol. 2022 322 5 C913 C926 10.1152/ajpcell.00065.2022 35353634
    [Google Scholar]
  69. Huang T. Lin R. Su Y. Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat. Commun. 2023 14 1 5781 10.1038/s41467‑023‑41529‑7 37723135
    [Google Scholar]
  70. Wu P. Dong Y. Chen J. Liraglutide regulates mitochondrial quality control system through pgc-1α in a mouse model of parkinson’s disease. Neurotox. Res. 2022 40 1 286 297 10.1007/s12640‑021‑00460‑9 35043376
    [Google Scholar]
  71. Liu J. Jiang J. Qiu J. Urolithin A protects dopaminergic neurons in experimental models of Parkinson’s disease by promoting mitochondrial biogenesis through the SIRT1/PGC-1α signaling pathway. Food Funct. 2022 13 1 375 385 10.1039/D1FO02534A 34905594
    [Google Scholar]
  72. Li J. Yu D. Chen S. Sirt6 opposes glycochenodeoxy-cholate-induced apoptosis of biliary epithelial cells through the AMPK/PGC-1α pathway. Cell Biosci. 2020 10 1 43 10.1186/s13578‑020‑00402‑6 32206298
    [Google Scholar]
  73. Dominy J.E. Lee Y. Jedrychowski M.P. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 2012 48 6 900 913 10.1016/j.molcel.2012.09.030 23142079
    [Google Scholar]
  74. Xiang Y. Li X. Huang Y. ADSCs encapsulated in Gelatin methacrylate substrate promotes the repair of peripheral nerve injury by SIRT6/PGC-1α pathway. Regen. Ther. 2024 26 671 682 10.1016/j.reth.2024.08.018 39281107
    [Google Scholar]
  75. Gao S. Yang Q. Liu Z. Metformin alleviates HFD-induced oxidative stress in hepatocyte via activating SIRT6/PGC-1α/ENDOG signaling. Clin. Sci. (Lond.) 2022 136 22 1711 1730 10.1042/CS20220242 36315407
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240423301250929091606
Loading
/content/journals/cmm/10.2174/0115665240423301250929091606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test